3.3 超导材料解析
- 格式:ppt
- 大小:3.14 MB
- 文档页数:49
超导材料概念超导材料是指在特定条件下,电阻突然降为零的材料。
这种神奇的现象在科学研究和工程应用中具有广泛的应用前景。
超导材料的发现和研究是近代物理学的一个重要成果,也是材料科学和工程学领域的一个热点。
本文将从超导材料的基本概念、发现历程、物理机制、应用前景等方面进行详细介绍和分析。
一、超导材料的基本概念超导材料是指在低温、高压、强磁场等条件下,电阻突然降为零的材料。
这种现象是在1911年由荷兰物理学家海克·卡末林发现的。
他在将汞冷却到近绝对零度时,发现汞的电阻突然降为零。
这种现象被称为超导现象。
在随后的研究中,人们发现不仅是汞,其他金属、合金和化合物也具有超导性。
目前已经发现的超导材料种类很多,包括铜氧化物、铁基超导体、镁二硼等。
超导材料具有独特的物理性质,如零电阻、零磁场、激发态等。
这些性质使得超导材料在电力输送、电子学、磁学、量子计算等领域具有广泛应用前景。
例如,超导电缆可以大大提高电力输送效率,减少能源浪费;超导磁体可以产生极强的磁场,用于医学成像、磁悬浮列车等领域;超导量子比特可以用于量子计算,实现超高速计算等。
二、超导材料的发现历程超导材料的发现历程可以追溯到19世纪末期。
当时,人们已经知道了电阻的存在和电流的磁效应。
在1895年,荷兰物理学家洛伦兹提出了电动力学方程,揭示了电流和磁场之间的关系。
这为超导现象的发现奠定了理论基础。
1908年,英国物理学家奥本海默首次提出了“超导”这个概念,指的是在某些条件下,电阻可能会降为零。
随后,荷兰物理学家卡末林在1911年通过实验证实了这一理论。
他将汞冷却到4.2K 以下,发现汞的电阻突然降为零,而且磁场也会被完全排斥,这就是超导现象。
这个发现引起了广泛的关注和研究。
在随后的几十年里,人们陆续发现了铝、铅、锡等金属和合金也具有超导性。
然而,这些材料只能在极低温度下才能表现出超导性,限制了其实际应用。
直到1986年,美国IBM研究团队发现了第一种高温超导体——氧化铜。
超导材料是什么超导材料是指在低温下具有零电阻和迈斯纳效应的一类特殊材料。
超导材料在电流通过时能够完全消除电阻,使电流能够无损耗地流过,这一特性被称为超导性。
这使超导材料在电力输送、能源存储、磁共振成像等领域具有广泛的应用前景。
超导材料最早于1911年由荷兰物理学家海克·卡末林发现。
基于铅的材料是最早被发现具有超导性的材料。
然而,这类超导材料需要在非常低的温度下(接近绝对零度)才能展现出超导特性,限制了其实际应用的范围。
直到1986年,德国物理学家J·G·鲍尔汤和瑞士物理学家K·A·穆勒在氧化铜材料中发现了高温超导现象,即超导转变温度高于液氮沸点77K,使超导材料的实际应用前景大大扩展。
随后,人们陆续发现了多种高温超导材料,如铜氧化物、铁基超导体等。
超导材料主要具有以下特点:1. 零电阻:在超导状态下,电阻消失,电流可无损耗地通过。
这种特性使超导材料在电能输送领域有巨大应用潜力,能够显著减少能源损耗。
2. 迈斯纳效应:超导体中的电流不仅可以无损耗地流过,还能形成与电流方向垂直的磁场。
这一现象被称为迈斯纳效应,可用于磁体制造、磁共振成像等领域。
3. 超导转变温度:超导材料在一定的温度下会由非超导态转变为超导态。
低温超导体的转变温度通常较低,而高温超导体的转变温度可以接近或超过液氮沸点,更易于实际应用。
4. 磁场限制:在外加磁场作用下,超导材料的超导特性会受到限制。
不同材料对磁场的限制程度不同,这也对其应用领域产生了影响。
超导材料的研究和应用存在一些挑战。
其中最主要的是超导材料通常需要在极低的温度下才能展现出超导性,这对设备和工艺提出了要求。
此外,高温超导体的机制和性质仍然不完全清楚,对其进行深入研究仍然是一个重要课题。
然而,随着超导材料的不断研究和发展,人们对超导技术的应用前景充满信心。
超导磁体已广泛应用于核磁共振成像、加速器、磁悬浮交通等领域。
超导输电技术也在快速发展,预计超导材料将在未来成为电力输送和能源存储的重要组成部分。
超导材料的结构与特性分析超导材料是指在低温下电阻为零的材料。
在超导体中,电子会以无阻力的方式流动,因此电流可以在其中流动无限长的时间。
这使超导材料在许多领域中具有重要应用,例如在MRI医疗成像和在电力输送中节省能源。
本文将介绍超导材料的结构与特性,帮助读者了解这种材料的基本原理和应用。
1. 超导材料的结构超导材料的结构可以分为两类:金属超导体和氧化物超导体。
1.1 金属超导体金属超导体是由固态金属制成的。
这种材料在超过临界温度时表现出金属性质,而在低于临界温度时表现出超导性质。
金属超导体的晶体结构类似于钻石结构,其中原子按照一定的规则排列。
金属超导体的临界温度通常较低,一般在个位数经ˍơ。
1.2 氧化物超导体氧化物超导体是由氧化物构成的复杂结构材料。
这种材料通常具有复杂的晶体结构,由于原子之间的相互作用而表现出超导性质。
例如,一种氧化物超导体是由铜、氧和铁组成的,其晶体结构非常复杂,并且原子之间形成了许多不同的结构。
氧化物超导体的临界温度通常较高,可以达到数十开尔文。
2. 超导材料的特性超导材料具有许多独特的特性,这些特性是当今科学和工程中广泛应用超导材料的重要原因之一。
以下是超导材料的一些主要特性。
2.1 零电阻超导材料不会在流动电流时损失能量,即电阻为零。
这意味着电流可以在其中流动无限长的时间,因此超导材料被广泛用于需要高电流密度的应用,例如电动汽车和磁共振成像。
2.2 磁通排斥超导材料对磁场表现出强烈的反抗力。
当材料降至超导状态时,它对磁场形成了一种称为磁流体的排斥力,这意味着磁通不能穿透材料。
这种特性使超导材料适用于制造高磁场强度的磁体,例如MRI扫描器和核磁共振仪。
2.3 超导泄漏材料的超导状态不是永久的,当磁场密度超过材料能承受的临界值时,它将失去超导性。
这种现象称为超导泄漏,它限制了超导材料在强磁场应用中的使用。
2.4 临界温度超导材料的临界温度是指材料必须降至的温度,以便表现出超导性质。
超导材料的性质及应用超导材料是指在特定条件下,电阻为零的材料。
超导材料最初在1911年被发现,这个发现被看做电子运输的一个新分支。
在那之后的一百多年中,人们对超导材料的性质和应用进行了深入的研究。
现在,超导材料的应用领域已经相当广泛,包括在军事、医学和科学领域的各种应用。
超导现象是指在超导材料的温度达到一定程度(依赖于材料)时,它的电阻几乎降到了零,并且它的电导变得很高。
这个现象似乎与材料的化学成分、结晶类型和形态有关,但研究人员对此还没有完全理解。
超导材料有很多独特的性质。
首先是它们的超导电性。
当超导材料的温度降低到超导转变温度以下,它的电阻会降到零,同时,它的电流比正常情况下传输的电流更强。
这意味着超导材料可以用来传输高电流,而且不会损失能量。
其次是超导材料的磁性。
当超导材料处于超导状态时,它可以完全吸收磁场。
这意味着超导材料可以用来制造超强的永磁体,而且它们对电磁脉冲等干扰也比较抵抗。
超导材料的磁性使得它们在医学设备、电力系统和计算机硬盘等领域得到广泛应用。
超导材料的第三个独特性质是热电子性能。
研究表明,超导材料的电子有较高的能量密度,因此可以在高速运动状态下传输和处理电子信息。
这些属性使得超导材料在高速计算和通信中得到了广泛应用。
超导材料在各种应用领域中得到了广泛应用。
医学行业利用超导磁性侦测技术来制造MRI(核磁共振)扫描仪,这些仪器能够高度诊断人体的内部结构。
除了医学领域之外,超导材料也在电力传输和计算机硬盘等领域被广泛使用。
此外,超导材料还可以在飞行器上用作裸露的导电材料,因为它们不会在高强度电磁脉冲中受到损害。
总之,超导材料的性质和应用广泛。
虽然我们对它们的工作原理尚不完全理解,但它们已经在许多领域中发挥了巨大作用。
未来,随着对这些材料研究的不断深化,我们有理由相信它们的应用会不断地得到扩展和改进。
超导材料的研究与应用超导材料是指在低温条件下表现出电阻为零的物质,具有极高的电导率和磁通排斥性能。
超导材料的研究和应用一直是物理学和材料科学的热点领域之一。
本文将介绍超导材料的基本原理、研究方法和应用情况。
一、超导材料的基本原理超导材料的基本原理可从两个方面来解释,即电子配对和电子与晶格的相互作用。
首先是电子配对。
根据国际能源机构的定义,超导性是指在临界温度以下,电子能够按照某种机制形成电子对。
这些电子对中的电子以库珀对的方式配对,通过与晶格的振动相互作用来克服库伦排斥力,从而实现电子的整体流动,即形成超导态。
其次是电子与晶格的相互作用。
晶格振动通过电子与晶格的相互作用来提供电子之间的吸引力。
当温度降低时,晶格振动减小,电子与晶格的相互作用增强,从而促进电子配对的形成。
二、超导材料的研究方法在超导材料的研究过程中,科学家采用了多种方法和技术来进行实验和分析。
以下是一些常用的研究方法:1. 磁化率测量:通过测量材料的磁化率,可以确定其超导转变温度。
当温度低于临界温度,材料的磁化率会显著变化。
2. 电阻测量:电阻是判断材料是否超导的重要参数。
通过测量材料的电阻随温度的变化情况,可以确定超导转变温度和超导态的性质。
3. X射线衍射:通过研究超导材料的晶体结构,可以了解其晶格的变化和电子与晶格的相互作用。
4. 超导磁体实验:利用超导材料的超导性能可以制造强磁场。
科学家可以设计和制造超导磁体,并通过对其性能的研究来探索超导材料的物理性质。
三、超导材料的应用超导材料在多个领域都有广泛的应用,下面列举一些常见的应用:1. 超导电缆和输电线:利用超导材料的低电阻特性,可以生产高能效的输电线路和电缆,减少能源传输过程中的能量损耗。
2. 储能技术:超导材料可以用于储存和释放电能,提高能源利用效率。
超导磁能储存技术可以实现大规模储能,用于平衡电网的负荷变化。
3. 磁共振成像:超导材料的超导性能可以用于医学磁共振成像技术,在医学诊断中起到重要作用。
超导材料当电流通过金属时,金属会发热。
用熔点高的金属丝制成的电热原件,当有电流通过时,电能将转换为热能,从而获得高温。
Ni、Cr;Ni、Cr、Fe;Ni、Cr、Al等合金以及W、Mo、Pt等金属确实是常用的电热元件材料。
电流通过金属〔或合金〕而使金属发热是由于金属内部存在着电阻,电阻具有阻碍电流通过的性质。
人们早道,金属的电阻随温度的升高而增大,电阻的增大反过来又促进金属的发热,如此恶性循环,用金属导线送电时,传输的电流因而受到限制,如铜导线在自然冷却的条件下,同意通过的最大电流密度为2~6A /mm2;电流再大,会因发热过多而有烧坏导线的危险。
金属的这一弱点,促使人们去研究低温时金属电阻的变化。
金属材料的电阻通常随温度的降低而减小。
20世纪初,科学家发明汞冷却到低于4.2K时,电阻突然消逝,导电性几乎是无限大的,当外加磁场接近固态汞随后又撤去后,电磁感应产生的电流会在金属汞内部长久地流动而可不能衰减,这种现象称为超导现象。
具有超导性质的物体称为超导体。
超导体电阻突然消逝的温度称为临界温度〔Tc)。
在临界温度以下时,超导体的电阻为零,也确实是电流在超导体中通过时没有任何损失。
超导体的最突出的性质是它们处于超导状态时,材料内部的电阻为零,电流通过时不发热,每平方毫米同意通过的电流可达到数万安培。
超导体的另一性质确实是将超导体放入磁场中,超导体内部产生的磁感应强度为零,具有完全的抗磁性。
目前,已发明近30种元素的单质,8000多种化合物和合金具有超导性能。
超导材料大致可分为纯金属、合金和化合物三类。
具有最高临界温度〔Tc〕的纯金属是镧,Tc=12.5K;合金型目前要紧有银钛合金,Tc=9.5K;化合物型要紧有银三锡,Tc=18.3K;钒三镓,Tc=16.5K。
1986年以来,高温超导体的研究取得了重大突破。
1987年发明,在氧化物超导材料中有的在240K出现超导迹象。
由镧、锶、铜和氧组成的陶瓷材料在287K 的室温下存在超导现象,这为超导材料的应用开辟了广阔的前景。
超导材料的工作原理超导材料是一种具有极低电阻和完全排斥磁场的材料。
超导现象是一种在低温下出现的量子现象,它基于电子之间形成的库伦配对和库伦势能的减小。
超导现象的发现和理解对于物理学和工程学领域都具有重要意义。
一、超导现象的发现超导现象的发现可以追溯到1911年。
当时,荷兰物理学家海克·卡曼斯和海尔曼·奥尼斯发现,在低温下,汞的电阻突然减为零。
这一发现引起了科学界的广泛兴趣,并催生了对超导现象的深入研究。
二、超导材料的特性超导材料具有以下几个显著的特性:1. 零电阻:超导材料在超导状态下具有极低的电阻,电流可以在其中自由流动,而无需消耗能量。
这使得超导材料在能量传输和电路应用方面具有巨大优势。
2. 完全磁场排斥:超导材料在超导状态下表现出完全排斥磁场的特性,这被称为迈斯纳效应。
超导材料能够将磁场完全从其内部排斥,在磁场边界处形成一个磁屏蔽区域,这对于磁场应用和磁悬浮技术具有重要作用。
3. 战斗击退:当超导体受到足够大的磁场时,它会失去超导态,并逐渐恢复到正常导体状态。
这种现象被称为战斗击退,其机制与超导材料内部电流的分布和磁场对电子配对的影响有关。
三、超导材料的工作原理涉及两个重要的概念:库伦配对和库伦势能的减小。
1. 库伦配对:在超导材料中,电子通过相互吸引形成成对的状态,这种成对的电子被称为库伦配对。
这种形成配对状态的机制是由电子-声子相互作用引起的。
声子是晶格振动的量子,它能够在超导材料中传递电子之间的相互作用。
2. 库伦势能的减小:在超导材料中,由于配对电子的自旋和动量是互补的,电子之间的静电库伦势能会减小。
这种减小导致了超导材料电子对的稳定存在。
在超导材料中,减小的库伦势能超过了与电子散射和能量分散相关的耗散效应,电子对可以在整个材料中自由移动,从而导致了零电阻的现象。
四、超导材料的应用超导材料的广泛应用涵盖了多个领域,包括能源传输、电力设备、医学成像和科学研究等。
1. 能源传输:由于超导材料具有零电阻的特性,其用于电力传输可以大大减少能量损耗和传输过程中的电流损失。
超导材料的基本磁性特点1. 超导材料1.1超导材料的发现及简介1908年,荷兰莱登实验室在昂尼斯(Kamerlingh Onnes)的指导下,经过长期的努力,首次将氨液化,获得了4.2K的低温。
随后在1911年,他在研究水银的低温电阻随温度的变化时发现水银的电阻R在4.2K附近突然降到了零。
如图1-1所示。
昂纳斯把这种电阻突然消失的状态称之为超导态。
此后,他们又发现其他许多金属也具有超导现象,他们把这种能随温度降低而进入超导态的材料叫做超导材料,也叫做超导体。
很多物质都是超导材料。
在元素周期表中,常压下具有超导电性的就有26个,如:Pb、In、Sn、Al、N b、V、Ta等,有的元素在常压下不能成为超导体,但在高压下就能进入超导态,如:Ge、Si等(见附表1-1)。
表1.1-1超导合金和超导化合物的转变温度除此之外,还有一些金属元素的合金,化合物也能呈现超导电性,称之为合金超导体和化合物超导体。
超导合金以PbIn、NbTi为代表,超导化合物以N b Sn、3V G a为代表。
3他们的Tc见表 1.1-1。
迄今为止,具有超导性的元素、化合物以有数千种。
特别是近20年来,高温氧化物超导体的发现,有使超导体的类属增加了成千上万个,表1.1-2列出了一些主要的高温氧化物超导体及其Tc。
表1.1-2 高温氧化物超导体的超导转变温度2. 超导材料的基本磁性特点2.1临界磁场现以一圆柱形(长度比直径大的多,可近似的看为无限长)超导体为例。
降低温度到Tc以下,再加一与圆柱体平行的外磁场。
实验表明,在低于样品Tc的任一确定温度下,当外加磁场强度H小于某一确定数值Hc时,超导体具有零电阻。
当H大于Hc时,电阻突然出现超导态被破坏而转变为正常态。
我们称Hc为超导体的临界磁场。
临界磁场是温度的函数,记为()Hc T。
临界磁场是标志一超导体性质的重要物理量,不同超导体的Hc-T曲线都可近似的用下列公式表示2=-(2.1-1)H c T H c T T c()(0)[1(/)]其中(0)H c是T= 0K时超导体的临界磁场(通常记为H0)。