电子测量与仪器 第八章 频率域测量-频谱分析仪讲解
- 格式:ppt
- 大小:1.47 MB
- 文档页数:52
什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。
现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。
仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。
频谱分析仪的工作原理以及应用方面推广:频谱分析仪的组成及工作原理图1所示为扫频调谐超外差频谱分析仪组成框图。
输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。
LO 的频率由扫频发生器控制。
随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。
然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。
随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。
该迹线示出了输入信号在所显示频率范围内的频率成分。
频谱仪各部分作用及显示信号分析输入衰减器:保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。
混频器:完成信号的频谱搬移,将不同频率输入信号变换到相应中频。
在低频段(《3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(》3GHz)利用带通跟踪滤波器抑制镜像干扰。
本振(LO):它是一个压控振荡器,其频率是受扫频发生器控制的。
其频率稳定度锁相于参考源。
扫频发生器:除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。
频谱分析仪的使用方法频谱分析仪是一种用于测量信号频谱的仪器,它可以帮助我们分析信号的频率成分和功率分布,对于电子、通信、无线电等领域的工程师和技术人员来说,频谱分析仪是一种非常重要的工具。
在本文中,我们将介绍频谱分析仪的基本使用方法,希望能够帮助读者更好地掌握这一工具的操作技巧。
首先,使用频谱分析仪之前,我们需要确保设备的连接是正确的。
通常情况下,频谱分析仪会有一个输入端和一个输出端,我们需要将待测信号连接到输入端,并将输出端连接到显示设备或者记录设备上。
在连接好设备之后,我们需要打开频谱分析仪,并进行一些基本的设置。
接下来,我们需要设置频谱分析仪的中心频率和带宽。
中心频率是我们希望观测的信号频率,而带宽则是我们希望观测的频率范围。
通过设置这两个参数,我们可以确保频谱分析仪能够准确地捕捉到我们感兴趣的信号。
在设置好中心频率和带宽之后,我们需要调整频谱分析仪的分辨率带宽。
分辨率带宽是指频谱分析仪在测量信号时的频率分辨能力,通常情况下,分辨率带宽越小,频谱分析仪的测量精度就越高。
因此,我们需要根据实际情况来调整分辨率带宽,以确保我们能够获得准确的测量结果。
在进行测量之前,我们还需要注意一些其他的设置,比如参考电平、RBW(分辨率带宽)、VBW(视频带宽)等参数的设置。
这些参数会影响到频谱分析仪的测量结果,因此我们需要根据实际情况来进行调整。
当所有的设置都完成之后,我们就可以开始进行信号的测量和分析了。
在测量过程中,我们需要注意观察频谱分析仪的显示屏,以确保我们能够及时地发现信号的变化。
同时,我们还可以通过调整频谱分析仪的参数,比如RBW和VBW,来获得更加详细和准确的测量结果。
除了基本的测量功能之外,一些先进的频谱分析仪还具有其他的功能,比如谐波分析、调制解调功能、无线电频谱监测等。
这些功能可以帮助我们更加全面地了解信号的特性,对于一些特定的应用场景来说,可能会有非常重要的意义。
总的来说,频谱分析仪是一种非常重要的测量工具,它可以帮助我们分析信号的频率成分和功率分布,对于电子、通信、无线电等领域的工程师和技术人员来说,掌握频谱分析仪的使用方法是非常重要的。
频谱分析仪的使用及实用技巧频谱分析仪是一款功能多、用途广的电子测量设施,既可以对放大器、滤波器等线路线路系统的部分参数进行测量,还能够对于信号的调制度、频率稳定性等方面进行一个参数测量。
下面则对频谱分析仪的使用与实用技巧进行一个讲解。
频谱分析仪的使用测量的可测量性和不确定性完全取决于频谱分析仪的设置。
这包括衰减器,频率范围和分辨率带宽的设置。
频谱分析仪的设置包括频率范围,分辨率和动态范围。
动态范围还涉及最大输入功率,即燃尽功率。
当输入信号小于1W超过线性工作区域时,增益压缩会导致错误。
此外,灵敏度也被认为是频谱分析仪是否可以测量输入信号的关键。
应从两个方面观察参数的频率范围。
一个是频率范围是否足够窄以具有足够的频率分辨率,即足够窄的扫描宽度。
两者是频率范围是否具有足够的宽度,以及是否可以测量二次和三次谐波。
当使用频谱分析仪测量放大器的谐波失真时,如果放大器为1GHz,则其三次谐波为3GHz,这是考虑频率范围的最大可测量宽度。
如果频谱分析仪为1.8 GHz,则无法测量。
如果频谱分析仪为26.5 GHz,则可以测量三次和四次谐波。
分辨率也是频谱分析仪中非常重要的参数设置。
分辨率表明,当测量两个频率的功率不同时,我们必须区分它们。
将IF带宽设置为三个不同的宽度对应于设置带宽时看到的曲线。
带宽越窄,分辨率越高。
中频带宽越宽,分辨率越低。
分辨率带宽直接影响小信号的识别能力和测量结果。
频谱分析仪的实用技巧1、频谱分析仪的校准:频谱分析仪通常具有固定幅度和频率的校准器。
当使用频谱分析仪测量信号特别是绝对信号电平时,有必要校准频谱分析仪以确保信号测量的准确性。
此外,可以通过测量校准信号的测试,从而检查频谱分析仪是否出现问题。
2、射频输入信号电平小鱼频谱分析仪允许的安全电平:在频谱分析仪输入端接入射频信号之间,一定要对输入信号电平进行正确的估算,以此避免频谱分析仪射频输入大于射频分析仪允许的安全电平,否则将会烧坏频谱分析仪输入衰减器和混频器。