电镀氢脆的原理与控制
- 格式:ppt
- 大小:1.45 MB
- 文档页数:8
电镀氢脆产生的原因1. 你知道吗,电镀过程中氢离子进入金属内部可是产生氢脆的一个重要原因啊!就好比一个小虫子偷偷钻进了苹果里,慢慢搞破坏。
比如说,在镀锌的时候,如果操作不当,氢离子就可能悄悄藏进去啦!2. 电镀的电流密度过大也会导致氢脆哦!这就好像开车速度太快容易出事儿一样。
像镀镍的时候,电流密度太大了,氢脆就可能出现了呀!3. 电镀溶液的成分不合适,那氢脆就可能来啦!这不就像做菜调料放错了,味道就不对了嘛。
比如某些镀液中缺少必要的添加剂,氢脆就可能找上门咯!4. 电镀的温度不合理也是原因之一呢!温度就像天气,太热或太冷都不行。
比如在高温下电镀,氢脆出现的几率不就增大了嘛!5. 电镀时间过长难道不会引发氢脆吗?这就像跑步跑太久会累一样。
长时间的电镀过程,氢脆可能就不知不觉产生啦!6. 工件的材质对氢脆产生也有影响哦!不同的材质就像不同性格的人,有的容易“中招”。
像一些高强度的钢材,就比较容易出现氢脆呢!7. 电镀后的处理不当也会让氢脆有可乘之机呀!好比洗完衣服没晾好会发臭。
如果电镀后不及时进行合适的处理,氢脆可能就出现啦!8. 电镀环境不清洁也可能引发氢脆哟!这就像住在一个脏兮兮的房间里会不舒服。
要是环境中有杂质,氢脆可能就跟着来了!9. 操作人员的技术水平不够高难道不是氢脆产生的潜在因素吗?就跟厨师厨艺不好饭菜就不好吃一个道理。
技术不过关,氢脆可能就冒出来了呀!10. 不注意对电镀过程的监控也会导致氢脆哦!这就像不看着孩子,孩子可能就捣乱了。
没有好好监控,氢脆就可能悄悄产生啦!我的观点结论:电镀氢脆的产生是由多种因素共同作用的结果,在电镀过程中一定要注意各个环节,尽量避免这些因素导致氢脆的出现,这样才能保证电镀的质量啊!。
去氢处理,也称除氢处理,一般对电镀前后必须进行工序,特别是对高强度高硬度的零件在电镀工艺中。
氢脆的原理与预防在任何电镀溶液中,由于水分子的离解,总或多或少地存在一定数量的氢离子。
因此,电镀过程中,在阴极析出金属(主反应)的同时,伴有氢气的析出(副反应)。
析氢的影响是多方面的,其中最主要的是氢脆。
氢脆是表面处理中最严重的质量隐患之一,析氢严重的零件在使用过程中就可能断裂,造成严重的事故。
表面处理技术人员必须掌握避免和消除氢脆的技术,氢脆的影响降低到最低限度。
一、氢脆1氢脆现象氢脆通常表现为应力作用下的延迟断裂现象。
曾经出现过汽车弹簧、垫圈、螺钉、片簧等镀锌件,在装配之后数小时内陆续发生断裂,断裂比例达40%~50%。
某特种产品镀镉件在使用过程中曾出现过批量裂纹断裂,曾组织过全国性攻关,制订严格的去氢工艺。
另外,有一些氢脆并不表现为延迟断裂现象,例如:电镀挂具(钢丝、铜丝)由于经多次电镀和酸洗退镀,渗氢较严重,在使用中经常出现一折便发生脆断的现象;猎枪精锻用的芯棒,经多次镀铬之后,堕地断裂;有的淬火零件(内应力大)在酸洗时便产生裂纹。
这些零件渗氢严重,无需外加应力就产生裂纹,再也无法用去氢来恢复原有的韧性。
2 氢脆机理延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。
氢扩散到这些缺陷处,氢原子变成氢分子,产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。
氢脆既然与氢原子的扩散有关,扩散是需要时间的,扩散的速度与浓差梯度、温度和材料种类有关。
因此,氢脆通常表现为延迟断裂。
氢原子具有最小的原子半径,容易在钢、铜等金属中扩散,而在镉、锡、锌及其合金中氢的扩散比较困难。
镀镉层是最难扩散的,镀镉时产生的氢,最初停留在镀层中和镀层下的金属表层,很难向外扩散,去氢特别困难。
经过一段时间后,氢扩散到金属内部,特别是进入金属内部缺陷处的氢,就很难扩散出来。
氢脆的概念、机理及应对措施详解一、氢脆的概念氢脆是指金属材料在冶炼、加工、热处理、酸洗和电镀等过程中,或在含氢介质中长期使用时,材料由于吸氢或氢渗而造成机械性能严重退化,发生脆断的现象。
人们不仅在普通的钢材中发现氢脆现象,在不锈钢、铝合金、钛合金、镍基合金和锆合金中也都有此现象。
从机械性能上看,氢脆有以下表现:氢对金属材料的屈服强度和极限强度影响不大,但使延伸率是断面收缩率严重下降,疲劳寿命明显缩短,冲击韧性值显著降低。
在低于断裂强度拉伸应力的持续作用下,材料经过一段时期后会突然脆断。
二、氢脆的机理氢脆的机理学术界还有争议,但大多数学者认为以下几种效应是氢脆发生的主要原因:1、在金属凝固的过程中,溶入其中的氢没能及时释放出来,向金属中缺陷附近扩散,到室温时原子氢在缺陷处结合成分子氢并不断聚集,从而产生巨大的内压力,使金属发生裂纹。
2、在石油工业的加氢裂解炉里,工作温度为300-500度,氢气压力高达几十个到上百个大气压力,这时氢可渗入钢中与碳发生化学反应生成甲烷。
甲烷气泡可在钢中夹杂物或晶界等场所成核,长大,并产生高压导致钢材损伤。
3、在应力作用下,固溶在金属中的氢也可能引起氢脆。
金属中的原子是按一定的规则周期性地排列起来的,称为晶格。
氢原子一般处于金属原子之间的空隙中,晶格中发生原子错排的局部地方称为位错,氢原子易于聚集在位错附近。
金属材料所外力作用时,材料内部的应力分布是不均匀的,在材料外形迅速过渡区域或在材料内部缺陷和微裂纹处会发生应力集中。
在应力梯度作用下氢原子在晶格内扩散或跟随位错运动向应力集中区域。
由于氢和金属原子之间的交互作用使金属原子间的结合力变弱,这样在高氢区会萌生出裂纹并扩展,导致了脆断。
另外,由于氢在应力集中区富集促进了该区域塑性变形,从而产生裂纹并扩展。
还有,在晶体中存在着很多的微裂纹,氢向裂纹聚集时有吸附在裂纹表面,使表面能降低,因此裂纹容易扩展。
4、某些金属与氢有较大的亲和力,过饱和氢与这种金属原子易结合生成氢化物,或在外力作用下应力集中区聚集的高浓度的氢与该种金属原子结合生成氢化物。
一、氢脆产生的机理因热处理、机加工、电镀、电焊、酸洗、磷化、材料腐蚀等因素导致氢原子渗入钢和其他金属如铝、钛合金中,由于在每一个铁离子的立方晶格中只能容纳一个氢原子,所以它虽自由的移动和扩散,但不可能有二个氢原子相遇形成氢分子,但被吸收的氢原子具有向应力集中的部位扩散和移动的能力,这时,如果在应力集中部位由于位错而产生晶格缺陷时,氢原子进入晶格间隙,相互汇合形成氢分子,从而致使钢的组织破坏,形成钢的氢脆。
而由于氢原子向应力集中的部位扩散和积聚需要时间,这就是为何氢脆主要的表现特征为延迟断裂。
二、造成产品氢脆的几大因素1、原材料钢的强度越高越容易导致氢脆。
高强度钢的韧性会随着其强度的增高而下降,因此这种材料对缺口、氢脆以及应力腐蚀很敏感,尤其是氢脆性会使这些材料在其设计载荷能力以下发生破坏。
也就是说材料在渗氢的情况下,在低于其屈服强度的应力条件下,容易发生早期脆性断裂,而且材料强度级别越高,渗氢程度越严重,所受应力越大,氢脆风险性也越大。
美国对氢脆敏感的SAE4340钢做过实验,当其抗拉强度低于1250MPa 时,吸收了1〜IOPPM的氢而不会发生氢脆,但经过热处理后,强度达到1760MPa〜1920MPa时,仅吸收了0.03〜0.05PPM的氢,就会发生显著的氢脆断裂。
而采用抗拉强度小于780MPa的普通钢,即使吸收了10~30PPM的氢,也未发现有氢脆断裂现象。
2、机械加工在电镀前的加工过程中,如轧制成型、机械加工、钻孔、磨削中,由于润滑剂的选用不当造成分解会导致氢渗入金属中。
硬化热处理后经机械加工、磨削、冷成型冷矫直处理的制件对氢脆损伤特别敏感。
同时如在冷轧、冲裁、压弯、磨削等机加工过程中使得零件表面产生加工裂纹,会导致零件裂纹处渗氢后很难经烘烤将氢析出。
同时裂纹处又是应力集中区,很容易造成零件在裂纹处延时断裂。
下图所示为一款65Mn材料的组合螺母,因表面有严重的机加工裂纹,导致在电镀后采用GBT/3098.17进行氢脆测试过程中发生氢脆断裂。
文章主要说明氢脆产生的原因,并以液压主控阀阀芯为例讲述发生氢脆的薄弱点,最后阐明了去氢脆处理的主要措施。
一、氢脆的定义氢脆是溶于钢中的氢聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹,又称白点。
氢脆主要发生在低合金高强度钢、不锈钢及弹性零件上,造成氢脆的主要原因是表面处理,如电镀、氮化等零件的处理过程中产生的氢渗入到金属内部导致晶格排列混乱,产生扭曲,造成内应力增加,使金属或镀层产生脆性,从而引起零件的断裂或镀层的脱落。
在过程中氢脆的发生需要满足两个条件:金属有较高的含氢量;有一定的外力作用。
由于氢脆所导致的滞后开裂的特性,严重影响零部件的使用性能,存在较大的安全隐患。
因此在零件的设计加工时,尤其是液压元件工作在高压下,更需要严格控制。
二、去氢脆处理适用的范围及工序并不是所有金属在表面处理过程中都会产生氢脆现象,通过研究数据及实践来看,在零件表面处理后氢脆主要产生于以下材料中。
(1)抗拉强度在981N/mm2(或硬度在38HRC)以上的经过热处理的碳素钢及合金钢零件。
(2)硬度为370HV以上的弹簧钢(包含琴钢丝、油回火钢丝、高碳钢丝)的零件。
(3)在抗拉强度1236N/mm2以上(或36HRC以上)实施热处理的马氏体的不锈钢产品。
现在的加工中,可导致氢脆的工序主要有酸洗、电镀、氮化、电解,以上工序在处理零件表面时,会产生氢且渗入到零件中,从而导致氢脆。
三、氢脆的案例分析液压产品一般需在高压下工作,部分零件承受的力较大,当零件吸氢后,在其薄弱地方会发生断裂,如图1所示的阀芯。
阀芯内部为中空,由于功能要求,中空处需要与单向阀配合密封,阀芯处于高压工作,这就需要与单向阀的配合处具有较强的抗冲击性及韧性,同时为了达到一定的耐磨要求,许多厂家选择该种阀芯表面镀铬处理,而且要求的镀层较厚,但由于镀铬工艺本身电流效率低,因此需要电镀的时间较长,渗氢严重。
图1 主控阀阀芯示意该阀芯材质为42CrMo,调质处理后硬度为32~36HRC,装配后要求镀铬层厚度0.04~0.06mm。
1.控制氢脆断裂的思路氢脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹,又称白点。
氢脆只可防,不可治。
氢脆一经产生,就消除不了,重在预防。
(氢在承受静载的紧固件中的扩散可以通过氢脆断裂前的延迟时间而直接观察到。
由于材料的氢脆倾向、材料中氢的总量、氢的扩散比以及旋加应力水平的不同,氢脆断裂时间延迟的变化很大,从几分钟到几天或几周不等,紧固件处理过程中对氢的吸收是累积性的,单一的某种处理引入零件的氢或许不足以导致氢脆,但多种处理引入零件的氢的累积却有可能导致氢脆)2.氢脆现象氢脆:是指氢原子侵入基体材料中而引起的材料延迟失效断裂。
它的发生需要满足两个条件:a、金属有较高的含氢量;b、一定的外力作用。
3.氢脆机理延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。
氢扩散到这些缺陷处,氢原子变成氢分子,产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。
氢脆既然与氢原子的扩散有关,扩散是需要时间的,扩散的速度与浓差梯度、温度和材料种类有关。
因此,氢脆通常表现为延迟断裂。
4.氢脆形成的环节第一类主要是由外部环境侵入的氢(外氢)引起的延迟断裂。
如裸露在空气表面外壳等连接使用的螺栓、螺母,在潮湿空气、雨水等环境中长期暴露而发生;第二类酸洗、电镀处理的制造过程中侵入钢中的氢(内氢)引起的延迟断裂。
如镀锌螺栓等在加载后,经过几小时或几天的较短时间后而发生。
对于前者,一般是由于在长期暴露过程中发生腐蚀,腐蚀坑处腐蚀反应生成的氢侵入而引起的;后者是由于制造过程如酸洗、电镀处理时侵入钢中的氢在应力的作用下向应力集中处集中而引起的。
热处理对于高强度螺纹紧固件,尤其是10.9级和12.9级螺钉,不但使用中碳合金结构钢,而且还要进行调质热处理。
对于自攻螺钉、自攻锁紧螺钉等,都要求进行浅层渗碳(碳氮共渗)。
去氢处理,也称除氢处理,一般对电镀前后必须进行工序,特别是对高强度高硬度的零件在电镀工艺中。
氢脆的原理与预防在任何电镀溶液中,由于水分子的离解,总或多或少地存在一定数量的氢离子。
因此,电镀过程中,在阴极析出金属(主反应)的同时,伴有氢气的析出(副反应)。
析氢的影响是多方面的,其中最主要的是氢脆。
氢脆是表面处理中最严重的质量隐患之一,析氢严重的零件在使用过程中就可能断裂,造成严重的事故。
表面处理技术人员必须掌握避免和消除氢脆的技术,氢脆的影响降低到最低限度。
一、氢脆1氢脆现象氢脆通常表现为应力作用下的延迟断裂现象。
曾经出现过汽车弹簧、垫圈、螺钉、片簧等镀锌件,在装配之后数小时内陆续发生断裂,断裂比例达40%~50%。
某特种产品镀镉件在使用过程中曾出现过批量裂纹断裂,曾组织过全国性攻关,制订严格的去氢工艺。
另外,有一些氢脆并不表现为延迟断裂现象,例如:电镀挂具(钢丝、铜丝)由于经多次电镀和酸洗退镀,渗氢较严重,在使用中经常出现一折便发生脆断的现象;猎枪精锻用的芯棒,经多次镀铬之后,堕地断裂;有的淬火零件(内应力大)在酸洗时便产生裂纹。
这些零件渗氢严重,无需外加应力就产生裂纹,再也无法用去氢来恢复原有的韧性。
2 氢脆机理延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。
氢扩散到这些缺陷处,氢原子变成氢分子,产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。
氢脆既然与氢原子的扩散有关,扩散是需要时间的,扩散的速度与浓差梯度、温度和材料种类有关。
因此,氢脆通常表现为延迟断裂。
氢原子具有最小的原子半径,容易在钢、铜等金属中扩散,而在镉、锡、锌及其合金中氢的扩散比较困难。
镀镉层是最难扩散的,镀镉时产生的氢,最初停留在镀层中和镀层下的金属表层,很难向外扩散,去氢特别困难。
经过一段时间后,氢扩散到金属内部,特别是进入金属内部缺陷处的氢,就很难扩散出来。
预防电镀氢脆断裂解决方案
在弹性元件的制造过程中,电镀是一个必不可少的环节。
然而,这个过程中也存在着一个潜在的问题:氢脆。
氢脆是由于氢离子在电镀过程中渗透入弹性元件的基体和镀层中,导致材料内部产生应力,最终引发断裂。
这是一个严重的质量问题,为了防止这种情况的发生,以下是一些关键的预防措施:
1.清洁与除油:使用95#航空汽油进行清洁,可以有效地去除工件表面的油污。
之后进行化学除油和电解除油,进一步清洁工件。
2.酸蚀处理:在酸蚀过程中,不能使用硫酸,而应使用盐酸。
同时要严格控制盐酸的浓度,并添加缓蚀剂。
3.镀锡工艺:为了防止渗氢,可以使用酸性镀锡电解液。
但是,对于细小的工件,碱性镀锡工艺更佳。
在电镀过程中,尽量缩短镀铜与镀锡时间,并使用大电流冲击以提高结合力和减缓渗氢。
去氢处理:完成电镀后,必须进行去氢处理。
在恒温电烘箱内进行,温度控制125135℃,时间120240min。
去氢处理可以去除弹性元件内部和镀层中的氢气,防止氢脆的发生。
需要注意的是,不同的材料厚度和材质,均有对应的除氢条件,请在去氢前确认除氢标准要求。
以上措施可以有效预防弹性元件电镀过程中的氢脆断裂。
在实际
操作中,还需要注意一些细节问题。
比如在电镀过程中,要避免暴露在酸性环境中;烘烤处理时要注意控制时间和温度,避免过高的温度导致镀层失效;避免使用过高的电荷或强酸和/或腐蚀性清洁剂;减少或消除弹簧渗氢;注意金属材料的硬度等。
总之,预防弹性元件电镀过程中的氢脆断裂需要从多个方面入手,严格控制工艺条件和操作流程。
只有这样,才能保证产品质量和可靠性。
去氢处理,也称除氢处理,一般对电镀前后必须进行工序,特别是对高强度高硬度的零件在电镀工艺中。
氢脆的原理与预防在任何电镀溶液中,由于水分子的离解,总或多或少地存在一定数量的氢离子。
因此,电镀过程中,在阴极析出金属(主反应)的同时,伴有氢气的析出(副反应)。
析氢的影响是多方面的,其中最主要的是氢脆。
氢脆是表面处理中最严重的质量隐患之一,析氢严重的零件在使用过程中就可能断裂,造成严重的事故。
表面处理技术人员必须掌握避免和消除氢脆的技术,氢脆的影响降低到最低限度。
一、氢脆1氢脆现象氢脆通常表现为应力作用下的延迟断裂现象。
曾经出现过汽车弹簧、垫圈、螺钉、片簧等镀锌件,在装配之后数小时内陆续发生断裂,断裂比例达40%~50%。
某特种产品镀镉件在使用过程中曾出现过批量裂纹断裂,曾组织过全国性攻关,制订严格的去氢工艺。
另外,有一些氢脆并不表现为延迟断裂现象,例如:电镀挂具(钢丝、铜丝)由于经多次电镀和酸洗退镀,渗氢较严重,在使用中经常出现一折便发生脆断的现象;猎枪精锻用的芯棒,经多次镀铬之后,堕地断裂;有的淬火零件(内应力大)在酸洗时便产生裂纹。
这些零件渗氢严重,无需外加应力就产生裂纹,再也无法用去氢来恢复原有的韧性。
2 氢脆机理延迟断裂现象的产生是由于零件内部的氢向应力集中的部位扩散聚集,应力集中部位的金属缺陷多(原子点阵错位、空穴等)。
氢扩散到这些缺陷处,氢原子变成氢分子,产生巨大的压力,这个压力与材料内部的残留应力及材料受的外加应力,组成一个合力,当这合力超过材料的屈服强度,就会导致断裂发生。
氢脆既然与氢原子的扩散有关,扩散是需要时间的,扩散的速度与浓差梯度、温度和材料种类有关。
因此,氢脆通常表现为延迟断裂。
氢原子具有最小的原子半径,容易在钢、铜等金属中扩散,而在镉、锡、锌及其合金中氢的扩散比较困难。
镀镉层是最难扩散的,镀镉时产生的氢,最初停留在镀层中和镀层下的金属表层,很难向外扩散,去氢特别困难。
经过一段时间后,氢扩散到金属内部,特别是进入金属内部缺陷处的氢,就很难扩散出来。
氢脆的机理、检测与防护The mechanism of hydrogen embrittlement, detection andprotection材科0803 刘笑语摘要:本文介绍了氢脆的基本概念,氢脆现象的机理以及避免和消除氢脆的措施和其中应该注意的问题。
同时本文还介绍了氢脆和应力腐蚀的区别。
关键词:氢脆 机理 检测 防护措施1.前言氢脆是溶于钢中的氢,聚合为氢分子,造成应力集中,超过钢的强度极限,在钢内部形成细小的裂纹,又称白点。
氢脆只可防,不可治。
氢脆一经产生,就消除不了。
在材料的冶炼过程和零件的制造与装配过程(如电镀、焊接)中进入钢材内部的微量氢(10—6量级)在内部残余的或外加的应力作用下导致材料脆化甚至开裂。
在尚未出现开裂的情况下可以通过脱氢处理(例如加热到200℃以上数小时,可使内氢减少)恢复钢材的性能。
因此内氢脆是可逆的。
2.氢脆的类型及特征2.1 氢在金属中的存在形式氢脆断裂(氢脆):由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象。
1、氢的来源可分为内含的和外来的两种。
前者是指金属在熔炼过程中及随后的加工制造过程(如焊接、酸洗、电镀等)中吸收的氢;后者是金属机件在服役时环境介质中含有的氢。
2、氢在金属中的存在形式①以间隙原子状态固溶在金属中,对大多数工业合金,氢的溶解度随温度的降低而降低。
②氢在金属中可通过扩散聚集在较大缺陷(如空洞、气泡、裂纹)处,以氢分子状态存在。
③还可能与一些过渡族、稀土或碱土金属元素作用生成氢化物。
④与金属中的第二相作用生成气体产物,如钢中的氢可以和渗碳体中的碳原子作用形成甲烷等。
2.2 氢脆类型及其特征1、氢蚀是由于氢与金属中的第二相作用生成高压气体,使基体金属晶界结合力减弱而导致金属脆化。
如碳钢在300~500℃的高压氢气氛中工作时,由于氢与钢中的碳化物作用生成高压的CH4气泡,当气泡在晶界上达到一定密度后,金属的塑性将大幅降低。
这种氢脆现象的断裂源产生在与高温、高压氢气相接触的部位。