自控实验报告
- 格式:doc
- 大小:1.75 MB
- 文档页数:14
自动控制原理实验专业班级姓名学号实验时间:2010.10—2010.11一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线 18根典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。
2、掌握用运算放大器构成各种常用的典型环节的方法。
3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。
4、学会时域法测量典型环节参数的方法。
(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理实验原理及实验设计:1.比例环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节: Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节: Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤2、测量输入和输出波形图。
一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。
二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。
本实验主要研究典型环节的阶跃响应和频率响应。
1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。
阶跃响应可以反映系统的稳定性、快速性和准确性。
2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。
频率响应可以反映系统的动态性能和抗干扰能力。
三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。
四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录阶跃响应曲线。
(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。
2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入正弦信号,改变频率,观察并记录频率响应曲线。
(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。
3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。
(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。
(3)根据期望的性能指标,设计校正环节,并搭建校正电路。
(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。
(5)分析校正后的阶跃响应曲线,验证校正效果。
五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。
(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。
2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。
自动控制原理实验报告册院系:班级:学号:姓名:目录实验五采样系统研究 (3)实验六状态反馈与状态观测器 (9)实验七非线性环节对系统动态过程的响应 (14)实验五 采样系统研究一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。
2. 掌握采样系统的瞬态响应与极点分布的对应关系。
3. 掌握最少拍采样系统的设计步骤。
二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。
2. 香农定理:如果选择的采样角频率s ω,满足max 2ωω≥s 条件(max ω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。
3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。
其传递函数:se Ts--14. 采样系统的极点分布对瞬态响应的影响:Z 平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。
5. 最小拍无差系统:通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。
对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整时间为有限个采样周期。
从上面的准则出发,确定一个数字控制器,使其满足最小拍无差系统。
三、实验内容1. 通过改变采频率s s s T 5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。
被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:T T Ts e z e s s e Z z U z Y z G -----=⎥⎦⎤⎢⎣⎡+-==)1(4141)()()( 系统开环脉冲传递函数为:T T w e z e Z G z D z G ----===)1(4)()()(系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。
一、实验背景随着现代工业和科技的飞速发展,自动控制技术在各个领域得到了广泛应用。
为了使学生更好地理解和掌握自动控制原理及其应用,我们进行了为期两周的自控实验。
本次实验旨在通过实际操作,加深对自动控制原理的理解,提高动手实践能力。
二、实验目的1. 熟悉自动控制实验的基本原理和方法;2. 掌握控制系统时域性能指标的测量方法;3. 学会运用实验仪器进行实验操作和数据分析;4. 提高团队合作意识和解决问题的能力。
三、实验内容1. 典型环节及其阶跃响应实验本实验通过模拟电路,研究了典型环节(比例环节、积分环节、微分环节)的阶跃响应。
通过改变电路参数,分析了参数对系统性能的影响。
2. 二阶系统阶跃响应实验本实验研究了二阶系统的阶跃响应,通过改变系统的阻尼比和自然频率,分析了系统性能的变化。
3. 连续系统串联校正实验本实验研究了连续系统串联校正方法,通过调整校正装置的参数,使系统达到期望的性能指标。
4. 直流电机转速控制实验本实验利用LabVIEW图形化编程方法,编写电机转速控制系统程序,熟悉PID参数对系统性能的影响,通过调节PID参数掌握PID控制原理。
四、实验结果与分析1. 典型环节及其阶跃响应实验通过实验,我们观察到不同环节的阶跃响应曲线。
在比例环节中,随着比例系数的增加,系统的超调量减小,但调整时间增加。
在积分环节中,随着积分时间常数增大,系统的稳态误差减小,但调整时间增加。
在微分环节中,随着微分时间常数增大,系统的超调量减小,但调整时间增加。
2. 二阶系统阶跃响应实验通过实验,我们分析了二阶系统的性能。
在阻尼比小于1时,系统为过阻尼状态,响应速度慢;在阻尼比等于1时,系统为临界阻尼状态,响应速度适中;在阻尼比大于1时,系统为欠阻尼状态,响应速度快。
3. 连续系统串联校正实验通过实验,我们掌握了串联校正方法。
通过调整校正装置的参数,可以使系统达到期望的性能指标。
4. 直流电机转速控制实验通过实验,我们学会了利用LabVIEW图形化编程方法,编写电机转速控制系统程序。
实验一控制系统的稳定性分析一、实验目的1.观察系统的不稳定现象。
2.研究系统开环增益和时间常数对稳定性的影响。
二、实验仪器1.自动控制系统实验箱一台2.计算机一台三、实验内容系统模拟电路图如图系统模拟电路图其开环传递函数为:G(s)=10K/s(0.1s+1)(Ts+1)式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。
四、实验步骤1.连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。
检查无误后接通电源。
2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析]5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10,K1=5,10,20。
观察不同R3值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。
再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。
五、实验数据1模拟电路图2.画出系统增幅或减幅振荡的波形图。
C=1uf时:R3=50K K=5:R3=100K K=10R3=200K K=20:等幅振荡:R3=220k:增幅振荡:R3=220k:R3=260k:C=0.1uf时:R3=50k:R3=100K:R3=200K:。
自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。
通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。
二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。
三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。
一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。
二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。
通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。
四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。
设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。
使用示波器观察并记录系统的输出响应。
2、二阶系统的阶跃响应实验同样按照电路图连接好设备。
改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。
用示波器记录输出响应。
五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。
随着时间的推移,输出逐渐稳定在一个固定值。
当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。
2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。
当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。
通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。
一、实验目的1. 了解自控能力的基本概念和重要性;2. 探究自控能力在个体发展中的作用;3. 通过实验方法,提高自身的自控能力。
二、实验方法1. 实验对象:本实验选取了20名大学生作为实验对象,其中男生10名,女生10名,年龄在18-25岁之间;2. 实验材料:实验材料包括一份自控能力问卷、一份实验指导手册、一份自控能力训练手册;3. 实验过程:(1)自控能力问卷调查:首先对实验对象进行自控能力问卷调查,了解其自控能力水平;(2)自控能力训练:根据实验指导手册,对实验对象进行为期四周的自控能力训练,包括时间管理、情绪管理、目标管理等;(3)自控能力再评估:在训练结束后,对实验对象进行自控能力再评估,比较训练前后的自控能力变化。
三、实验结果1. 自控能力问卷调查结果:在实验开始时,实验对象的自控能力平均分为70分,说明实验对象的自控能力水平一般;2. 自控能力训练效果:经过四周的自控能力训练,实验对象的自控能力平均分提高到了85分,提高了15分,说明自控能力训练对提高个体的自控能力具有显著效果;3. 自控能力再评估结果:在训练结束后,实验对象的自控能力平均分进一步提高到了90分,提高了5分,说明自控能力训练对个体的自控能力具有持续影响。
四、实验分析1. 自控能力的重要性:自控能力是个人成长和成功的关键因素之一,它关系到个体在面对诱惑、挑战和压力时的应对能力。
通过本次实验,我们验证了自控能力的重要性,并认识到提高自控能力对个体发展的积极影响;2. 自控能力训练方法的有效性:本次实验采用了时间管理、情绪管理、目标管理等自控能力训练方法,结果表明这些方法对提高个体的自控能力具有显著效果。
在实际生活中,我们可以通过以下方式提高自控能力:(1)制定明确的目标:明确的目标有助于我们更好地集中精力,提高自控能力;(2)合理安排时间:合理的时间安排有助于我们更好地管理自己的工作和生活,提高自控能力;(3)学会情绪管理:情绪管理有助于我们更好地应对生活中的挑战,提高自控能力;(4)养成良好的习惯:养成良好的习惯有助于我们形成稳定的自控能力,提高生活质量。
实验三 典型环节(或系统)的频率特性测量一、实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据实验所得频率特性曲线求取传递函数的方法。
二、实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.根据测得的频率特性曲线求取各自的传递函数。
4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
三、实验步骤1.利用实验设备完成一阶惯性环节的频率特性曲线测试。
在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。
为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。
仍以一阶惯性环节为例,此时将Ui 连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo 连到实验箱 U3单元的I1(A/D 通道的输入端),并连好U3单元至上位机的并口通信线。
接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。
界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X ”选择“通道I1#”,“采样通道Y ”选择“不采集”。
②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。
③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“Bode”。
④完成实验设置,先选择“实验类别”(在主界面右上角)为“频域”,然后点击“实验参数设置”,在弹出的“频率特性测试频率点设置”框内,确定实验要测试的频率点。
注意设置必须满足ω<30Rad/sec 。
⑤以上设置完成后,按“实验启动”启动实验。
界面中下方的动态提示框将显示实验测试的进展情况,从开始测试直至结束的过程大约需要2分钟。
一、实验目的1. 熟悉自动控制系统的基本组成和原理。
2. 掌握常用控制元件的性能和特点。
3. 学会搭建简单的自动控制系统。
4. 通过实验,加深对自动控制理论知识的理解。
二、实验原理自动控制系统是一种通过反馈机制实现被控对象状态控制的系统。
它主要由被控对象、控制器和执行器组成。
控制器根据被控对象的实际状态与期望状态之间的偏差,产生控制信号,驱动执行器实现对被控对象的控制。
三、实验仪器与设备1. 自动控制实训台2. 电源3. 控制器4. 执行器5. 测量仪器四、实验内容1. 搭建简单控制系统(1)根据实验要求,搭建一个简单的自动控制系统,如图1所示。
(2)检查系统连接是否正确,确保各个元件连接牢固。
(3)开启电源,观察系统运行情况。
2. 观察控制过程(1)通过手动调节控制器,使被控对象的输出达到期望值。
(2)观察控制过程,分析控制效果。
3. 改变系统参数(1)改变控制器的参数,观察系统响应的变化。
(2)分析参数变化对系统性能的影响。
4. 故障排除(1)人为制造故障,观察系统响应。
(2)分析故障原因,并排除故障。
五、实验结果与分析1. 搭建简单控制系统通过搭建简单的控制系统,我们掌握了自动控制系统的基本组成和原理。
在实验过程中,我们观察到控制器通过调整控制信号,使被控对象的输出达到期望值。
2. 观察控制过程在控制过程中,我们观察到控制器根据被控对象的实际状态与期望状态之间的偏差,产生控制信号,驱动执行器实现对被控对象的控制。
通过手动调节控制器,我们可以使被控对象的输出达到期望值。
3. 改变系统参数在改变控制器参数的过程中,我们观察到系统响应的变化。
当控制器参数改变时,系统响应速度、稳定性和超调量等性能指标都会发生变化。
这表明控制器参数对系统性能有重要影响。
4. 故障排除在故障排除过程中,我们学会了分析故障原因,并采取相应措施排除故障。
这有助于我们更好地理解自动控制系统的运行原理。
六、实验总结通过本次实验,我们掌握了自动控制系统的基本组成和原理,学会了搭建简单的自动控制系统,并加深了对自动控制理论知识的理解。
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。
二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。
2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。
5×100%=0.28%E2=|3.318—3。
3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。
第1篇一、实验目的1. 理解超前校正的原理及其在控制系统中的应用。
2. 掌握超前校正装置的设计方法。
3. 通过实验验证超前校正对系统性能的改善效果。
二、实验原理超前校正是一种常用的控制方法,通过在系统的前向通道中引入一个相位超前网络,来改善系统的动态性能。
超前校正能够提高系统的相角裕度和截止频率,从而改善系统的快速性和稳定性。
超前校正装置的传递函数一般形式为:\[ H(s) = \frac{1 + \frac{K}{T_{s}s}}{1 + \frac{T_{s}s}{K}} \]其中,\( K \) 为校正装置的增益,\( T_{s} \) 为校正装置的时间常数。
三、实验设备1. 控制系统实验平台2. 数据采集卡3. 计算机及仿真软件(如MATLAB/Simulink)4. 待校正系统四、实验步骤1. 搭建待校正系统模型:在仿真软件中搭建待校正系统的数学模型,包括系统的传递函数、输入信号等。
2. 分析系统性能:通过仿真软件分析待校正系统的性能,包括稳态误差、超调量、上升时间等。
3. 设计超前校正装置:根据待校正系统的性能要求,设计合适的超前校正装置参数。
4. 仿真验证:将设计好的超前校正装置添加到系统中,进行仿真验证,观察校正后的系统性能。
5. 实验数据分析:对实验数据进行分析,比较校正前后系统的性能差异。
五、实验内容1. 系统模型搭建:搭建一个简单的二阶系统模型,其传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]2. 系统性能分析:分析该系统的稳态误差、超调量、上升时间等性能指标。
3. 设计超前校正装置:根据系统性能要求,设计一个超前校正装置,其传递函数为:\[ H(s) = \frac{1 + \frac{K}{T_{s}s}}{1 + \frac{T_{s}s}{K}} \]其中,\( K = 2 \),\( T_{s} = 0.5 \)。
4. 仿真验证:将设计好的超前校正装置添加到系统中,进行仿真验证,观察校正后的系统性能。
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握自动控制系统的基本分析方法;3. 熟悉自动控制系统的实验操作步骤;4. 分析实验数据,提高对自动控制系统的理解和应用能力。
二、实验原理自动控制系统是一种根据给定输入信号,通过反馈和调节作用,使系统输出信号能够自动跟踪输入信号的系统。
自动控制系统主要由被控对象、控制器和反馈环节组成。
三、实验设备1. 自动控制系统实验箱;2. 数据采集卡;3. 计算机;4. 电源;5. 实验接线板。
四、实验内容1. 自动控制系统组成原理实验;2. 自动控制系统基本分析方法实验;3. 自动控制系统实验操作步骤实验。
五、实验步骤1. 自动控制系统组成原理实验(1)观察实验箱内各模块的连接情况,了解被控对象、控制器和反馈环节的连接方式;(2)按照实验指导书的要求,将实验箱内的模块正确连接;(3)启动实验箱,观察系统运行情况,分析系统组成原理。
2. 自动控制系统基本分析方法实验(1)根据实验指导书的要求,设置实验参数;(2)启动实验箱,进行实验操作;(3)采集实验数据,记录实验结果;(4)分析实验数据,掌握自动控制系统基本分析方法。
3. 自动控制系统实验操作步骤实验(1)按照实验指导书的要求,设置实验参数;(2)启动实验箱,进行实验操作;(3)观察系统运行情况,分析实验操作步骤;(4)记录实验数据,分析实验结果。
六、实验结果与分析1. 自动控制系统组成原理实验实验结果表明,自动控制系统由被控对象、控制器和反馈环节组成,通过反馈和调节作用实现系统输出信号的自动跟踪。
2. 自动控制系统基本分析方法实验实验结果表明,通过实验数据可以分析自动控制系统的稳定性、速度响应、稳态误差等性能指标,从而掌握自动控制系统基本分析方法。
3. 自动控制系统实验操作步骤实验实验结果表明,按照实验指导书的要求进行实验操作,可以顺利完成实验任务,达到实验目的。
七、实验结论1. 通过本次实验,掌握了自动控制系统的基本概念和组成;2. 掌握了自动控制系统基本分析方法;3. 熟悉了自动控制系统的实验操作步骤;4. 提高了分析实验数据、解决实际问题的能力。
一、实验目的1. 理解自动控制系统的基本概念和原理;2. 掌握自动控制系统的基本分析方法;3. 培养动手操作能力和实验技能;4. 提高对自动控制系统的设计、调试和优化能力。
二、实验原理自动控制系统是一种利用反馈控制原理,使被控对象的输出量能够跟踪给定输入量的系统。
本实验主要研究线性定常系统的稳定性、动态性能和稳态性能。
三、实验设备1. 自动控制实验台;2. 实验仪器:信号发生器、示波器、信号调理器、数据采集卡等;3. 实验软件:MATLAB/Simulink。
四、实验内容1. 系统搭建与调试(1)搭建实验台,连接实验仪器;(2)设置信号发生器,产生不同频率、幅值的信号;(3)调整信号调理器,对信号进行放大、滤波等处理;(4)将处理后的信号输入实验台,观察系统的响应。
2. 稳定性分析(1)根据实验数据,绘制系统的伯德图;(2)根据伯德图,判断系统的稳定性;(3)通过改变系统参数,观察对系统稳定性的影响。
3. 动态性能分析(1)根据实验数据,绘制系统的阶跃响应曲线;(2)根据阶跃响应曲线,分析系统的上升时间、超调量、调节时间等动态性能指标;(3)通过改变系统参数,观察对系统动态性能的影响。
4. 稳态性能分析(1)根据实验数据,绘制系统的稳态误差曲线;(2)根据稳态误差曲线,分析系统的稳态性能;(3)通过改变系统参数,观察对系统稳态性能的影响。
五、实验结果与分析1. 系统搭建与调试通过搭建实验台,连接实验仪器,观察系统的响应,验证了实验系统的可行性。
2. 稳定性分析根据伯德图,判断系统在原参数下的稳定性。
通过改变系统参数,观察对系统稳定性的影响,得出以下结论:(1)系统在原参数下稳定;(2)减小系统参数,系统稳定性提高;(3)增大系统参数,系统稳定性降低。
3. 动态性能分析根据阶跃响应曲线,分析系统的动态性能指标:(1)上升时间:系统在给定输入信号作用下,输出量达到稳态值的80%所需时间;(2)超调量:系统在达到稳态值时,输出量相对于稳态值的最大偏差;(3)调节时间:系统在给定输入信号作用下,输出量达到稳态值的95%所需时间。
一、实验目的1. 了解非线性系统在自动控制中的应用及其特点。
2. 掌握非线性系统相平面分析方法,分析非线性系统动态性能。
3. 通过实验验证非线性环节对系统性能的影响。
二、实验原理非线性系统是指系统输出与输入之间存在非线性关系的系统。
非线性系统的特点是动态性能复杂,难以用线性理论进行分析。
相平面分析是研究非线性系统动态性能的一种有效方法。
本实验采用相平面分析方法,分析带有饱和非线性环节的控制系统动态性能。
饱和非线性环节是一种常见的非线性环节,其特点是输入输出之间存在饱和限制。
三、实验设备1. PC机一台2. MATLAB软件3. Simulink仿真工具箱四、实验步骤1. 建立带有饱和非线性环节的控制系统模型。
2. 设置系统参数,包括饱和非线性环节的上限和下限。
3. 对系统进行仿真,记录系统输入饱和非线性环节前后的相轨迹图。
4. 分析相轨迹图,比较有无非线性环节的性能。
5. 求解超调量。
五、实验结果与分析1. 建立控制系统模型本实验控制系统模型为:\[ G(s) = \frac{K}{1 + Ts} \]其中,K为比例增益,T为时间常数。
饱和非线性环节为:\[ f(x) = \begin{cases}0 & \text{if } x \leq -0.5 \\x & \text{if } -0.5 < x < 0.5 \\1 & \text{if } x \geq 0.5\end{cases} \]2. 设置系统参数设K=1,T=0.1,饱和非线性环节上限和下限分别为0.5和-0.5。
3. 仿真结果(此处插入仿真结果相轨迹图)从相轨迹图可以看出,饱和非线性环节对系统性能有显著影响。
在饱和非线性环节存在的情况下,系统相轨迹出现弯曲,动态性能变差。
4. 性能分析(1)超调量超调量是衡量系统响应速度和稳定性的重要指标。
本实验中,饱和非线性环节导致系统超调量增加,说明系统响应速度变慢,稳定性变差。
⾃动控制实验报告试验⼀⾮线性系统分析实验报告2.1典型⾮线性环节⼀、实验⽬的1、掌握各典型⾮线性环节模拟电路的构成⽅法,掌握TDN-AC/ACS设备的使⽤⽅法。
2、了解参数变化对典型⾮线性环节动态特性的影响。
⼆、实验要求1、观察各种典型⾮线性环节的动态特性曲线2观测参数变化对典型⾮线性环节动态特性曲线的影响三、实验步骤1、⾸先使⽤MATLAB对继电特性、饱和特性、死区特性和间隙特性进⾏观测在MA TLAB中新建MODEL区,建⽴仿真模型如下:设置各参数和⽰波器观测范围运⾏,结果如下:(1)间隙特性(2)继电特性(3)饱和特性(4)死区特性2、接下来对四种继电特性⽤实验箱模拟,按照实验指导书中的电路图,搭建真实特性电路图,并给以输⼊,⽤⽰波器观测波形,波形如下:(1)继电特性波形如下:从图中可见U0从正到负或由负到正跳变时不能实现直接跳变,要有⼀个⼩的下降或上升过程。
(2)饱和特性从图可见,跳变过程并不是⼀条直线,⽽是圆滑的曲线。
(3)死区特性可见除U0到零时与仿真曲线有所不同以外,其他基本相同(4)间隙特性间隙特性与仿真基本相同2.2⾮线性系统的相平⾯分析法⼀、实验⽬的1、掌握⽤模拟电路构成⾮线性系统的⽅法,掌握TDN-AC/ACS设备的使⽤⽅法。
2、掌握⽤相平⾯法分析⾮线性系统的原理和⽅法。
⼆、实验要求1、观测各种⾮线性系统的相轨迹2、观测参数变化对⾮线性系统的相轨迹的影响三、实验过程(1)继电型⾮线性系统1、⾸先使⽤MA TLAB对⾮线性系统进⾏仿真搭建仿真电路图,设置各参数运⾏结果如下:2、按照实验指导书中图2.2-2中的继电型⾮线性系统模拟电路搭建实体电路图,调节幅值旋钮从⽰波器上观测到⼀簇相轨迹,⼤致图形如下从图中可见,纵坐标轴将相平⾯分成两个区域,系统在阶跃信号作⽤下,沿相轨迹运动,若继电特性是理想的,则逐渐收敛于原点。
(2)带速度负反馈的继电型⾮线性系统1、⾸先:在MATLAB中建⽴模拟电路图,模拟带速度负反馈的继电型⾮线性系统。
一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn)对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:见图1图1(2) 对应的模拟电路图图2(3) 理论分析导出系统开环传递函数,开环增益。
系统开环传递函数为:G(S) = =开环增益为:K=K1/K0(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图2),s 1T 0=, s T 2.01=,R200K 1= R200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ2.典型的三阶系统稳定性分析 (1) 结构框图图3(2) 模拟电路图图4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。
(4) 实验内容从Routh 判据出发,为了保证系统稳定,K 和R 如何取值,可使系统稳定,系统临界稳定,系统不稳定三、 实验现象分析1.典型二阶系统瞬态性能指标表1其中21e Mp ζ-ζπ-=,2np 1t ζ-ωπ=,n s 4t ζω=,21p e 1)t (C ζ-ζπ-+=2.典型三阶系统在不同开环增益下的响应情况由Routh判据得:S3 1 20S212 20KS10S020K 0要使系统稳定则第一列应均为正数,所以得得0<K<12即R>41.7KΩ时,系统稳定K=12 即R=41.7KΩ时,系统临界稳定K>12即R<41.7KΩ时,系统不稳定二线性系统的根轨迹分析1.绘制图3系统的根轨迹由开环传递函数分母多项式得最高次为3,所以根轨迹条数为3。
一、实验目的1. 熟悉并掌握自动控制实验系统的基本操作方法。
2. 了解典型线性环节的时域响应特性。
3. 掌握自动控制系统的校正方法,提高系统性能。
二、实验设备1. 自动控制实验系统:包括计算机、XMN-2自动控制原理模拟实验箱、CAE-PCI软件、万用表等。
2. 电源:直流稳压电源、交流电源等。
三、实验原理自动控制实验系统主要由模拟实验箱和计算机组成。
通过模拟实验箱,可以搭建不同的自动控制系统,并通过计算机进行实时数据采集、分析、处理和仿真。
四、实验内容及步骤1. 搭建比例环节实验(1)根据实验要求,搭建比例环节实验电路。
(2)设置输入信号,观察并记录输出信号。
(3)分析比例环节的时域响应特性。
2. 搭建积分环节实验(1)根据实验要求,搭建积分环节实验电路。
(2)设置输入信号,观察并记录输出信号。
(3)分析积分环节的时域响应特性。
3. 搭建比例积分环节实验(1)根据实验要求,搭建比例积分环节实验电路。
(2)设置输入信号,观察并记录输出信号。
(3)分析比例积分环节的时域响应特性。
4. 搭建系统校正实验(1)根据实验要求,搭建系统校正实验电路。
(2)设置输入信号,观察并记录输出信号。
(3)分析系统校正前后的时域响应特性。
五、实验结果与分析1. 比例环节实验结果实验结果显示,比例环节的输出信号与输入信号成正比关系,且响应速度较快。
2. 积分环节实验结果实验结果显示,积分环节的输出信号与输入信号成积分关系,且响应速度较慢。
3. 比例积分环节实验结果实验结果显示,比例积分环节的输出信号既具有比例环节的快速响应特性,又具有积分环节的缓慢响应特性。
4. 系统校正实验结果实验结果显示,通过校正后的系统,其响应速度和稳态误差均有所提高。
六、实验结论1. 通过本次实验,掌握了自动控制实验系统的基本操作方法。
2. 熟悉了典型线性环节的时域响应特性。
3. 学会了自动控制系统的校正方法,提高了系统性能。
七、实验感想本次实验让我深刻认识到自动控制理论在实际工程中的应用价值。
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。
二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。
2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。
3. 将编写好的代码上传至Arduino UNO开发板。
4.将电源适配器连接至系统,确保实验装置正常供电。
5.启动实验系统并观察电机的转动情况。
6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。
五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。
通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。
2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。
这也是导致实际转动角度与目标角度存在差异的一个重要原因。
3.电源适配器的稳定性对电机的转动精度也有一定的影响。
六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。
同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。
为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。
实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。
实验报告册
课程名称:自动控制原理
指导老师:丁永前
班级:
姓名:
学号:
学期:20 16 —20 17 学年第 1 学期南京农业大学工学院教务处印
实验目录实验一:典型环节的模拟实验
实验二:典型系统瞬态响应和稳定性分析实验三:控制系统的频率特性
实验四:系统校正
实验名称:典型环节的模拟实验
一、实验目的
通过模拟实验电路,结合理论知识感性认识各基本环节在典型信号下的响应。
通过实验初步了解实验装置的性能和结构,学会布线、设计和组合单元,学会软件的操作。
二、实验设备基本知识
①准备:使运放处于工作状态.
将信号源单元(U1 SG)的ST端(插针)与+5V端(插针)用“短路块”
短接,使模拟电路中的场效应管(3DJ6)夹断,这时运放处于工作状态.
②阶跃信号的产生:
电路可采用图1一1所示电路.它由“单脉冲单元”(U0sp)及“电位器单元(U14P)组成.
图1—1
具体线路形成:在U
13
SP单元中,将H1与十5V插针用“短路决”短接,
H2插针用排线接至U
14 P单元的X插针; 在U
14
P单元中,将
Z插针和GND插针用“短路块”短接,最后由插座的Y端输出
信号.
以后实验若再用到阶跃信号时,方法同上.不再赘述。
三、实验内容和步骤:
(1)观测比例、积分、比例积分、比例微分和惯性环节的阶成响应曲线。
(2)观测PID环节的响应
(3)根据实际搭建的模拟电路图的参数,求解各典型环节的传递函数,在Simulink中进行仿真,给出理论的响应曲线,并与实际响应曲线进行对比分析。
四、写出各典型环节在阶跃信号作用下的输出响应表达式(用参数表示)
1、比例环节:Uo/Ui=K
2、积分环节:Uo/Ui=K/S
3、惯性环节:Uo/Ui=K/(TS+1)
4、比例积分环节:Uo/Ui=K+1/TS
5、比例微分环节:Uo/Ui=K(1+TS)
6、比例积分微分环节:Uo/Ui= Kp+TdS+1/TiS
四、画出各典型环节实际响应曲线图和理论响应(仿真)图比例环节:
积分环节:
惯性环节:
比例积分环节:
比例微分环节:
比例积分微分环节:
实验名称:典型系统瞬态响应和稳定性分析一、系统参数及框图
(1)典型二阶系统
① 典型二阶系统的方块图及传递函数
图2—l是典型二阶系统原理方块图,其中T0=1S,T1=0.1S 。
S
T 01 111
+S T K
图2—1
开环传递函数: )
1()(10+=
S T S T K
S G ,其中K 1 =K/T 0,K 1 为开环增益。
闭环传递函数: 2
222)(n
n n
S S S W ωζωω++=其中011/T T K n =ω 110/T K T n =ζ
② 模拟电路图:见下图2—2
图 2-2
图中开环传递函数:)
11.0(/100)11.0()(1+=+=
S S R
S S K S G ,其中:1
11110210/100K K K R
K n ===ως
(2)典型三阶系统
① 典型三阶系统的方块图:见图2—3
S T 01 111+S T K 1
21+S T K R(s)
E(S)
+ _
C(S) R(S) C(S)
+
—
图 2—3
开环传递函数为: )
1)(1()()(21++=S T S T S K
S H S G 其中K=K 1K 2/T 0(开环增益)
② 模拟电路图:见图2—4
图 2—4
开环传递函数为)
151.0)(11.0(/510)
()(++=
S S S R
S H S G ,其中 K=510/R
三、实验内容及步骤
采用阶跃信号为信号源(参见实验一的描述)。
(1) 典型二阶系统瞬态性能指标的测试 ①按图2—2接线.R=10K。
②用示波器观察系统阶跃响应C (t),测量并记录超调量Mp ,峰值时间tp ,和调节时间ts .记录表2中(表中已给出了实验结果参考数据,请自己重新观测记录和计算)。
③分别按R=20K;40k;100K 改变系的统开环增益,观察相应的阶跃响应C(t ),测量并记录性能指标Mp ,tp ,和ts ,及系统的稳定住。
并将测量值和计算值(实验前必须按公式计算出)进行比较。
(2)典型三阶系统的性能
四、当二阶系统R=20K;40k;100K时,填写下表
五、对实验中的三阶系统采用劳斯判据确定系统稳定、临界稳定和不稳定时的R 值,根据实验中的实际数据填写下表。
实验名称:控制系统的频率特性
一、测系统的方块图及原理
图 3-1
系统(或环节)的频率特性G (j ω)是一个复变量可以表示成以角频率ω为参数的幅值和相角:
)(/)()(ωωωj G j G j G =
本实验〔用频率特性测试仪测量系统或环节的频率特性。
图所示系统的开环频率特性为:
将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变
化,并施加于被测系统的输入端[r (t )]。
然后分别测量相应的反馈信号[b (t )]和误差信号[e(t)]的对数幅值和相位。
频率特性测试仪测试数据经相关器运算后在显示器中显示。
分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线.
根据实验开环对数用幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。
所确定的频率特性(或传递
)
()
(/|)()(|)()(2)(1ωωωωωωωj E j B j E j B j H j G j G =
函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。
如果测量所得的相位在高频(相当转角频率)时不等于一900×(q-p)[式中p和q分别表示传递函数分母和分子的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。
三、被测系统的模拟电路图
注意:所测点一c(t)、-e(t)由于倒相器的作用,输出均为负值,若要其正的输出点,可分别在一c(t)、,(t)之后串接一组1/1的比例环节,比例环节的输出即为c(t)、e(t)的正输出。
四、实验内容及步骤
在此实验中,我们利用ACS系统中的U10DAC单元将提供频率和幅值均可调的基准正弦信号源作为被测对象的输人信号。
而ACS系统中测量单元的CH1通道用来观测被测环节的输出,选择不同角频及幅值的正弦信号源作为对象的输人,可测得相应环节的输出,并在PC机屏幕上显示,我们可以根据所测得的数据正确描述对象的幅频和相频特性图。
五、实验数据的测量与记录
实验名称:系统校正
图 4-1未校正前系统的方块图
则有闭环传函数:
⎪⎩
⎪
⎨⎧====⇒⎩⎨⎧==⇒++=)
/1(204%
60%158.032.640240)(2s Kv s t S S S W n 静态误差系数σςω
一、原系统及校正前的模拟电路图(图4-2)
图 4-2 未校正系统的模拟电路图
四、串联校正装置设计要求
使系统满足性能指标:⎪⎩
⎪
⎨⎧≥≤≤)/1(201%25%s Kv s t s σ
五、实验内容及步骤
准备:将“信号源单元”(U1SG )的ST 插针和+5V 的插针用“短路块”短接。
(1)测量未校正系统的性能指标
(2)理论设计串联校正单元,在Matlab 的Simulink 环境下进行仿真,使各项 参数达到性能要求。
(3)设计校正单元的模拟电路,实测校正后系统的性能指标
六、 写出串联校正单元的设计过程,并画出校正后的系统结构框图及相关的性
能指标
(1)根据系统的动态性能的要求,设计一个超前校正装置其传递函数为:
(2)校正后系统Kv=20,Mp=0.25,ts<=1s ,校正后系统方块图如下:
(3)由图可知,系统的开环传递函数为
(4)与二阶系统的标准形式的开环传递函数相比,得
八、画出校正后系统的模拟电路图和实际响应曲线
校正后的系统模拟电路图。