2007年成都中考数学试题及答案
- 格式:doc
- 大小:1.57 MB
- 文档页数:15
A BCDE FMC'D 'B'俯视图主(正)视图左视图成都市2006年高中阶段教育学校统一招生考试试卷(北师大版)A 卷(共100分)一、选择题:(每小题3分,共30分)1、2--的倒数是( )A 、2B 、12C 、12-D 、-22、2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A 、3.84×410千米B 、3.84×510千米C 、3.84×610千米D 、38.4×410千米 3、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 、5个B 、6个C 、7个D 、8个4、下列运算正确的是( )A 、2224(2)2a a a -=B 、336()a a a -⋅=C 、236(2)8x x-=- D 、2()x x x -÷=-5、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。
向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360° 6 、已知代数式1312a xy-与23b a b x y -+-是同类项,那么a 、b 的值分别是( )A 、21a b =⎧⎨=-⎩B 、21a b =⎧⎨=⎩C 、21a b =-⎧⎨=-⎩D 、21a b =-⎧⎨=⎩7、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°8、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D BC=2,那么sin ∠ACD =( )A 、3B 、23C 、5D 、29、为了了解汽车司机遵守交通法规的意识,小明的学习小成员协助交通警察在某路口统计的某个时段来往汽车的车(单位:千米/小时)情况如图所示。
成都四、七、九中高07级联考试卷数 学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.全卷满分150分,考试时间120分钟。
第I 卷(选择题,共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.一、选择题(满分60分,每小题只有一个正确答案,请将正确答案的字母涂在机读卡上) 1.函数()lg(21)=-f x x 的定义域为A .1,2⎛⎫+∞ ⎪⎝⎭B .1,22⎛⎫⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .(,2)-∞2.已知α为第二象限的角,则2α所在的象限是 A .I ,II B .I ,IIIC .II ,IVD .II ,III3.已知22610n a n n =-+,则{a n }的最大项是A .a 1B .a 2C .a 3D .a 44.若p , q ∈R ,则1pq<成立的一个充分不必要条件是 A .q >p >0B .p >q >0C .p <q <0D .p =q≠05.把函数y =2x −2+3的图象按向量a 平移,得到函数y =2x +1−1的图象,则向量a = A .(−3, −4)B .(3, 4)C .(−3, 4)D .(3, −4)6.在ΔABC 中,a =5,b =8,C =60°,则BC CA ⋅=A .20B .−20C .D .-7.各项均不为零的等差数列{a n }中,若2110(2)n nn a a a n +--+=≥则20062006S -= A .0 B .−2006 C .2006 D .40128.已知函数sin(),0,||,2y A x x R πωϕωϕ⎛⎫=+><∈ ⎪⎝⎭的部分图象如图,则函数关系式为A .4sin 84y x ππ⎛⎫=-+ ⎪⎝⎭B .4sin 84y x ππ⎛⎫=- ⎪⎝⎭C .4sin 84y x ππ⎛⎫=-- ⎪⎝⎭D .4sin 84y x ππ⎛⎫=+ ⎪⎝⎭9.集合P ={1, 4, 9, 16…},若a ∈P , b ∈P 则a ⊕b ∈P ,则运算⊕可能是A .加法B .减法C .除法D .乘法10.在ΔABC中,1tan ,cos 2A B =,若ΔABCA .2BC .32D .111.{a n }为等差数列,若11101a a <-,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n = A .11B .17C .19D .2112.设对任意实数x ∈[−1, 1],不等式x 2+ax −3a <0总成立,则实数a 的取值范围是 A .a >0B .a >0或a <−12C .12a >D .14a >5 6 10 xy42−2−2 −4第II 卷(非选择题共90分)注意事项:1. 用钢笔或圆珠笔直接答在试题卷上。
一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2.化简( - 3x2)〃2x3的结果是(A)- 6x5(B)- 3x5 (C)2x5 (D)6x53.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)6 (D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上6.在函数中,自变量x的取值范围是(A)x≥ - 3 (B)x≤ - 3 (C)x≥ 3 (D )x≤ 37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF8.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A )12πcm 2(B )15πcm 2(C )18πcm 2(D )24πcm 210. 有下列函数:①y = - 3x ;②y = x – 1:③y = - x1(x < 0);④y = x 2+ 2x + 1.其中当x 在各自的自变量取值范围内取值时,y 随着x 的增大而增大的函数有(A )①②(B )①④(C )②③(D )③④二、填空题:(每小题4分,共16分)11. 现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为2甲S =0.32,2乙S =0.26,则身高较整齐的球队是 队.12. 已知x = 1是关于x 的一元二次方程2x 2+ kx – 1 = 0的一个根,则实数k 的值是 . 13. 如图,已知PA 是⊙O 的切线,切点为A ,PA = 3,∠APO = 30°,那么OP = .14. 如图,在平面直角坐标系中,△PQR 是△ABC 经过某种变换后得到的图形,观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系.在这种变换下,如果△ABC 中任意一点M 的坐标为(x ,y ),那么它们的对应点N 的坐标是.三、(第15题每小题6分,第16题6分,共18分) 15. 解答下列各题:(1)计算:231)2008(410-+⎪⎭⎫⎝⎛--+- .(2)化简:).4(2)12(22-⋅-+-x xx x x x 16. 解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整式解. 四、(每小题8分,共16分)17. 如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)18. 如图,已知反比例函数y =xm 的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B. (1)试确定这两个函数的表达式; (2)求点B 的坐标.五、(每小题10分,共20分)19. 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4. (1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.20. 已知:在梯形ABCD 中,AD ∥BC ,AB = DC ,E 、F 分别是AB 和BC 边上的点.(1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC.若AD =4,BC=8,求梯形ABCD 的面积ABCD S 梯形的值;(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果FG=k 〃EF (k 为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.一、选择题:(每小题3分,共30分)1. 计算2(12-)的结果是 (A)-1 (B) l (C)一2 (D) 22. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是俯视图主视图(A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上(C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖(D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A ′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限 7. 若关于x 的一元二次方程2210kxx --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150° 9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为(A)20kg (B)25kg (C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是6.8度 (C)极差是5度 (D)中位数是6度二、填空题:(每小题4分,共16分) BCDEA′BCDO11.分式方程2131xx =+的解是_________ 12.如图,将矩形ABCD 沿BE 折叠,若∠CBA ′=30则∠BEA ′=_____.13.改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:①54.4110⨯人;②64.4110⨯人;③544.110⨯人.其中是科学记数法表示的序号为_________.14.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD =6,那么BD =_________. 三、(第15题每小题6分,第16题6分,共18分) 15.解答下列各题: (1032(2009)4sin 45(1)π--+-。
成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分 第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷第Ⅰ卷(选择题)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、选择题:1.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A.26-℃ B.22-℃ C.18-℃ D.16-℃ 2.下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=·D.236()a a -=-3表示该位置上小立方块的个数,那么该几何体的主视图为(4.下列说法正确的是( )A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行 B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数 C.明天我市会下雨是可能事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.在函数3y x=中,自变量x 的取值范围是( ) A.2x -≥且0x ≠B.2x ≤且0x ≠A .B .C .D .C.0x ≠D.2x -≤6.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=8.如图,O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A.40° B.55°C.65° D.70°9.如图,小“鱼”与大“鱼”是位似图形, 已知小“鱼”上一个“顶点”的坐标为()a b ,, 那么大“鱼”上对应“顶点”的坐标为( ) A.(2)a b --, B.(2)a b --, C.(22)a b --,D.(22)b a --,10.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cm B .35cm C .8cmD .53cm第Ⅱ卷(非选择题)注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题将答案直接写在该题目的横线上.11.已知22(5)0a b -++=,那么a b +的值为 .DO AFCE12.已知小明家五月份总支出共计1200元,各项支出如图所示, 那么其中用于教育上的支出是 元.13.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D , 分别落在C D '',的位置上,EC '交AD 于点G . 已知58EFG ∠=°,那么BEG ∠= °.14.如图,已知AB 是O 的直径,弦CD AB ⊥,AC =1BC =,那么sin ABD ∠的值是.15.如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 . 三、16.解答下列各题: (11223sin 30--°.(2)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.(3)解方程:32211x x x +=-+. 四、17.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的ABECDFGC 'D 'AB仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)18.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.五、19.小华与小丽设计了A B ,两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由. 20.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;O yx B A(2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论.B 卷一、填空题: 将答案直接写在该题目中的横线上.21.如图,如果要使ABCD 成为一个菱形, 需要添加一个条件,那么你添加的条件是.22.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时.23.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .24.如图,将一块斜边长为12cm ,60B ∠=°的 直角三角板ABC ,绕点C 沿逆时针方向旋转90° 至A B C '''△的位置,再沿CB 向右平移,使点B ' 刚好落在斜边AB 上,那么此三角板向右平移的 距离是cm .25.在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 . 二、D AE FCHGBD C B A '()C C '26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支? (2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =;(2)求证:PA 是O 的切线; (3)若FG BF =,且O的半径长为求BD 和FG 的长度.28.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,.(1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.C成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案A 卷 第Ⅰ卷一、选择题 1.C ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.B ;9.C ;10.B .A 卷 第Ⅱ卷二、填空题:11.3-; 12.216;13.64;14.3; 15.1-三、16.(1)解:原式112322=+-⨯13222=+= (2)解:解不等式3312x x -++≥,得1x ≤. 解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,,. (3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. 去括号,得22332222x x x x ++-=-. 解得5x =-.经检验5x =-是原方程的解. ∴原方程的解是5x =-. 四、17.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°, ∴四边形BECD 是矩形. CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米.tan BECEβ=∵, tan 90tan 60BE CE β==⨯∴·°903= (米). 903CD BE ==∴(米)。
绵阳市2007年高级中等教育学校招生统一考试一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-31的相反数是( )A .3B .-3C .31 D .-312.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿米3,用科学记数法表示这个数为( )A .8.99×105亿米3B .0.899×106亿米3C .8.99×104亿米3D .89.9×103亿米33.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列说法错误的是( )A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .随机事件发生的概率大于0且小于1D .不确定事件发生的概率为05.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( )A .甲票10元∕张,乙票8元∕张B .甲票8元∕张,乙票10元∕张C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张 6.下列三视图所对应的直观图是( )A .B .C .D .7.若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )A .b 1<b 2B .b 1 = b 2C .b 1>b 2D .大小不确定8.初三·一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x ,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是( )A .12B .10C .9D .8 9.如图,在正方形ABCD 的外侧,作等边△ADE ,BE 、CE 分别交AD 于G 、H ,设 △CDH 、△GHE 的面积分别为S 1、S 2,则( )A .3S 1 = 2S 2B .2S 1 = 3S 2C .2S 1 =3S 2D .3S 1 = 2S 2 10.将一块弧长为π 的半圆形铁皮围成一个 圆锥(接头忽略不计),则围成的圆锥的高为( )A .3B .23 C .5 D .2511.当身边没有量角器时,怎样得到一些特定度 数的角呢?动手操作有时可以解“燃眉之急”.如图, 已知矩形ABCD ,我们按如下步骤操作可以得到一个 特定的角:(1)以点A 所在直线为折痕,折叠纸片, 使点B 落在AD 上,折痕与BC 交于E ;(2)将纸片 展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE =( )A .60︒B .67.5︒C .72︒D .75︒ 12.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是( )A .0B .1C .2D .3二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上.13.因式分解:2m 2-8n 2= .14.如图,梯形ABCD 中,AB ∥CD ,AD = CD ,E 、F 分别是AB 、BC 的中点,若∠1 = 35︒,则∠D = .15.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.16.如图,△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小,使变换后得到的△DEF 与△ABC 对应边的比为1∶2,则线段ABCDAC 的中点P 变换后对应的点的坐标为 .17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为 .18.若a 、b 、c 是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:① 以a 2,b 2,c 2的长为边的三条线段能组成一个三角形 ② 以a ,b ,c 的长为边的三条线段能组成一个三角形 ③ 以a + b ,c + h ,h 的长为边的三条线段能组成直角三角形 ④ 以a1,b1,c1的长为边的三条线段能组成直角三角形其中所有正确结论的序号为 .三、解答题:本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤.19.(本题共2小题,每小题8分,共16分) (1)计算:|345tan |32)31()21(10-︒-⨯+--.(2)化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围.20.(本题满分12分)小明对本班同学上学的交通方式进行了一次调查,他根据采集的数据,绘制了下面的统计图1和图2.请你根据图中提供的信息,解答下列问题:图1 图2(1)计算本班骑自行车上学的人数,补全图1的统计图;(2)在图2中,求出“乘公共汽车”部分所对应的圆心角的度数,补全图2的统计图(要求写出各部分所占的百分比);(3)观察图1和图2,你能得出哪些结论?(只要求写出一条).21.(本题满分12分)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?22.(本题满分12分)如图,AB是⊙O的直径,∠BAC= 60︒,P是OB上一点,过P 作AB的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连结OC.(1)求证:△CDQ是等腰三角形;(2)如果△CDQ≌△COB,求BP:PO的值.23.(本题满分12分)已知x1,x2 是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.(1)求x1,x2 的值;(2)若x1,x2 是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.24.(本题满分12分)如图,△ABC中,E、F分别是AB、AC上的点.①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②⇒③,①③⇒②,②③⇒①.(1)试判断上述三个命题是否正确(直接作答);(2)请证明你认为正确的命题.25.(本题满分14分)如图,已知抛物线y= ax2 + bx-3与x轴交于A、B两点,与y 轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC = α,∠CBE = β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.绵阳市2007年高级中等教育学校招生统一考试数学试题参考答案及评分意见说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准相应给分.2.对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确地做到这一步应得的累加分数.一、选择题:1.C 2.A 3.D 4.D 5.A 6.C 7.D 8.B 9.A 10.B 11.B 12.C二、填空题: 13.2(m + 2n )(m -2n ) 14.110︒ 15.616.(2,23)或(-2,-23) 17.277 18.②③④三、解答题:19.(1)32+(2)11+x ,x 的取值范围是x ≠-2且x ≠1的实数.20.(1)∵ 小明所在的全班学生人数为14÷28% = 50人,∴ 骑自行车上学的人数为50-14-12-8 = 16人;其统计图如图1.(2)乘公共汽车、骑自行车、步行、其它所占全班的比分别为14÷50,16÷50,12÷50,8÷50即28%,32%,24%,16%,它们所对应的圆心角分别是100.8︒,115.2︒,86.4︒,57.6︒,其统计图如图2.(3)小明所在的班的同学上学情况是:骑自行车的学生最多;通宿生占全班的绝大多数;住校或家长用车送的占少数.图1 图221.(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得 4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三 4辆 4辆(2)方案一所需运费 300×2 + 240×6 = 2040元; 方案二所需运费 300×3 + 240×5 = 2100元; 方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元. 22.(1)由已知得∠ACB = 90︒,∠ABC = 30︒, ∴ ∠Q = 30︒,∠BCO = ∠ABC = 30︒. ∵ CD 是⊙O 的切线,CO 是半径, ∴ CD ⊥CO ,∴ ∠DCQ =∠BCO = 30︒,∴ ∠DCQ =∠Q ,故△CDQ 是等腰三角形.(2)设⊙O 的半径为1,则AB = 2,OC = 1,AC = AB ∕2 = 1,BC =3. ∵ 等腰三角形CDQ 与等腰三角形COB 全等,∴ CQ = BC =3. 于是 AQ = AC + CQ = 1 +3,进而 AP = AQ ∕2 =(1 +3)∕2, ∴ BP = AB -AP = 2-(1 +3)∕2 =(3-3)∕2, PO = AP -AO =(1 +3)∕2-1 =(3-1)∕2,∴ BP :PO =3. 23.(1) 原方程变为:x 2-(m + 2)x + 2m = p 2-(m + 2)p + 2m , ∴ x 2-p 2-(m + 2)x +(m + 2)p = 0, (x -p )(x + p )-(m + 2)(x -p )= 0, 即 (x -p )(x + p -m -2)= 0, ∴ x 1 = p , x 2 = m + 2-p . (2)∵ 直角三角形的面积为)2(212121p m p x x -+==p m p )2(21212++-=)]4)2(()22()2([21222+-+++--m m p m p =8)2()22(2122+++--m m p ,∴ 当22+=m p 且m >-2时,以x 1,x 2为两直角边长的直角三角形的面积最大,最大面积为8)2(2+m 或221p .24.(1)①② ⇒ ③,正确;①③ ⇒ ②,错误;②③ ⇒ ①,正确. (2)先证 ①② ⇒ ③.如图1.∵ AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,而AD = AD , ∴ Rt △ADE ≌Rt △ADF ,∴ DE =DF ,∠ADE =∠ADF .设AD 与EF 交于G ,则△DEG ≌△DFG , 因此∠DGE =∠DGF ,进而有∠DGE =∠DGF = 90︒,故AD ⊥EF . 再证 ②③ ⇒ ①.如图2,设AD 的中点为O ,连结OE ,OF .∵ DE ⊥AB ,DF ⊥AC ,∴ OE ,OF 分别是Rt △ADE ,Rt △ADF 斜边上的中线, ∴AD OE 21=,AD OF 21=,即点O 到A 、E 、D 、F的距离相等,因此四点A 、E 、D 、F 在以O 为圆心,AD 21为半径的圆上,AD 是直径.于是EF 是⊙O 的弦,而EF ⊥AD , ∴ AD 平分,即,故∠DAE =∠DAF ,即AD 平分∠BAC . 25.(1)由题意可知C (0,-3),12=-ab ,∴ 抛物线的解析式为y = ax 2-2ax -3(a >0),过M 作MN ⊥y 轴于N ,连结CM ,则MN = 1,5=CM , ∴ CN = 2,于是m =-1. 同理可求得B (3,0),∴ a ×32-2-2a ×3-3 = 0,得 a = 1,∴ 抛物线的解析式为y = x 2-2x -3. (2)由(1)得 A (-1,0),E (1,-4),D (0,1). ∴ 在Rt △BCE 中,23=BC ,2=CE ,∴313==ODOB ,3223==CEBC ,∴ CEBC ODOB =,即CEOD BCOB =,∴ Rt △BOD ∽Rt △BCE ,得 ∠CBE =∠OBD =β, 因此 sin (α-β)= sin (∠DBC -∠OBD )= sin ∠OBC =22=BCCO .(3)显然 Rt △COA ∽Rt △BCE ,此时点P 1(0,0).过A 作AP 2⊥AC 交y 正半轴于P 2,由Rt △CAP 2 ∽Rt △BCE ,得)31,0(2P .过C 作CP 3⊥AC 交x 正半轴于P 3,由Rt △P 3CA ∽Rt △BCE ,得P 3(9,0). 故在坐标轴上存在三个点P 1(0,0),)31,0(2P ,P 3(9,0),使得以P 、A 、C 为顶点的三角形与BCE 相似.。
成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案A 卷(共100分) A 卷 第Ⅰ卷(共30分)一、选择题:(每小题3分,共30分)1.C ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.B ; 9.C ; 10.B .A 卷 第Ⅱ卷(共70分)二、填空题:(每小题3分,共15分) 11.3-; 12.216; 13.64; 14.223; 15.1- 三、(每小题7分,共21分) 16.(1)解:原式112323322=-+--⨯ ······················································ 4分 13232322=-+--3=. ················································································ 3分(2)解:解不等式3312x x -++≥,得1x ≤. ················································ 2分 解不等式13(1)8x x --<-,得2x >-. ··························································· 2分 ∴原不等式组的解集是21x -<≤. ································································· 2分 ∴原不等式组的整数解是101-,,. ····································································· 1分 (3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. ··································· 3分 去括号,得22332222x x x x ++-=-.解得5x =-. ································································································ 2分 经检验5x =-是原方程的解.∴原方程的解是5x =-. ················································································ 2分 四、(每小题8分,共16分) 17.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°,∴四边形BECD 是矩形. CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米.tan BECEβ=∵, tan 90tan 60BE CE β==⨯∴·°903= (米). 903CD BE ==∴(米). ··································3分在Rt ACE △中,30α=°,90CE =米.tan AECEα=∵, tan 90tan30AE CE α==⨯∴·°3903033=⨯=(米). ··································· 3分 3039031203AB AE BE =+=+=∴(米).答:甲楼高为903米,乙楼高为1203米. ······················································ 2分 18.解:(1)∵点(21)A -,在反比例函数my x=的图象上, (2)12m =-⨯=-∴.∴反比例函数的表达式为2y x=-. ································ 2分 ∵点(1)B n ,也在反比例函数2y x=-的图象上,2n =-∴,即(12)B -,. 把点(21)A -,,点(12)B -,代入一次函数y kx b =+中,得212k b k b -+=⎧⎨+=-⎩,,解得11k b =-⎧⎨=-⎩,. ∴一次函数的表达式为1y x =--. ··································································· 3分 (2)在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(10)C -,. ······················································· 1分 ∵线段OC 将AOB △分成AOC △和BOC △,1113111212222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=+=△△△∴. ································· 2分 OyxBACE19.解:对游戏A : 画树状图或用列表法2342 (22),(23), (24),3 (32), (33), (34),4(42),(43),(44),所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A 小华获胜的概率为59,而小丽获胜的概率为49.即游戏A 对小华有利,获胜的可能性大于小丽. ············································································································· 4分对游戏B : 画树状图或用列表法56885—•(56), (58), (58),第 二次第一 次 小丽小华 2 3 4 2 3 4 2 3 423 4开始开始6 8 8 5 8 8 5 6 8 5 6 88 8 6 5 小丽小华6 (65), —•(68), (68),8 (85),(86), —•(88), 8(85), (86), (88),—•所有可能出现的结果共有12种,其中小华抽出的牌面上的数字比小丽大的有5种;根据游戏B 的规则,当小丽抽出的牌面上的数字与小华抽到的数字相同或比小华抽到的数字小时,则小丽获胜.所以游戏B 小华获胜的概率为512,而小丽获胜的概率为712.即游戏B 对小丽有利,获胜的可能性大于小华. ······························································· 4分 故小丽选取游戏B 获胜的可能性要大些. ······················································ 1分20.(1)证明:CD AB ⊥∵,45ABC ∠=°, BCD ∴△是等腰直角三角形. BD CD =∴.在Rt DFB △和Rt DAC △中,90DBF BFD ∠=-∠∵°,90DCA EFC ∠=-∠°,且BFD EFC ∠=∠,DBF DCA ∠=∠∴.又90BDF CDA ∠=∠=∵°,BD CD =,Rt Rt DFB DAC ∴△≌△.BF AC =∴. ······························································································ 3分 (2)证明:在Rt BEA △和Rt BEC △中 BE ∵平分ABC ∠, ABE CBE ∠=∠∴.又90BE BE BEA BEC =∠=∠=∵,°, Rt Rt BEA BEC ∴△≌△.12CE AE AC ==∴.又由(1),知BF AC =,1122CE AC BF ==∴. ················································································· 3分 (3)CE BG <. 证明:连结CG .BCD ∵△是等腰直角三角形, BD CD =∴.又H 是BC 边的中点, DH ∴垂直平分BC . BG CG =∴. 在Rt CEG △中,CG ∵是斜边,CE 是直角边, CE CG <∴.CE BG <∴. ······························································································· 3分 DAE F C HG BB 卷(共50分)一、填空题:(每小题4分,共20分)21.AB AD AC BD =⊥,等; 22.2.46,2.5; 23.13; 24.623-; 25.(20)(40)-,,,. 二、(共8分)26.解:(1)设能买锦江牌钢笔x 支,则能买红梅牌钢笔(40)x -支.依题意, 得8 4.8(40)240x x +-=. 解得15x =.40401525x -=-=∴.答:能买锦江牌钢笔15支,红梅牌钢笔25支. ··················································· 3分 (2)①依题意,得8 4.8(40) 3.2192y x x x =+-=+.又由题意,有1(40)21(40)4x x x x ⎧<-⎪⎪⎨⎪-⎪⎩,.≥解得4083x <≤. y ∴关于x 的函数关系式为 3.2192y x =+,自变量x 的取值范围是4083x <≤且x 为整数. ·················································· 3分 ②对一次函数 3.2192y x =+,3.20k =>∵,y ∴随x 的增大而增大.∴对4083x <≤,当8x =时,y 值最小. 此时4040832x -=-=, 3.28192217.6y =⨯+=最小(元).答:当买锦江牌钢笔8支,红梅牌钢笔32支时,所花钱最少,为217.6元. ·············· 2分 三、(共10分) 27.(1)证明:BC ∵是O 的直径,BE 是O 的切线,EB BC ⊥∴.又AD BC ⊥∵,AD BE ∴∥.易证BFC DGC △∽△,FEC GAC △∽△.BF CF EF CFDG CG AG CG ==∴,. BF EF DG AG=∴. G ∵是AD 的中点,DG AG =∴.BF EF =∴. ·····················································3分 (2)证明:连结AO AB ,.BC ∵是O 的直径,90BAC ∠=∴°. 在Rt BAE △中,由(1),知F 是斜边BE 的中点, AF FB EF ==∴. FBA FAB ∠=∠∴.又OA OB =∵,ABO BAO ∠=∠∴. BE ∵是O 的切线,90EBO ∠=∴°.90EBO FBA ABO FAB BAO FAO ∠=∠+∠=∠+∠=∠=∵°,PA ∴是O 的切线. ····················································································· 3分 (3)解:过点F 作FH AD ⊥于点H . BD AD FH AD ⊥⊥∵,, FH BC ∴∥. 由(1),知FBA BAF ∠=∠,BF AF =∴.由已知,有BF FG =,AF FG =∴,即AFG △是等腰三角形. FH AD ⊥∵,AH GH =∴. DG AG =∵,2DG HG =∴,即12HG DG =. 90FH BD BF AD FBD ∠=∵∥,∥,°, ∴四边形BDHF 是矩形,BD FH =. FH BC ∵∥,易证HFG DCG △∽△. FH FG HG CD CG DG ==∴,即12BD FG HG CD CG DG ===.O ∵的半径长为32,62BC =∴.1262BD BD BD CD BC BD BD ===--∴. 解得22BD =.22BD FH ==∴.12FG HG CG DG ==∵,12FG CG =∴. 3CF FG =∴.在Rt FBC △中,3CF FG =∵,BF FG =, 由勾股定理,得222CF BF BC =+.O D GC A E F B P H222(3)(62)FG FG =+∴.解得3FG =(负值舍去).3FG =∴. ·································································································· 4分 [或取CG 的中点H ,连结DH ,则2CG HG =.易证AFG DHG △≌△, FG HG =∴,故2CG FG =,3CF FG =. 由GD FB ∥,易知CDG CBF △∽△,2233CD CG FG CB CF FG ===∴. 由622362BD -=,解得22BD =. 又在Rt CFB △中,由勾股定理,得222(3)(62)FG FG =+,3FG =∴(舍去负值).] 四、(共12分) 28.解:(1)二次函数图象顶点的横坐标为1,且过点(23),和(312)--,,∴由1242393212.ba abc a b ⎧-=⎪⎪++=⎨⎪-+=-⎪⎩,,解得123.a b c =-⎧⎪=⎨⎪=⎩,,∴此二次函数的表达式为 223y x x =-++. ······················································ 3分(2)假设存在直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.在223y x x =-++中,令0y =,则由2230x x -++=,解得1213x x =-=,(10)(30)A B ∴-,,,.令0x =,得3y =.(03)C ∴,.设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .点B 的坐标为(30),,点C 的坐标为(03),,点A 的坐标为(10)-,.4345.AB OB OC OBC ∴===∠=,, 223332BC ∴=+=.要使BOD BAC △∽△或BDO BAC △∽△, 已有B B ∠=∠,则只需BD BO BCBA=, ··································································· ①yxB E AOC D1x =l或.BO BD BCBA=·································································································· ②成立.若是①,则有3329244BO BC BD BA⨯===. 而45OBC BE DE ∠=∴=,.∴在Rt BDE △中,由勾股定理,得222229224BE DE BE BD ⎛⎫+=== ⎪ ⎪⎝⎭.解得94BE DE ==(负值舍去). 93344OE OB BE ∴=-=-=.∴点D 的坐标为3944⎛⎫⎪⎝⎭,.将点D 的坐标代入(0)y kx k =≠中,求得3k =.∴满足条件的直线l 的函数表达式为3y x =.[或求出直线AC 的函数表达式为33y x =+,则与直线AC 平行的直线l 的函数表达式为3y x =.此时易知BOD BAC △∽△,再求出直线BC 的函数表达式为3y x =-+.联立33y x y x ==-+,求得点D 的坐标为3944⎛⎫⎪⎝⎭,.] 若是②,则有342232BO BA BD BC ⨯===.而45OBC BE DE ∠=∴=,.∴在Rt BDE △中,由勾股定理,得222222(22)BE DE BE BD +===.解得 2BE DE ==(负值舍去).321OE OB BE ∴=-=-=.∴点D 的坐标为(12),.将点D 的坐标代入(0)y kx k =≠中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =.∴存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944⎛⎫⎪⎝⎭,或(12),. ···· 5分 (3)设过点(03)(10)C E ,,,的直线3(0)y kx k =+≠与该二次函数的图象交于点P . 将点(10)E ,的坐标代入3y kx =+中,求得3k =-.∴此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).512x y ∴==-,. ∴点P 的坐标为(512)-,.此时,锐角PCO ACO ∠=∠.又二次函数的对称轴为1x =,∴点C 关于对称轴对称的点C '的坐标为(23),. ∴当5p x >时,锐角PCO ACO ∠<∠;当5p x =时,锐角PCO ACO ∠=∠;当25p x <<时,锐角PCO ACO ∠>∠.··················································································································· 4分xBEA O C1x =PC '·。
2004年成都市中考数学试卷. (含成都市初三毕业会考)A 卷(共100分)一、 选择题:(每小题4分,共60分) 1、下列算式结果是-3的是( ) A 、(-3)-1B 、(-3)C 、-(-3)D 、-∣-3∣2、下列各式正确的是( )A 、()a b c a b c -+=-+B 、221(1)x x -=-C 、2()()a ab ac bc a b a c -+-=-+D 、23()(0)x x x x -÷=≠3、不等式组231x x >-⎧⎨-⎩≤8-2x的最小整数解是( )A 、-1B 、0C 、2D 、34、如图,如果A B C D 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A 、1对B 、2对C 、3对D 、4对 5、函数11y x =-+中,自变量x 的取值范围是( )A 、1x ≠-B 、0x ≥C 、1x -≤D 、x ≥-16、为了充分利用我国丰富的水力资源,国家计划在四川省境内长江上游修建一系列大型水力发电站,预计这些水力发电站的总发电量相当于10个三峡电站的发电量。
已知三峡电站的年发电量将达到84700000000千瓦时,那么四川省境内的这些大型水力发电站的年发电总量用科学计数法表示为( )千瓦时 A 、8.47⨯109 B 、8.47⨯1011 C 、8.47⨯1010 D 、8.47⨯10127、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan B A D ∠′等于( ) A 、1 B2D、8、下列说法中,错误的是( )A 、 一组对边平行且相等的四边形是平行四边形B 、 两条对角线互相垂直且平分的四边形是菱形C 、 四个角都相等的四边形是矩形D 、邻边相等四边形是正方形 9、如果用换元法解分式方程2214301x x xx +-+=+,并设y =21x x +,那么原方程可化为( )A 、y 2+3y-4=0B 、y 2-3y+4=0C 、y 2+4y-3=0D 、y 2-4y+3=0 10、已知相交两圆的半径分别是5和8,那么这两圆的圆心距d 的取值范围是( ) A 、d >3 B 、13d < C 、13d 3<< D 、d =3或d =1311、如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是 AC 的中点, 那么∠DAC 的度数是( )BDCm ∠CAB = 32.0︒B 、C 、30ºD 、32º汽车由重庆驶往相距400千米的成都。
四川省自贡市2007年初中毕业生学业考试数 学 试 卷一、选择题:本大题共11小题,每小题3分,共33分.1.下列各式中,p ,q 互为相反数的是( ) A .pq =1B .pq =-1C .p +q =0D .p -q =02.下列计算正确的是( ) A .)(818181y x y x +=+ B .xzy z y x y 2=+ C .y y x y x 21212=+- D .011=-+-x y y x3.a 是实数,且x >y ,则下列不等式中,正确的是( ) A .ax >ayB. a 2x ≤a 2yC .a 2x >a 2yD. a 2x ≥a 2y4.矩形、菱形、正方形都具有的性质是( )A .每一条对角线平分一组对角B .对角线相等C .对角线互相平分D .对角线互相垂直 5.用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为( )A .44)2(22m n m x -=+ B .44)2(22n m m x -=+ C .24)2(22n m m x -=+ D .24)2(22m n m x -=+6.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A .y =2a (x -1)B .y =2a (1-x )C .y =a (1-x 2)D .y =a (1-x )27.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( ) A .32.5°B .57.5°C .65°或57.5°D .32.5°或57.5°8.随机抛掷一枚均匀的硬币两次,则出现两面不一样的概率是( ) A .41B .21 C .43 D .19.两圆的半径分别为7和1,圆心距为10,则其内公切线长和外公切线长分别为( ) A .6,8 B .6,10 C .8,2 D .8,610.我市某风景区,在“五一“长假期间,接待游人情况如下图所示, 则这七天游览该风景区的平均人数为( )A .2800人B .3000人C .3200人D .3500人11.小洋用彩色纸制做了一个圆锥型的生日帽,其底面半径为6cm ,母线长为12cm ,不考虑接缝,这个生日帽的侧面积为( )A .36πcm 2B .72πcm2C .100πcm 2D .144πcm2二、填空题:本大题共5小题,每小题4分,共20分12、一生物教师在显微镜下发现,某种植物的细胞直径约为0.00012mm ,用科学记数法表示这个数为____________mm .13.请写出一个值k =___________,使一元二次方程x 2-7x +k =0有两个不相等的非0实数根.(答案不唯一)14.有4条长度分别为1,3,5,7的线段,现从中任取三条能构成三角形的概率是_____. 15.如图是中国共产主义青年团团旗上的图案(图案本身没有字母),5个角的顶点A ,B ,C ,D ,E 把外面的圆5等分,则∠A +∠B +∠C +∠D +∠E =______________.16.一个叫巴尔末的中学教师成功地从光谱数据59,1216,2125,3236,…中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按照这种规律,写出第n (n ≥1)个数据是___________. 三、解答题:本大题共4个小题,每小题6分,共24分.17.解方程组:⎩⎨⎧=--=-+063042y x y x18.解方程:2121=++xx19.计算:2010011(20072009)(1)(1233)3-⎛⎫++-+ ⎪⎝⎭·tan30°20.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记-4分.九年级一班代表队的得分目标为不低于88分.问这个队至少要答对多少道题才能达到目标要求?①②四、解答题:本大题共3个小题,每小题7分,共21分.21.按规定尺寸作出下面图形的三视图.22.如图所示,我市某中学数学课外活动小组的同学,利用所学知识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(精确到0.01m)23.某商店按图(Ⅰ)给出的比例,从甲、乙、丙三个厂家共购回饮水机150台,商店质检员对购进的这批饮水机进行检测,并绘制了如图所示的统计图(Ⅱ).请根据图中提供的信息回答下列问题.(Ⅰ)(Ⅱ)(1)求该商店从乙厂购买的饮水机台数?(2)求所购买的饮水机中,非优等品的台数?(3)从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?五、解答题:本大题共2个小题,每小题7分,共14分.24.如图,AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过E作⊙O的切线ME交AC于点D.试判断△AED的形状,并说明理由.25.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.六、解答题:本大题8分.26.△ABC中,∠A,∠B,∠C的对边分别为a,b,c,抛物线y=x2-2ax+b2交x轴于两点M,N,交y轴于点P,其中M的坐标是(a+c,0).(1)求证:△ABC是直角三角形.(2)若S△MNP=3S△NOP,①求cos C的值;②判断△ABC的三边长能否取一组适当的值,使三角形MND (D为抛物线的顶点)是等腰直角三角形?如能,请求出这组值;如不能,请说明理由.。
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
2008年四川省成都市中考数学试卷(含成都市初三毕业会考)全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ为其它类型的题。
A卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题。
各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2.化简(- 3x2)·2x3的结果是(A)- 6x5(B)- 3x5 (C)2x5 (D)6x53.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)6 (D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上x 中,自变量x的取值范围是6.在函数y=3(A)x≥- 3 (B)x≤- 3 (C)x≥3 (D )x≤37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF8.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A)12πcm2(B)15πcm2(C)18πcm2(D)24πcm21(x < 0);④y = x2 + 2x + 1.其中10.有下列函数:①y = - 3x;②y = x –1:③y = -x当x在各自的自变量取值范围内取值时,y随着x的增大而增大的函数有(A)①②(B)①④(C)②③(D)③④第Ⅱ卷(非选择题,共70分)注意事项:1.A卷的第Ⅱ卷和B卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分 第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷第Ⅰ卷(选择题)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、选择题:1.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A.26-℃ B.22-℃ C.18-℃D.16-℃2.下列运算正确的是( ) A.321x x -=B.22122x x--=-C.236()a a a -=·D.236()a a -=-3表示该位置上小立方块的个数,那么该几何体的主视图为(4.下列说法正确的是( )A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行 B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数 C.明天我市会下雨是可能事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.在函数3y x=中,自变量x 的取值范围是( )A.2x -≥且0x ≠B.2x ≤且0x ≠A .B .C .D .C.0x ≠ D.2x -≤6.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=8.如图,O 内切于A B C △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结O E O F D E D F ,,,, 那么ED F ∠等于( ) A.40°B.55°C.65° D.70°9.如图,小“鱼”与大“鱼”是位似图形, 已知小“鱼”上一个“顶点”的坐标为()a b ,, 那么大“鱼”上对应“顶点”的坐标为( ) A.(2)a b --, B.(2)a b --, C.(22)a b --,D.(22)b a --,10.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cm B. C .8cmD.第Ⅱ卷(非选择题)注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题将答案直接写在该题目的横线上. 11.已知2(5)0b ++=,那么a b +的值为 .DC12.已知小明家五月份总支出共计1200元,各项支出如图所示, 那么其中用于教育上的支出是 元.13.如图,把一张矩形纸片A B C D 沿E F 折叠后,点C D , 分别落在C D '',的位置上,E C '交A D 于点G . 已知58E F G ∠=°,那么B E G ∠= °.14.如图,已知A B 是O 的直径,弦C D AB ⊥,AC =1B C =,那么sin ABD ∠的值是.15.如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 .三、16.解答下列各题: (1)计算:1223sin 30-+-°.(2)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.(3)解方程:32211x x x +=-+.四、17.如图,甲、乙两栋高楼的水平距离B D 为90米,从甲楼顶部C 点测得乙楼顶部A 点的ABECDFGC 'D 'B仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)18.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求A O B △的面积.五、19.小华与小丽设计了A B ,两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.20.已知:如图,A B C △中,45A B C ∠=°,C D AB ⊥于D ,B E 平分A B C ∠,且BE A C ⊥于E ,与C D 相交于点F H ,是B C 边的中点,连结D H 与B E 相交于点G . (1)求证:B F A C =;(2)求证:12C E B F =;(3)C E 与B G 的大小关系如何?试证明你的结论.B 卷一、填空题:将答案直接写在该题目中的横线上.21.如图,如果要使A B C D 成为一个菱形, 需要添加一个条件,那么你添加的条件是 .22.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)”的统计,其频率分布如下表:那么该班学生一周做家务劳动所用时间的平均数为 小时, 小时.23.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .24.如图,将一块斜边长为12cm ,60B ∠=°的 直角三角板ABC ,绕点C 沿逆时针方向旋转90° 至A B C '''△的位置,再沿C B 向右平移,使点B ' 刚好落在斜边A B 上,那么此三角板向右平移的 距离是cm .25.在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3A B O ∠=,那么点A 的坐标是 . 二、D AEFCHG BDCB A '()C C '26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支? (2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围; ②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?27.如图,A 是以B C 为直径的O 上一点,A D B C ⊥于点D ,过点B 作O 的切线,与C A 的延长线相交于点E G ,是A D 的中点,连结C G 并延长与B E 相交于点F ,延长A F 与CB 的延长线相交于点P .(1)求证:B F E F =;(2)求证:P A 是O 的切线;(3)若F G B F =,且O的半径长为求B D 和F G 的长度.28.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,.(1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段B C 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与B A C △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角P C O ∠与A C O ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.C成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案A 卷 第Ⅰ卷一、选择题 1.C ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ;8.B ;9.C ;10.B .A 卷 第Ⅱ卷二、填空题:11.3-; 12.216; 13.64; 143; 15.1-三、16.(1)解:原式112322=+-⨯13222=+-=(2)解:解不等式3312x x -++≥,得1x ≤.解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,,. (3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. 去括号,得22332222x x x x ++-=-. 解得5x =-.经检验5x =-是原方程的解.∴原方程的解是5x =-.四、17.解:作C E A B ⊥于点E .C ED B C D A B ∵∥,∥,且90C D B ∠=°, ∴四边形BE C D 是矩形.C D B E C E B D ==∴,.在R t B C E △中,60β=°,90C E B D ==米.tan B E C Eβ=∵,tan 90tan 60BE CE β==⨯∴·°=(米).C D BE ==∴。
在R t AC E △中,30α=°,90C E =米.tan A E C Eα=∵,tan 90tan 30AE C E α==⨯∴·°903=⨯=.AB AE BE =+==∴.答:甲楼高为米。