东华理工大学物理练习试卷答案静电场中的导体与电介质
- 格式:ppt
- 大小:494.36 KB
- 文档页数:9
ch7-静电场中的导体和电介质-习题及答案第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr=21σσ 。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体内的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。
第十章 静电场中的导体和电介质一选择题 1.半径为R 的导体球原不带电, 则导体球的电势为 () q B.羊 4 n o a 今在距球心为 a 处放一点电荷q ( a >R 。
设无限远处的电势为零, qa D . 4 n o (a R )解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷 C.4 n o (a R) q 分布在导体球表面上,且 q ( q ) 0 ,它们在球心处的电势 1 V 乩q 4 n o R点电荷q 在球心处的电势为 47^ q dq V J 据电势叠加原理,球心处的电势 4 n o aV o V Vq 。
4 n o a 所以选(A ) 2.已知厚度为d 的无限大带电导体平板, 则板外两侧的电场强度的大小为 ( 2 A. E B. E 2 o o两表面上电荷均匀分布, 电荷面密度均为 ,如图所示,d C. E 二一 D. E=—— ⑰ 2匂解:在导体平板两表面外侧取两对称平面, 做侧面垂直平板 的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为2 S ,可得E —。
0选择题2图 所以选(C ) 3.如图,一个未带电的空腔导体球壳,内半径为 量为+q 的点电荷。
() R,在腔内离球心的距离为 用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 d 处(d<R ,固定一电o 处的电势为A. C.B. 4 n o d q 1 D. (—4 n 0 d 解:球壳内表面上的感应电荷为 q _q 4n o d 4n o R 选择题3图 1R ) -q,球壳外表面上的电 (+q . j 荷为零,所以有V o 所以选(D ) 4.半径分别为 在忽略导线的影响下,A . R/r B. R 2 / r 2 C. r 2 / R 解:两球相连,当静电平衡时,两球带电量分别为 分布,且两球电势相等,取无穷远为电势零点,则 QR 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电, 两球表面的电荷面密度之比 R / r 为() B. R 2 / r 2 C. r 2 / R 2 D. r / R Q q ,因两球相距很远,所以电荷在两球上均匀 所以选(D )R Q/4 R 2r q /4 r 2「的均匀电介质,若测得导体表面附近场强为 E,则导体球面的自由电荷面密度 为() 上D S S ,即 所以选(B )6. 一空气平行板电容器,充电后测得板间电场强度为 煤油,待稳定后,煤油中的极化强度的大小应是(£ A . —E g £ £(£ 1 )匸 B . E 0£不管是否注入电介(£ 1) C. E 。
一、选择题[ B]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0,静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得:022202010=-+εσεσεσ联立解得: 1222σσσσ=-=[ C ]2(基础训练6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【提示】静电平衡时金属球是等势体。
金属球接地,球心电势为零。
球心电势可用电势叠加法求得:000'044q dq q Rd πεπε'+=⎰, 00'01'44q q dq R d πεπε=-⎰, 'q q R d =-,其中d = 2R ,'2qq ∴=-[ C ]3(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为:(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V【提示】反接,正负电荷抵消后的净电量为661212(82)101000610Q Q Q C U C U C --=-=-=-⨯⨯=⨯这些电荷重新分布,最后两个电容器的电压相等,相当于并联。
并联的等效电容为512C'10C C F -=+=,电势差为'600()'QU V C ==。
第七章 静电场中的导体、电介质答案一、选择1.(C )2.(B)3.(C)4.(A)5.(D)6.(D)7.(A)8.(D )9.(A) 10(C) 11(B)12.(C) 13.(C) 14.(B) 15.(D) 16.(A) 17.(D) 18.(C) 19 .(B) 20.( B)21.( C) 22.( B)23.(C) 24.(D) 25.(A) 二、填空1. -q ; -q;2.不变,减小;3.σ(x 、y 、z )/ε0 ,与导体表面垂直朝外(σ>0)或与导体表面垂直朝里(σ<o ) ;4.0、C r q 04πε;5.S Qd 02ε;S Qd0ε; 6.)(21B A q q -; S d q q B A 02)(ε-; 7. 电位移线 、 电力线 ;8.r πλ2/,r r επελ02/ ;9. u/d ,d-t , u/d ;10.σ,)(/r 0εεσ;11.2C 0 ;12.-Q 2/(4C) ;13. R 1/R 2 ; )(4210R R +πε;R 2/R 1 ; 14.r 02πελ;204r L πελ;15. 8.85×10-10C ·m -2 , 负 ;16. 正;17. 9.421310-⋅⨯m V , C 9105-⨯; 18. 2221r r ;19.1/εr20. 2:1, 1:2, 2:9;三、计算题:1. 解:由题给条件(b-a )≤a 和L ≥b ,忽略边缘效应,将两同轴圆筒导体看作是无限长带电体,根据高斯定理可以得到两同轴圆筒导体之间的电场强度为r 00/2/)(επε⎰⎰==∑=⋅s sQ rLE Eds q s d E 内 Lr2QE 0πε= 同轴圆筒之间的电势差: 00ln 22b b a aQ dr Q b U E dl L r L a πεπε=⋅==⎰⎰ 根据电容的定义:02ln L Q C b U aπε== 电容器储存的能量:2201ln 24Q b W cU L aπε==2. 解: (1)设内、外球壳分别带电荷为+Q 和-Q ,则两球壳间的电位移大小为 2=/(4r )D Q π场强大小为20 =/(4r )r E Q πεε2101222020124)()11(442121R R R R Q R R Q r dr Q r d E U r r R R r R R επεεπεεπε-=-==⋅=⎰⎰电量 )/(41221120R R R R U Q r -=επε(2) 电容 12210124R R R R U Q C r -==επε (3)电场能量 1221221021222R R U R R CU W r -==επε3.解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为E 1=q/(ε0S )金属片内部场强为E 2=q/(ε0S )金属片内部场强为E ’=0 则两极板间的电势差为 U A -U B =E 1d 1+E 2d 2=[q/(ε0S )](d 1+d 2) =[q/(ε0S )](d-t)由此得C=q/(U A -U B )=ε0S/(d-t) 因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响。
第7章静电场中的导体和电介质习题及答案1. 半径分别为/?和厂的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷而密度分 别为6和”2。
忽略两个导体球的静电相互作川和细导线上电荷对导体球上电荷分布的影响。
试证明:冬工。
cr 2 R证明:凶为两球相距县远,半径为/?的导体球在半径为广的导体球上产生的电势忽略不计,半 径为厂的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为/?的导体球的电势为半径为厂的导体球的电势为 26 岔一 cr 2r4 兀 £()厂 4g ()川细导线连接两球,有叫=岭,所以E L = L<T 2 R2. 证明:对于两爪无限大的平行平而带电导体板來说,(1)相向的两而上,电荷的而密度总是 大小相等而符号相反;(2)相背的两而上,电荷的而密度总是大小相等而符号相同。
证明:如图所示,设两导体A 、〃的四个平血均匀帯电的电荷血密度依次为6,内,6, 6 (1)取与平面垂直且底面分别在4、B 内部的闭合圆柱面为高斯面,由高斯定理得盘・亦=0 =丄(6 +牛何故cr 2 +牛=0上式说明相向两而上电荷而密度大小相等、符号相反。
(2)在4内部任取一点P,则其场强为零,并口它是|+|四个均匀带 电平而产生的场强叠加而成的,即乂6 + 6=0故 <T] = cr 43. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为d = 3R 处有一点电荷 + g,试求:金属球上的感应电荷的电量。
解:如图所示,设金属球表面感应电荷为",金属球接地时电势V =0 由电势叠加原理,球心电势为% = —!—屁+—仝— 4^/?」 4砖0 3/?=/ + q =o 4TI £()R 4兀£()37?=_纟4. 半径为尺的导体球,帶有电量q,球外有内外半径分别为心、&的同心导体球壳,球壳 带有电量Q 。
6兀R ,4TI £(b\R4勺 ABn (5) n 匸二二D。