碱金属碱土金属
- 格式:pdf
- 大小:218.27 KB
- 文档页数:9
碱金属和碱土金属碱金属和碱土金属是元素周期表中的两个重要类别。
它们在化学性质、物理性质和应用方面有很多共同之处,但也有一些显著的差异。
本文将介绍碱金属和碱土金属的基本特点、重要性质及其在实际应用中的作用。
一、碱金属碱金属是周期表中位于第一族,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和钫(Fr)。
这些元素都是非常活泼的金属,具有强烈的还原性。
它们在常温下存在于固态,是银白色的质地柔软金属,能轻松被切割,并且具有低密度和低熔点。
碱金属具有以下一些重要性质:1. 高反应性:碱金属在常温下与水反应产生大量的氢气和碱溶液,释放出巨大的热量。
这种反应非常剧烈,有时可以引起爆炸。
例如,钠在与水接触时会迅速产生白色火焰和剧烈的燃烧。
因此,碱金属的处理需要极高的小心和专业知识。
2. 高电离能:碱金属的外层电子非常容易被剥离,因此具有很低的电离能。
这使得它们可以很容易地丧失电子形成阳离子,并与其他元素形成化合物。
3. 强烈的还原性:碱金属是非常强大的还原剂,能够夺取其他元素的电子,并参与许多重要反应。
例如,钾在与氧气反应时会猛烈燃烧,产生明亮的火焰。
4. 高热导率:碱金属具有极高的热导率,这使得它们在冷却和传热技术方面非常有用。
铯是所有金属中热导率最高的元素。
碱金属在许多领域具有广泛应用。
它们可用于制造合金、金属薄膜、电池、催化剂等。
其中最常见的应用是用作发光剂和制备碱金属离子的闪烁屏幕。
此外,碱金属离子在生物医学领域中也具有重要应用,例如在MRI(核磁共振成像)中作为对比剂。
二、碱土金属碱土金属是元素周期表中位于第二族,包括铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)和镭(Ra)。
与碱金属相比,碱土金属的化学性质相对较为稳定,但仍然具有明显的金属性质。
它们在常温下也是固态,但与碱金属不同的是,碱土金属较硬和坚硬。
碱土金属具有以下一些重要性质:1. 抗氧化性:碱土金属相对于碱金属来说较为惰性,不容易与空气中的氧气发生反应。
碱金属碱土金属
碱金属和碱土金属都是化学元素周期表中的两个重要类别。
碱金属包括锂、钠、钾、铷、铯和钫,而碱土金属包括铍、镁、钙、锶、钡和镭。
这两个元素类别都有许多共同点和不同之处。
首先,碱金属和碱土金属都是典型的金属元素。
它们的原子结构有一个或两个电子轻松地从外层轨道中释放出来,使其成为相对稳定的阳离子。
碱金属和碱土金属的这种特性使得它们在化学反应中表现出非常活泼的性质,特别是在水中。
其中,碱金属时,它们与水反应的产物是碱性化合物和氢气,而碱土金属反应时的产物是氢氧化物或氧化物。
其次,碱金属和碱土金属具有较低的密度。
其中,锂的密度约为0.53克/立方厘米,钙的密度约为1.54克/立方厘米。
由于其低密度和活泼性质,这些元素在工业上有着广泛的应用,包括用于制造轻金属、电池和荧光材料等。
此外,碱金属和碱土金属显示出不同的化学活性。
与碱金属相比,碱土金属更难活泼,因为它们的外层电子数更多,需要更多的能量来释放。
因此,碱金属通常具有更强的还原性和更大的反应活性,而碱土金属则更倾向于形成阳离子化合物而不反应。
最后,碱金属和碱土金属在生命中起着不同的作用。
碱金属在生物体内起着独特的作用,如钾在神经细胞中传递电信号,而铷和钫在细胞膜的稳定性和脂肪酸代谢方面发挥作用。
碱土金属在血液凝固、骨骼健康和身体免疫系统等方面起着重要作用。
总的来说,碱金属和碱土金属虽然有许多共性,但在性质和应用方面也有一些重要的不同。
它们在许多诸如电子学、化学合成、生命科学和材料科学等领域中都扮演着至关重要的角色。
碱金属与碱土金属的区别碱金属和碱土金属是化学元素周期表中两个重要的元素家族。
它们在物理性质、化学性质以及在自然界中的分布等方面存在着显著的区别。
本文将详细探讨碱金属和碱土金属的区别。
一、物理性质的区别1. 密度和硬度:碱金属的密度和硬度较低,比较轻盈,容易被切割和压制成各种形状。
而碱土金属的密度和硬度相对较高,比碱金属更坚硬且具有更高的密度。
2. 熔点和沸点:碱金属具有相对较低的熔点和沸点,例如钾的熔点为63.38℃,锂的熔点为180.54℃。
而碱土金属的熔点和沸点相对较高,例如镁的熔点为649℃,钙的熔点为842℃。
3. 导电性:碱金属具有很高的导电性,可以很容易地导电。
碱土金属也具有良好的导电性,但相对于碱金属来说稍逊一筹。
二、化学性质的区别1. 与水反应:碱金属具有与水剧烈反应的性质,生成碱性氢氧化物和氢气。
例如,钠与水反应产生氢气并生成氢氧化钠。
而碱土金属与水反应较为缓慢,生成相应的碱土金属氢氧化物和氢气。
例如,钙与水反应生成氢气并生成氢氧化钙。
2. 氧化性:碱金属具有较强的氧化性,容易损失电子形成正离子。
碱土金属也具有一定的氧化性,但相对于碱金属来说较低。
3. 化合价:碱金属的化合价多为+1,例如钠的氧化状态为+1。
而碱土金属的化合价多为+2,例如镁的氧化状态为+2。
三、自然界中的分布1. 碱金属在自然界中相对较为稀少,主要以盐湖和海水中的含量较高。
其中,氯化钠是最常见的碱金属盐。
2. 碱土金属在自然界中相对较为丰富,分布广泛。
例如,镁和钙广泛存在于岩石、矿石和土壤中。
四、应用领域的区别1. 碱金属应用:碱金属广泛应用于多个领域,包括电池、合金制备、烟火制造、钢铁生产等。
钾化合物还用于肥料的制造。
2. 碱土金属应用:碱土金属在建筑材料、医学、农业等领域中有着重要的应用。
例如,镁合金用于航空和汽车制造,钙化合物可用作水泥生产中的添加剂。
结论总的来说,碱金属和碱土金属在物理性质、化学性质、自然界分布以及应用领域等方面存在显著的区别。
第五节碱金属碱土金属一、单质1.碱金属具有较大原子半径,最外层1 个电子而内层又是稳定结构,所以易失去电子,离子化倾向强,是非常活泼的金属,强还原剂,还原性依Li 、Na、k、Rb、Cs顺序依次增强。
碱金属以钠最为典型。
钠的金属活动性和还原性强,它在冶炼现代常用金属钛、锆、铪等时也用作还原剂。
如:4Na+TiC14=Ti+4NaC1钠在不活泼或中等活动的金属盐溶液中会先与水反应生成氢气与氢氧化钠,盐再与碱复分解而生成中等活动金属或不活动金属的碱类沉淀,而得不到这些金属的单质。
如:CuSO4+2Na+2H2O=Cu(OH)2 J +H2 T +Na2SO42FeCl3+6Na+6H2O=2Fe(OH)3 J +3H2 T +6NaC12A1Cl3+6Na+6H2O=2A1(OH)3 J +3H2 T +6NaC1 或A1C13+4Na+2H2O=NaA1O2+2H2T +3NaC1实验后的残钠不能放在水中以免爆炸,而应在酒清精中销毁。
2C2H5OH+2Na=2C2H5ONa+ H2T (反应较慢)2.碱土金属与碱金属相似,有很强的化学活性,都能与卤素、氧、硫及其它非金属发生反应,它们的单质呈银白色(除Ba微黄色外)、轻,但皆比碱金属硬。
碱土金属以镁为典型。
镁不如钠活泼,但它仍有相当强的金属性和还原性,是常见的活泼金属之一。
镁与氧的“化学亲合力”强,所以与氧和不少氧化物都能发生反应,一般要加热或高温下进行。
如:2Mg+CO2=2MgO+C (能夺CO2中氧而还原出C,而CO2不能熄灭镁的燃烧)2Mg+TiC1 4=Ti+2MgC1 2(能还原出钛等现代应用的金属)2Mg+SiO2=2MgO+Si (镁也能制硅粉,它从SiO2中夺氧)镁与盐溶液反应时, 对不活动金属盐溶液可置换出相应的金属单质, 但若该盐水解后酸性较强时,还有酸与镁生成氢气的反应伴生。
对氯化铵溶液,则与水解出的盐酸反应生成氯化镁与氢气.2NH4++2H2O+Mg=Mg2++ H2T +2NH3 • H2O该反应虽有一水合氨,但因在氯化铵溶液里,大量的N H 4+抑制了一水合氨电离,而OH —不足,所以一般不会生成氢氧化镁沉淀。
碱金属和碱土金属在化学元素周期表中,碱金属和碱土金属是两个重要的元素类别。
它们在自然界中广泛存在,具有独特的化学和物理性质。
本文将深入探讨碱金属和碱土金属的特点、用途以及对环境和人类健康的影响。
一、碱金属碱金属是指位于元素周期表第1A族的锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和铍(Fr)。
它们通常具有相似的特性,并且在自然界中以化合物形式存在。
碱金属的特点如下:1. 金属性质:碱金属是典型的金属元素,具有良好的导电性和导热性。
2. 电子配置:碱金属的电子配置以ns1的形式出现,其外层只有一个s电子,容易失去这个电子形成带正电荷的离子。
3. 低密度:碱金属的密度相对较低,从锂到铯依次递增。
4. 相对活泼:碱金属对水和空气中的氧气具有很高的反应性,它们能够与水反应产生氢气,并在空气中形成氧化物。
碱金属具有广泛的应用领域。
首先,钠和钾是人体必需的微量元素,对维持正常的生理功能至关重要。
其次,碱金属可以用于制备合金、导热材料、催化剂等。
此外,碱金属化合物还被广泛应用于玻璃工业、电池制造、化学实验等领域。
然而,碱金属也存在一些潜在的危害性。
例如,钠和钾金属与水反应时会放出大量的氢气,可能引发火灾。
此外,过量摄入碱金属离子对人体健康有害,可能导致水电解质平衡失调甚至中毒。
二、碱土金属碱土金属是周期表中第2A族的含钙(Ca)、镁(Mg)、锶(Sr)、钡(Ba)和镭(Ra)的元素。
与碱金属相比,碱土金属的化学性质略微稳定。
以下是碱土金属的主要特点:1. 金属性质:碱土金属也是典型的金属元素,具有较好的导电性和导热性。
2. 电子配置:碱土金属的电子配置为ns2,外层具有两个s电子。
3. 密度:碱土金属的密度相对较高,从镁到钡递增。
4. 反应性:碱土金属相对于碱金属来说较不活泼,但依然能与水和氧气反应,生成相应的化合物。
碱土金属也有广泛的应用。
首先,钙是人体骨骼和牙齿的主要成分之一,对维持骨骼健康至关重要。
碱金属与碱土金属碱金属和碱土金属是元素周期表中的两个主要族群,它们具有一些共同的特性,也有一些明显的区别。
本文将详细介绍碱金属和碱土金属的性质以及它们在日常生活和科学领域中的应用。
一、碱金属的性质碱金属是元素周期表第一族的元素,包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和钫(Fr)。
它们都是银白色金属,在常温下具有较低的熔点和沸点,且具有较低的密度。
碱金属的金属性质非常活泼,容易与非金属元素反应,例如与水、氧气和卤素等。
这些反应通常都是剧烈的,产生大量的能量和气体。
碱金属的电子结构也具有一定的特点。
它们的原子外层只有一个电子,容易失去此电子形成阳离子。
这种电子结构使碱金属具有良好的导电性和导热性。
此外,碱金属的化合物主要是离子化合物,如氯化钠(NaCl)和氢氧化钾(KOH)等。
碱金属在日常生活中有许多应用。
钠是一种常用的食盐成分,它在食物中起到增强味道的作用。
钾在植物生长中起到重要的作用,是必需的营养元素之一。
锂离子电池是目前最常用的电池类型之一,广泛应用于手机、笔记本电脑等电子设备。
二、碱土金属的性质碱土金属是元素周期表第二族的元素,包括铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)、钡(Ba)和镭(Ra)。
它们在常温下也是银白色金属,具有较高的密度和熔点。
与碱金属相比,碱土金属的反应性更低,但仍然活泼。
碱土金属的电子结构与碱金属类似,外层电子结构为ns2。
与碱金属类似,碱土金属也容易失去外层两个电子形成阳离子。
这种电子结构使得碱土金属具有良好的导电性。
与碱金属不同,碱土金属的氢氧化物和碳酸盐是碱性的。
例如,氢氧化钙(Ca(OH)2)是一种通常用于调节土壤酸碱度的物质。
碱土金属在许多领域中都有重要应用。
镁是一种重要的金属材料,广泛应用于航空、汽车和船舶制造。
钙是构成人体骨骼和牙齿的重要元素,对维持骨骼健康至关重要。
三、碱金属与碱土金属的区别1. 电子结构:碱金属和碱土金属的外层电子结构相似,都是ns1或ns2。
第20章s区金属(ⅠA、ⅡA )[教学要求]1.掌握碱金属、碱土金属单质的性质,了解其存在、制备及用途与性质的关系。
2.掌握碱金属、碱土金属氧化物的类型及重要氧化物的性质及用途。
3.了解碱金属、碱土金属氢氧化物溶解性和碱性的变化规律。
4.掌握碱金属、碱土金属重要盐类的性质及用途,了解盐类热稳定性、溶解性的变化规律。
[教学重点]1.碱金属、碱土金属的单质、氧化物、氢氧化物、重要盐类的性质。
2.碱金属、碱土金属性质递变的规律。
[教学难点]碱金属、碱土金属的氢氧化物性质递变规律。
[教学时数] 2学时(课堂讨论课)[主要内容]1.碱金属、碱土金属的通性。
2.碱金属、碱土金属单质的性质、制法及用途。
3.碱金属、碱土金属的氧化物、氢氧化物、氢化物、盐类、配合物的性质。
[教学内容]碱金属和碱土金属是周期表ⅠA族和ⅡA族元素。
ⅠA族包括锂、钠、钾、铷、铯、钫六种金属元素。
它们的氧化物溶于水呈碱性,所以称为碱金属。
ⅡA族包括铍、镁、钙、锶、钡、镭六种金属元素。
由于钙、锶、钡的氧化物在性质上介于“碱性的”和“土性的”(以前把粘土的主要成分,既难溶于水又难熔融的Al2O3称为“土”)之间。
其中锂、铷、铯、铍是希有金属,钫和镭是放射性元素。
钠、钾、镁、钙和钡在地壳内蕴藏较丰富,它们的单质和化合物用途广泛。
20-1 通性1 结构:ns1-22 成键特征:+Ⅰ,+ Ⅱ离子型3 I.E. χA在同周期最低。
碱金属原子最外层只有一个电子,次外层为8电子(Li为2电子),对核电荷的屏蔽效应较强,所以这一个价电子离核校远,特别容易失去,因此,各周期元素的第一电离能以碱金属为最低。
4 m.p. b.p. 硬度低,且从上自下,有高到低。
导电性ⅠA>ⅡA碱金属原子体积最大,只有一个成键电子,在固体中原子间的引力较小,所以它们的熔点、沸点、硬度、升华热都很低,并随着Li一Na—K一Rb一Cs的顺序而下降。
碱金属和碱土金属团体均为金属晶格,碱土金属由于核外有2个有效成键电子,原于间距离较小,金属键强度较大,因此,它们的熔点、沸点和硬度均较碱金属高,导电性却低于碱金属。
5 离子有味道:如Li +离子味甜;K +、Na +离子味咸;Ba +离子味苦。
6 挥发性盐的焰色反应。
20-2 单质20-2-1 存在与制备:一、 存在 :盐(X -. CO 32- SiO 32- SO 42-等); Li 、Be: 氧化物。
由于碱金属和碱土金属的化学性质很活泼,所以它们只能以化合状态存在于自然界中。
在碱金属中,钠和锂在地壳中分布很广,两者的丰度都为2.5%。
主要矿物有钠长石Na[AlSi 3O 8]、和钾长石K[A1Si 3O 8],光卤石KCl ·MgCl 2·6H 20及明矾石K 2SO 4·A12(SO 4)3·24H 2O 等。
海水中氯化钠的含量为2.7%,植物灰中也含有钾盐。
锂的重要矿物为锂辉石Li 20·A1203 4SiO 2,锂、铷和铯在自然界中储量较少且分散,被列为希有金属。
碱土金属除镭外在自然界小分布也很广泛,镁除光卤石外,还有白云石CaCO 3·MgCO 3和菱镁矿MgCO 3等。
铍的最重要矿物是绿柱石3BeO ·Al 2O 3·6SiO 3。
钙、锶、钡在自然界中存在的主要形式为难溶的碳酸盐和硫酸盐,如方解石CaCO 3、碳酸锶矿SrCO 3、碳酸钡矿、石膏CaSO 4·2H 2O 、天青石SrSO 4、BaSO 4等。
海水中含有大量镁的氯化物和硫酸盐,1971年世界镁产量有一半以上是以海水为原料生产的。
二、 制备1、 电解:由于碱金属和碱土金属的性质很活泼,所以一般都用电解它们的熔融化合物的方法制取。
钠和锂主要用电解熔融的氯化物制取。
NaCl ,BeCl 2, MgCl 2等注:不能电解KCl ,因为会产生KO 2和K, 发生爆炸。
2、 热还原:(1)C 还原法(2)碳化物还原 2KF +CaC 2====CaF 2+2K +2C(3)铝热还原法:MO +Al M +Al 2O 31473K (M=Ca.Sr.Ba)3、 金属置换 钾、铷和钠虽然也可以用电解法制取,但常用强还原性的金属如Na 、Ca 、Mg 、Ba 等在高温和低压下还原它们氯化物的方法制取,例如:KCl+Na=NaCl+K ↑(K 比Na 易挥发,离开体系;NaCl 晶格能大于KCl ) 2RbCl+Ca=CaCl 2+2Rb ↑铯可以用镁还原,CsAlO 2制得:2CsAlO2+Mg=MgAl2O4+2Cs+BeF2+Mg MgF2Be4、热分解:碱金属的化合物,如亚铁氰化物,氰化物和叠氮化物,加热能被分解成碱金属。
△4KCN====4K+4C+2N22MN3====2M+3N2(M=Na、K、Rb、Cs)20-2-2 性质(一)物性与用途碱金属和碱土金属单质除铍呈钢灰色外,其它都具有银白色光泽。
碱金属具有密度小、硬度小,熔点低、导电性强的特点,是典型的轻金属。
碱土金属的密度,熔点和沸点则较碱金属为高。
Li、Na、K都比水轻,锂是固体单质中最轻的,它的密度约为水的一半。
碱土金属的密度稍大些,但钡的密度比常见金属如Cu、Zn、Fe还小很多。
IA、IIA族金属单质之所以比较轻,是因为它们在同一周期里比相应的其它元素原子量较小,而原子半径较大的缘故。
由于碱金属的硬度小,所以钠、钾都可以用刀切割。
切割后的新鲜表面可以看到银白色的金属光泽,接触空气以后,由于生成氧化物、氮化物和碳酸盐的外壳,颜色变暗。
碱金属具有良好的导电性。
碱金属(特别是钾、铷、铯,Cs光电效应最强)在光照之下,能够放出电子,对光特别灵敏的是铯,是光电池的良好材料。
铷、铯可用于制造最准确的计时器——铷、铯原子钟。
1967年正式规定用铯原子钟所定的秒为新的国际时间单位。
碱金属在常温下能形成液态合金(77.2%K和22.8%Na,熔点260.7K)和钠汞齐(熔点236.2K),前者由于具有较高的比热和较宽的液化范围而被用作核反应堆的冷却剂,后者由于具有缓和的还原性而常在有机合成中用作还原剂。
钠在实验室中常用来除去残留在各种有机溶剂中的微量水分。
锂的用途愈来愈广泛,如锂和锂合金是一种理想的高能燃料。
锂电池是一种高能电池。
碱土金属中实际用途较大的是镁。
主要用来制造合金。
铍作为新兴材料日益被重视。
这两族元素中有几种元素在生物界有重要作用。
钠和钾是生物必需的重要元素。
镁对于所有有机界都是必需的。
(二)化性:活泼1. 与水:均可碱金属钠、钾、钙、镁分别与水反应。
金属钠与水反应剧烈,并放出H2。
反应放出的热使钠熔化成小球。
钾与水的反应更激烈,并发生燃烧,铷、铯与水剧烈反应并发生爆炸。
碱土金属也可以与水反应。
铍能与水蒸气反应,镁能将热水分解,而钙、锶、钡与冷水就能比较剧烈地进行反应。
由此可知碱金属和碱土金属均为活泼金属,都是强还原剂;在同一族中,金属的活泼性由上而下逐渐增强,在同一周期中从左到右金属活泼性逐渐减弱。
根据标准电极电势,锂的活泼性应比铯更大,但实际上与水反应还不如钠剧烈。
这是因为(1)锂的熔点较高,反应时产生的热量不足以使它熔化,而钠与水反应时放出的热可以使钠熔化,因而固体锂与水接触的机会不如液态钠;(2)反应产物LiOH的溶解度较小,它覆盖在锂的表面,阻碍反应的进行。
+M+MOH[M(OH)H2O2]H2Be+H2O(g)Mg+H2O(l)2. 与空气反应碱金属在室温下能迅速地与空气中的氧反应,所以碱金属在空气中放置一段时,金属表面就生成一层氧化物,在锂的表面上除生成氧化物外还有氮化物。
钠、钾在空气中稍微加热就燃烧起来,而铷和铯在空温下遇空气就立即燃烧。
4Li+O2=2Li2O 6Li+N2=2Li3N4Na+O2=2Na2O它们的氧化物在空气中易吸收二氧化碳形成碳酸盐:Na2O+CO2=Na2CO3因此碱金属应存放在煤油中,因锂的密度最小,可以浮在煤油上,所以将其浸在液体石蜡或封存在固体石腊中。
碱土金属活泼性略差,室温下这些金属表面缓慢生成氧化膜。
它们在空气中加热才显著发生反应,除生成氧化物外,还有氮化物生成。
3Ca + N2 = Ca3N2因此在金属熔炼中常用Li、Ca等作为除气剂,除去溶解在熔融金属中的氮气和氧气。
3. 还原剂在高温时碱金属和碱土金属还能夺取某些氧化物中的氧,如镁可使SiO2的硅还原成单质Si,或夺取氯化物中的氯,如金属钠可以从T1Cl4中置换出金属钛。
SiO2+2Mg=Si+2MgOT1C14+4Na=Ti+4NaCl4.碱金属的液氨溶液在碱金属的稀氨溶液中碱金属离解生成碱金属正离子和溶剂合电子:M(s)+(x+y)NH3(l)=M(NH3)+x+e(NH3)—y因为离解生成氨合阳离子和氨合电子,所以溶液有导电性。
此溶液具有高导电性主要是由于有溶剂合电子存在。
溶液中因含有大量溶剂合电子,因此是顺磁性的。
痕量杂质如过渡金属的盐类、氧化物和氢氧化物的存在,以及光化作用都能促进溶液中的碱金属和液氨之间发生反应而生成氨基化物:Na+NH 3(l )=NaNH 2+1/2H 2钙、锶、钡也能溶于液氨生成和碱金属液氨溶液相似的蓝色溶液,与钠相比,它们溶得要慢些,量也少些。
碱金属液氨溶液中的溶剂合电子是一种很强的还原剂。
它们广泛应用在无机和有机制备中。
20-3 化合物碱金属与氧化合可以形成多种氧化物,普通氧化物M 2O ,过氧化物M 2O 2,超氧化物MO 2和臭氧化物MO 3。
碱金属在过量的空气中燃烧时,生成不同类型的氧化物:如锂生成氧化锂Li 2O ,钠生成过氧化钠,而钾、铷、铯则生成超氧化物。
碱土金属一般生成普通氧化物MO ,钙、锶、钡还可以形成过氧化物和超氧化物。
20-3-1 氧化物:O 2-1. O 2-的制备:Li +O 2 对于M(ⅡA) M(+O ⅡA)2+O 2(缺氧)(Na-Cs)MCO 3Sr(NO 3)2SrO NO 2O 2++M 2O 2+M2. 性质:1)碱性:BeO 为两性2)离子型(除BeO ),U 大,m.p.硬度高电荷高,U 高;键长短,U 高。
故ⅠA < Ⅱ A ,同族U 降,m.p.降20-3-2 过氧化物ⅠA (除Li)O 22-或[—O —O —]2-。
其分子轨道式如下:[KK (δ2S )2(δ*2S )2(δ2P )2(π2P )4(π*2P )4]成键和反键π轨道大致抵消,由填充δ2Px 轨道的电子形成一个δ键,键级为1。
制备:M 2O O 2M 2O 2(M=Na.K.Ba )Na +O 2Na 2O 2+ 性质:1)水解:Na 2O 2+2H 2O =H 2O 2+2NaOH2)酸解:Na 2O 2+H 2SO 4=H 2O 2+Na 2SO 43) 与氧化物反应非还原性:Na 2O 2+CO 2 == Na 2CO 3+O 2 (供氧剂)氧化性:Na2O2+Cr2O3 == Na2CrO4+Na2ONa2O2+MnO2 == Na2MnO420-3-3 超氧化物MO21.制备:钾、铷、铯在过量的氧气中燃烧及得超氧化物MO2。