二元一次方程与函数
- 格式:ppt
- 大小:91.00 KB
- 文档页数:8
《二元一次方程与一次函数》教学设计精选4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《二元一次方程与一次函数》教学设计精选4篇在教学工作者开展教学活动前,时常需要用到教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
《二元一次方程与一次函数》教学设计【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《二元一次方程与一次函数》教学设计【优秀4篇】教学建议下面是本店铺精心为大家整理的4篇《《二元一次方程与一次函数》教学设计》,可以帮助到您,就是本店铺最大的乐趣哦。
二元一次方程组与线性函数的关系。
让我们来看看二元一次方程组的基本形式:ax + by = c和dx + ey = f。
在这种等式中,x和y是未知数,而a、b、c、d、e和f是给定的系数。
这种方程组的解可以表示为(x, y),使得它同时满足两个等式。
而线性函数,则是以y = mx + b的形式给出,其中m和b是已知的常数。
在这种函数中,x和y分别是自变量和因变量。
那么,这两个数学概念之间有什么联系呢?实际上,我们可以将任何一个二元一次方程组转化为一个线性函数,并且反之亦然。
具体来说,我们可以将一个二元一次方程组表示为:y = (-a/b)x + (c/b)或者:y = (-d/e)x + (f/e)这两个等式分别表示与原二元方程组等价的两个线性函数。
这意味着,可以通过解一个方程组来求得它对应的线性函数,反之亦然。
那么,这种转化有什么实际意义呢?实际上,将一个方程组转化为一个线性函数可以帮助我们更好地理解它的解的性质。
具体而言,我们可以通过分析这个函数的斜率和y-intercept来判断方程组的解的性质。
例如,当斜率是正数时,我们可以得出这个方程组有一个正的解,当斜率是负数时,我们可以得出这个方程组有一个负的解。
而当y-intercept为零时,我们可以得出这个方程组有一个零解。
这种分析可以帮助我们更好地理解实际问题中遇到的方程组,从而更好地解决这些问题。
除此之外,线性函数的重要性还体现在它与数学中其他概念的联系上,例如函数图像和相关性。
通过控制斜率和y-intercept,我们可以绘制出各种不同形状的函数图像,并通过比较两个函数的相关性来确定它们之间的关系。
这种能力在数学、经济学和统计学等许多领域中都是至关重要的。
那么,我们如何应用这种知识呢?实际上,在现今科技日益发达的时代,人们需要越来越多地使用数学知识来解决各种实际问题。
例如,在2023年,已经成为了人类生活中不可缺少的一部分。
在这个时代中,人们需要使用数学知识来开发各种AI算法,例如机器学习和人工神经网络。
北师大版数学八年级上册6《二元一次方程与一次函数》说课稿3一. 教材分析北师大版数学八年级上册6《二元一次方程与一次函数》是本节课的主要内容。
本节课的内容主要包括两个方面:一是二元一次方程的定义、性质和解法;二是一次函数的定义、性质和图像。
这两个方面是初中的重要知识点,也是解决实际问题的重要工具。
教材通过丰富的例题和练习题,帮助学生理解和掌握这两个概念,并能够运用它们解决实际问题。
二. 学情分析八年级的学生已经掌握了代数的基本知识和一元一次方程的解法,对解决问题有一定的经验。
但是,对于二元一次方程和一次函数的定义、性质和关系,他们可能还比较陌生。
因此,在教学过程中,我需要引导学生通过观察、分析和归纳,自主地发现和总结二元一次方程和一次函数的性质和关系,从而加深他们对这两个概念的理解和掌握。
三. 说教学目标本节课的教学目标有三个:一是理解二元一次方程和一次函数的定义,掌握它们的性质和关系;二是学会解二元一次方程,能够运用一次函数解决实际问题;三是培养学生的观察能力、分析能力和解决问题的能力。
四. 说教学重难点本节课的重难点是二元一次方程和一次函数的性质和关系的理解,以及解二元一次方程的方法。
对于这两个难点,我将在教学过程中通过引导学生观察、分析和归纳,以及提供丰富的练习题,帮助学生理解和掌握。
五. 说教学方法与手段本节课我将以问题为导向,引导学生通过观察、分析和归纳,自主地发现和总结二元一次方程和一次函数的性质和关系。
同时,我会运用多媒体教学手段,如PPT、网络资源等,以丰富的例题和练习题为载体,帮助学生理解和掌握这两个概念。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引出二元一次方程和一次函数的概念。
2.讲解:讲解二元一次方程和一次函数的定义、性质和关系,通过例题和练习题,帮助学生理解和掌握。
3.实践:让学生运用所学的知识,解决实际问题,巩固对二元一次方程和一次函数的理解和掌握。
二元一次方程(组)与一次函数(基础)【学习目标】1.理解二元一次方程与一次函数的关系;2.能根据一次函数的图象求二元一次方程组的近似解;3.能利用二元一次方程组确定一次函数的表达式.【要点梳理】【高清课堂:391660 一次函数与一次方程(组),知识要点】要点一、二元一次方程与一次函数的关系1.任何一个二元一次方程(0,)ax by c a b c +=≠、为常数都可以变形为-(0,)a c y x a b c b b=+≠、为常数即为一个一次函数,所以每个二元一次方程都对应一个一次函数.2.我们知道每个二元一次方程都有无数组解,例如:方程5x y +=我们列举出它的几组整数解有0,5;x y =⎧⎨=⎩5,0;x y =⎧⎨=⎩2,3x y =⎧⎨=⎩,我们发现以这些整数解为坐标的点(0,5),(5,0),(2,3)恰好在一次函数y =5+-x 的图像上,反过来,在一次函数x y -=5的图像上任取一点,它的坐标也适合方程5x y +=.要点诠释:1.以二元一次方程的解为坐标的点都在相应的函数图像上;2.一次函数图像上的点的坐标都适合相应的二元一次方程;3.以二元一次方程的解为坐标的所有点组成的图像与相应一次函数的图像相同.要点二、二元一次方程组与一次函数1. 二元一次方程组与一次函数每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.要点诠释:1.两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数5y x =-与21y x =-图象的交点为(2,3),则23x y =⎧⎨=⎩就是二元一次方程组521x y x y +=⎧⎨-=⎩的解. 2.当二元一次方程组无解时,方程组中两方程未知数的系数对应成比例,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组无解,则一次函数35y x =-与31y x =+的图象就平行,反之也成立.3.当二元一次方程组有无数解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.2. 图像法解二元一次方程组求二元一次方程组的解,可以转化为求两条直线的交点的横纵坐标(即二元一次方程组的图像解法.)所以,解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.要点诠释:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.相反,求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.要点三、用二元一次方程组确定一次函数表达式待定系数法:先设出函数表达式,再根据所给的条件确定表达式中未知数的系数,从而得到函数表达式的方法,叫做待定系数法.利用待定系数法解决问题的步骤:1.确定所求问题含有待定系数解析式.2.根据所给条件, 列出一组含有待定系数的方程.3.解方程组或者消去待定系数,从而使问题得到解决.【典型例题】类型一、二元一次方程与一次函数1、一次函数的图象如图所示,则与此一次函数对应的二元一次方程为()A.x﹣3y=3 B.x+3y=3 C.3x﹣y=1 D.3x+y=1【答案】A【解析】直线过点(3,0),(0,﹣1).代入y=kx+b,得到二元一次方程组解方程组得到.∴一次函数解析式为,移向,并将系数化为1得到所对应的二元一次方程x﹣3y=3.【总结升华】每个二元一次方程都对应一个一次函数,因此当求出一次函数的解析式时即也就求出了相应二元一次方程.举一反三:【变式】已知3=x ,2-=y 和0=x ,1=y 是二元一次方程03=++by ax 的两个解,则一次函数b ax y +=的解析式为( )A.、32--=x y B 、x y = C.、3+-=x y D 、 33--=x y【答案】D类型二、二元一次方程组与一次函数2、(2016•临清市二模)如图,已知函数y=ax +b 和y=kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组的解是( )A .B .C .D .【思路点拨】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【答案】C.【解析】解:函数y=ax +b 和y=kx 的图象交于点P (﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x ,y 的方程组的解是.【总结升华】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.举一反三:【变式】(2015春•昌乐)在教学活动中我们知道,任何一个二元一次方程的图象都是一条直线,如图,已知直线y=ax ﹣6过点P (﹣4,﹣2),则关于x 、y 的方程组的解是 .【答案与解析】解:∵x=﹣4时,y=x=﹣2,∴点P(﹣4,﹣2)在直线y=x上,∴方程组的解为.故答案为.3、(2014•东莞模拟)在同一坐标系中画出函数y=2x+1和y=﹣2x+1的图象,并利用图象写出二元一次方程组的解.【思路点拨】利用两点法作出两直线的图象,交点坐标即为方程组的解.【答案与解析】解:如图,两直线的交点坐标为(0,1),所以,方程组的解是.【总结升华】用一次函数图象解方程是解二元一次方程组的又一解法,反映了一次函数与二元一次方程组之间的联系,能直观地看到怎样用图形来表示方程组的解.类型三、用二元一次方程组确定一次函数表达式4、某游泳池内现存水1890(m3),已知该游泳池的排水速度是灌水速度的2倍.假设在换水时需要经历“排水﹣﹣清洗﹣﹣灌水”的过程,其中游泳池内剩余的水量y(m3)与换水时间t(h)之间的函数关系如图所示.根据图象解答下列问题:(1)根据图中提供的信息,求排水的速度及清洗该游泳池所用的时间;(2)求灌水过程中的y(m3)与换水时间t(h)之间的函数关系式,写出函数的定义域.【思路点拨】(1)由图象可知,该游泳池5个小时排水1890(m3),根据速度公式求出即可,求出灌水的速度和时间即可求出清洗该游泳池所用的时间;(2)设灌水过程中的y(m3)与换水时间t(h)之间的函数关系式是y=kt+b.将(11,0),(21,1890)代入y=kt+b求出即可.【答案与解析】解:(1)∵由图象可知,该游泳池5个小时排水1890(m3),∴该游泳池排水的速度是1890÷5=378(m3/h),由题意得该游泳池灌水的速度是378×=189(m3/h),由此得灌水1890m3需要的时间是1890÷189=10(h),∴清洗该游泳池所用的时间是21﹣5﹣10=6(h),(2)设灌水过程中的y(m3)与换水时间t(h)之间的函数关系式是y=kt+b.将(11,0),(21,1890)代入y=kt+b,得,解得:k=189,b=﹣2079,即灌水过程中的y(m3)与时间t(h)之间的函数关系式是y=189t﹣2079,(11<t≤21).【总结升华】本题考查了一次函数的应用,主要考查学生能否把实际问题转化成数学问题,题目比较典型,是一道比较好的题目.举一反三:【变式】为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为ycm,椅子的高度为xcm,则y应是x的一次函数,下表列出两套符合条件的课桌椅的高度:第一套第二套椅子高度xcm 40.0 37.0桌子高度ycm 75.0 70.2(1)请确定y与x的函数关系式?(2)现有一把高39cm的椅子和一张高为78.2的课桌,它们是否配套?为什么?【答案】解:(1)设y=kx+b.根据题意得.解得.∴y=1.6x+11;(2)椅子和课桌不配套.∵当x=39时,y=1.6×39+11=73.4≠78.2,∴椅子和课桌不配套.。
《二元一次方程与一次函数》教学设计一、学情分析:学生能够正确解方程(组),掌握了一次函数及其图像的基础知识,能够根据已知条件准确画出一次函数图象,已经具备了函数的初步思想,在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.二、学习目标:本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:1.初步理解二元一次方程和一次函数两种数学模型之间的关系;2.掌握二元一次方程组和对应的两条直线交点之间的关系,通过对两种模型关系的理解解决问题;教学重点二元一次方程和一次函数的关系,二元一次方程组和对应的两条直线交点之间的关系;教学难点通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.四、教法学法1.教法学法启发引导与自主探索相结合.2.课前准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.五、教学过程第一环节: 探究二元一次方程和一次函数两种数学模型之间的关系1. 水箱有5吨水,若用水管向外排水,每小时排水1吨,则X小时后还剩余Y吨水.(1)请找出自变量和因变量(2)你能列出X,Y的关系式吗?(3) X,Y的取值范围是什么?(4)在平面直角坐标系中画出这个函数的图形.(注意XY的取值范围). 2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?(2).在直角坐标系内分别描出以这些解为坐标的点,它们在一次函数Y=5-X的图象上吗?(3).在一次函数y=?x?5的图像上任取一点,它的坐标适合方程x+y=5吗?(4).以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=?x?5的图像相同吗?x+y=5与 y=?x?5表示的关系相同一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.目的:通过设置问题情景,让学生感受方程x+y=5和一次函数y=?x?5相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.第二环节自主探索方程组与一次函数两种数学模型之间的关系探究方程与函数的相互转化1.两个一次函数图象的交点坐标是相应的二元一次方程组的解(1)一次函数y=5-x图象上点的坐标适合方程x+y=5,那么一次函数y=2x-1图象上点的坐标适合哪个方程?(2)两个函数的交点坐标适合哪个方程?xy5(3).解方程组?验证一下你的发现。