最新定积分及应用61887
- 格式:doc
- 大小:1.27 MB
- 文档页数:27
·153·第二节 定积分及其应用一、内容精要 (一) 基本概念定积分的概念是由求曲边梯形面积,变力作功,已知变速直线运动的速度求路程,密度不均质线段的质量所产生。
定义3.3 设函数f(x)在闭区间[]b a ,上有定义,在闭区间[a,b]内任意插入n-1个分点将[]b a ,分成n 个小区间],[i i x x x -,记),,2,1(n i x x x i i i =-=∆,],[1i i x x -∈∀ξ,作乘积i i x f ∆)(ξ(称为积分元),把这些乘积相加得到和式∑=∆ni iixf 1)(ξ(称为积分和式)设{}n i x i ≤≤∆=1:max λ,若∑=→∆ni i i x f 1)(lim ξλ极限存在唯一且该极限值与区是[a,b]的分法及分点i ξ的取法无关,则称这个唯一的极限值为函数f(x)在[]b a ,上的定积分,记作dx x f ba)(⎰,即i i ni b a x f dx x f ∆=⎰∑=→)()(1lim 0ξλ.否则称f(x)在[]b a ,上不可积.注1由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号。
注2若dx x f ba )(⎰存在,区间[]b a ,进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理解。
注3定积分是否存在或者值是多少只与被积函数式和积分区间有关与积分变量用什么字母表示无关,即.)()()(du u f dt t f dx x f ba ba ba ⎰=⎰=⎰定积分的几何意义: 若f(x)在[]b a ,上可积,且,0)(≥x f 则dx x f ba)(⎰表示曲线)(x f y =与直线b x a x y ===,,0所围成的曲边梯形的面积.同样,变力所作的功dx x f w ba )(⎰=(其中f(x)是变力)变速直线运动的路程dt t v S ba )(⎰=()(t v 是瞬时速度),密度不均质直线段[]b a ,的质量dx x M ba )(μ⎰=(其中)(x μ是线密度)。
第六章 定积分及其应用习题6-11、利用定积分的定义计算下列定积分:(1)⎰-21xdx ;解:①令]2,1[)(-∈=C x x f ,因此]2,1[)(-∈R x f ,②取∆为]2,1[-的n 等分,此时有]31,)1(31[],[1nin i x x i i i +--+-==∆-,nx i 3=∆=∆,.,,2,1n i =③取i i i nix ∆∈+-==31ξ,于是)3(33)31()(],[111∑∑∑===+-=+-=∆=∆ni ni ni i i i n n n n n i x f S ξξ2)1(932++-=n n n ,④23293]2)1(93[lim ],[lim 20||||2 1 =+-=++-=∆=∞→→∆-⎰n n n S xdx n ξ.(2)⎰1dx e x .解:①令]1,0[)(C e x f x∈=,因此]1,0[)(R x f ∈,②取∆为]1,0[的n 等分,此时有],1[],[1nin i x x i i i -==∆-, n x i 1=∆=∆,.,,2,1n i =③取i i i nix ∆∈==ξ,于是∑∑∑=====∆=∆n i nini ni ni i i e n n e x f S 11111)(],[ξξ,④nn n n i n in xee e n e n S dx e 1110||||10 111lim )1(lim ],[lim --==∆=∞→=∞→→∆∑⎰ξ11lim)1(11lim)1(01-=--=--=→∞→e e te e ne tt nn .2、利用定积分的几何意义,说明下列等式:(1)121=⎰xdx ;解:因x y 2=,1=x 及0=y 围成的三角形的面积为1,因此由定积分的几何意义知121=⎰xdx .(2)4112π=-⎰dx x ;解:因圆形122=+y x 的面积为π,那么122=+y x ,0=x 及0=y 围成的是圆形在第一象限的部分,其面积当然为4π,因此由定积分的几何意义知4112π=-⎰dx x .(3)0sin =⎰-ππxdx ;解:因x s in 为奇函数,那么由0=y ,x sin ,π≤≤x 0围成的面积为⎰πsin xdx ,而由0=y ,x sin ,0≤≤-x π围成的面积为⎰-0sin πxdx ,由定积分的几何意义知,两个面积大小相等,符号相反,因此0sin =⎰-ππxdx .(4)⎰⎰=-222cos 2cos πππxdx xdx .解:因x c o s 为偶函数,那么由0=y ,x cos ,20π≤≤x 围成的面积为⎰2c o s πx d x ,而由0=y ,x cos ,02≤≤-x π围成的面积为⎰-2cos πxdx ,由定积分的几何意义知,两个面积大小相等,符号相同,因此⎰⎰=-222c o s 2c o s πππx d xx d x .3、讨论狄利克雷函数⎩⎨⎧=.,0, ,1)(为无理数为有理数x x x D 在区间]1,0[上的可积性.解:取∆为]1,0[的n 等分,此时有],1[],[1nin i x x i i i -==∆-, n x i 1=∆=∆,.,,2,1n i =取i ξ为i ∆中的某个有理数,i η为i ∆中的某个无理数,于是11)1()(],[111∑∑∑=====∆⋅=∆=∆ni n i i n i i i nx x D S ξξ,0)0()(],[11=∆⋅=∆=∆∑∑==ni i n i i i x x D S ηη,由于1],[lim =∆∞→ξS n ,0],[lim =∆∞→ηS n ,于是)(x D 在]1,0[上的不可积.4、用定积分表示下列极限:(1) ∑=∞→+ni n i n n122lim; 解:⎰∑∑∑+=∆=+=+=∞→=∞→=∞→1 0 211212211)(lim 1)(11lim lim dx x x f nni i n n n i i i n n i n n i n ξ.其中:①]1,0[11)(2C xx f ∈+=,]1,0[)(R x f ∈, ②取∆为]1,0[的n 等分,此时有],1[],[1nin i x x i i i -==∆-, n x i 1=∆=∆,.,,2,1n i =③取i i i nix ∆∈==ξ,于是n ni x f S ni n ni i i 1)(11lim )(],[121∑∑=∞→=+=∆=∆ξξ,④∑∑⎰=∞→=∞→+=+=+n i n n i n i n nnni dx x 122121 0 2lim 1)(11lim 11.(2) ∑=∞→+ni n i n 11lim; 解:⎰∑∑∑+=∆=+=+=∞→=∞→=∞→1 0 11111)(lim 111lim 1lim dx x x f n ni i n n i i i n n i n n i n ξ.其中:①]1,0[11)(C xx f ∈+=,]1,0[)(R x f ∈,②取∆为]1,0[的n 等分,此时有],1[],[1nin i x x i i i -==∆-, n x i 1=∆=∆,.,,2,1n i =③取i i i nix ∆∈==ξ,于是n ni x f S ni n ni i i 111lim )(],[11∑∑=∞→=+=∆=∆ξξ,④∑∑⎰=∞→=∞→+=+=+ni n n i n i n nni dx x 1110 1lim 111lim 11.习题6-21、估计下列积分的值:(1)⎰-412)1(dx x ;解:1)(2-=x x f ,]4,1[∈∀x ,1612≤≤x ,15102≤-≤x ,那么⎰-⋅<-<-⋅412)14(15)1()14(0dx x ,∴⎰<-<4 1245)1(0dx x .(2)⎰+4542)cos 1(ππdx x ;解:x x f 2cos 1)(+=,]45,4[ππ∈∀x ,21cos 1≤≤-x ,1cos 02≤≤x , 2cos 112≤+≤x ,那么)445(2)cos 1()445(145 42ππππππ-⋅<+<-⋅⎰dx x ,∴ππππ2)cos 1(45 42<+<⎰dx x .(3)⎰3 31arctan xdx x ;解:x x x f arctan )(=,]3,31[∈∀x ,3arctan 6ππ≤≤x ,33arctan 36ππ≤≤x x ,那么)313(33arctan )313(363 31 -⋅<<-⋅⎰ππxdx x ,)13(3arctan )311(63 31 -<<-⋅⎰ππxdx x ,∴32arctan 93 31ππ<<⎰xdx x .(4)⎰-022dx e xx.解:41)21(22)(---==x xx eex f ,]2,0[∈∀x ,49)21(02≤-≤x ,24841)21(412=≤--≤-x ,241)21(412e e e x ≤≤---那么)02()02(220 412-⋅<<-⋅⎰--e dx eexx ,2241222e dx e exx<<⎰--,∴4122222---<<-⎰e dx e e xx.2、比较下列各题中的两个积分的大小:(1) ⎰=121dx x I ,⎰=142dx x I ;解:由于24x x ≤,]1,0[∈x ,所以112142I dx x dx x I =<=⎰⎰.(2) ⎰=2121dx x I ,⎰=2142dx x I ;解:由于42x x ≤,]2,1[∈x ,所以22142121I dx x dx x I =<=⎰⎰.(3) ⎰=431ln xdx I ,⎰=4332)(ln dx x I ;解:由于3)(ln ln 1x x ≤<,]4,3[∈x ,所以2433431)(ln ln I dx x xdx I =<=⎰⎰.(4) ⎰=11xdx I ,⎰+=12)1ln(dx x I ;解:由于x x ≤+)1ln(,]1,0[∈x ,所以1112)1ln(I xdx dx x I =<+=⎰⎰.(5) ⎰=11dx e I x,⎰+=12)1(dx x I .解:由于xe x ≤+1,]1,0[∈x ,所以1112)1(I dx e dx x I x =<+=⎰⎰.3、设)(x f 及)(x g 在],[b a 上连续)(b a <,证明:(1)若在],[b a 上0)(≥x f ,且0)(≡/x f ,则0)( >⎰badx x f ;证明:因)(x f 在],[b a 上连续,0)(≥x f ,且0)(≡/x f ,则),(0b a x ∈∃..t s 0)(0>x f ,这样0>∃δ..t s)(21)(0x f x f >,],[),(00b a x x x ⊂+-∈δδ,那么⎰⎰⎰⎰++--++=bx x x x abadxx f dx x f dx x f dx x f 0000)()()()(δδδδ0)(2)(210)(21000 000>=⋅=++≥⎰+-x f x f dx x f x x δδδδ.(2)若在],[b a 上0)(≥x f ,且0)( =⎰badx x f ,则在],[b a 上0)(≡x f ;证明:由(1)显然.(3)若],[b a 在上)()(x g x f ≤,且⎰⎰=babadx x g dx x f )()(,则若],[b a 在上)()(x g x f ≡.证明:由条件知在],[b a 上0)()()(≥-=x f x g x F ,0)(≥x F ,且0)( =⎰badx x F ,由(2)知在],[b a 上0)(≡x F ,即)()(x g x f ≡.习题6-31、计算下列各导数:(1) ⎰+3 0 21x dt t dx d ;解:62232 0 213)(1313x x x x dt t dxd x +=+=+⎰.(2) ⎰+42 21x x t dt dx d ;解:48322243 21214)(12)(14142xx x x x x x x t dt dx d x x +-+=+-+=+⎰.(3) ⎰x xdt t dx d cos sin 2)cos(π. 解:x x x x dt t dxd x x cos ])(sin cos[sin ])(cos cos[)cos(22cos sin 2⋅-⋅-=⎰πππ.2、计算下列各积分:(1) 2)2()3(230230 2a a x x dx x x aa-=-=-⎰;(2)82124632312223132)313()1(3333321332142==⋅-⋅=⋅-=-=+⎰x x dx x x ;(3)67)2132()232()1(0122301-=+-=+=+⎰x x dx x x ;(4) 631 arctan arctan 101312π-=-==+⎰x x dx ;(5) 621 arcsin arcsin 121210 2π===-⎰x x dx;(6) aa a xa x a dx aa33arctan 1arctan1303 022π===+⎰;(7) 621 arcsin 2arcsin 41012π===-⎰x x dx;(8)21)arctan 2()123(12330130 1 2201 224π+=+=++=+++---⎰⎰x x dx x x dx x x x ;(9) 1|1|ln 12121 -=+=+------⎰e e x dx x dx ;(10)41)(tan )1(sec tan 404242πθθθθθθπππ-=-=-=⎰⎰d d ;(11)dxx dx x dx x ⎰⎰⎰-=ππππ2 02 0sin sin |sin |422cos cos 20=+=+-=πππθθ;(12)dx x f ⎰2)(,其中⎩⎨⎧≥<=.1 ,,1 ,)(2x x x x x f解:617)3138(2132)(21310221212=-+=+=+=⎰⎰⎰x x dx x dx x dx x f .3、求下列极限:(1)1lim 1lim lim 222200000====→→→⎰⎰x x x x t x x t x e e dt e dx d x dt e ;(2)32022003202200320220sin sin sin 2lim sin )sin (lim sin )sin (lim x x dt t x dt t t dx d dt t dx d dtt t dt t x x x x x x xx ⎰⎰⎰⎰⎰→→→==;322030203020220cos 3sin lim 2)(sin sin lim 2sin sin lim sin lim 2x x x x dxd dt t dx d x dt t x x x xx xx x →→→→===⎰⎰ 32cos 1lim sin lim 3230220==→→x x x x x .4、设⎰=xtdt x f 0sin )(,求)0(f ',)4(πf '.解:显然x x f sin )(=',于是0)0(='f ,224sin)4(=='ππf .5、求由方程0cos 0=+⎰⎰xyt tdt dt e 所确定的隐函数)(x y y =的导数dxdy.解:方程两端对x 求导,得0cos =+x dx dy ey,所以y exdx dy cos -=.6、求函数⎰-=xt dt te x f 02)(的极值.解:令0)(2=='-x xe x f ,得0=x ,由于当0<x 时,0)(<'x f ,当0>x 时,0)(>'x f ,所以函数有极小值0)0(=f .7、设)(x f 在],[b a 上连续,在),(b a 内可导,且0)(<'x f ,证明函数⎰-=xa dt t f ax x F )(1)( 在),(b a 内的二阶导数0)(<''x F . 题目有误:例如,设x x f -=)(,01)(<-='x f ,有2)(1)(0x dt t x x F x -=-=⎰,21)(-='x F ,0)(=''x F .习题6-41、计算下列定积分:(1)ππππππππππ333)3cos()3()3sin()3sin(+-=++=+⎰⎰x x d x dx x02121)33cos()3cos(=-=+++-=ππππ.(2)16921)49(81)49()49(41)49(122123123=+-=++=+---⎰⎰x x x d x dx .(3)31cos 31cos cos cos sin 203202202=-=-=⎰⎰πππϕϕϕϕϕϕd d .(4)2)2sin 412(22cos 1sin )cos 1(022πθθθθθθθθππππ=-=-==-⎰⎰⎰d d d .(5)232)2(31)2(22122232202222=--=---=-⎰⎰x x d x dx x x .(6)⎰⎰⎰======-==2022022sin cos 1222sin 41cos sin 1ππtdttdt t dx x xtx tdt dx16)4sin 41(81)4cos 1(812020πππ=+=-=⎰t t dt t .(7)61)315(81)5(81 451331324554112=--=--=====-⎰⎰-=-=-t t dt t xxdx x t t x .(8)32ln 2223ln 22)]1ln([212 12121412+=-=+-=+=====+⎰⎰==t t t tdt xdx x t t x .(9))1(2121211110210222-----=-==⎰⎰e e dt e dt te t t t.(10))12ln 1(2ln 12ln 1)ln 1(ln 1212121-+=+=++=+⎰⎰x xx d x x dx.(11)4)2arctan(1)2()2(5412122122π=+=+++=++------⎰⎰x x x d x x dx .(12)32)sin 32(sin sin )sin 21(2cos cos 22322222=-=-=---⎰⎰ππππππx x x d x xdx x .(13)34)(cos 34cos cos 2cos cos 22320223=-=-=-⎰⎰-ππππx x d x dx x x .(14)⎰⎰⎰==+202cos 22cos 22cos 1πππxdxdx x dx x22sin 2220==πx .2、利用奇偶性计算下列定积分:(1)⎰⎰⎰=-=--210221022212122)(arcsin )(arcsin 21)(arcsin 21)(arcsin x d x dx xx dx xx324)6(32)21(arcsin 32)(arcsin 323332103ππ====x .(2)012sin 552432=++⎰-dx x x x x .3、证明下列各题:(1) ⎰⎰+=+xx x dx x dx 1121211,)0(>x ; 证明:⎰⎰⎰⎰⎰+=+=+=+-===+=xx x x x t x x dx t dt tdt t t dt t x dx 1121121122112211211)1(11)1(1)1(1.(2)⎰⎰-=-11)1()1(dx x x dx x x m n n m ;证明:⎰⎰⎰⎰-=-=--===--=111110)1()1()1()1(dx x x dt t t dt t t dx x x m n nm nm xt nm .(3)⎰⎰=2010010cos 2cos ππxdx xdx .证明:因⎰⎰⎰=--===-=20100210210cos )(cos cosππππππtdt dt t xdx xt ,所以⎰⎰⎰⎰=+=201021021010cos 2cos cos cos πππππxdx xdx xdx xdx .证明:⎰⎰⎰⎰==--===---=201022102210210sin 2sin )2(cos cos ππππππππtdttdt dt t xdx tx⎰⎰==20102010cos 2cos 2ππxdx tdt .证明:⎰⎰⎰======-2010221010cos 2cos cos πππππxdx x xd xdx 偶函数周期.习题6-51、计算下列定积分:(1)1)1(1011011=--=-=-==⎰⎰⎰e e ee dx e xexdedx xe x xx xx.(2)ee e e ex e xdx x x xdx xdx x 12211212142121ln 21ln 21ln -=-==⎰⎰⎰)1(4141421222+=+-=e e e .(3)πππππππ2sin 2cos cos cos sin 2020202020-=+-=+-=-=⎰⎰⎰x xdx x x x xd xdx x .(4)2ln 33|cos |ln 33tan tan tan cos 30303030302-=+=-==⎰⎰⎰πππππππx xdx x x x xd x xdx .(5)42ln 842ln 82ln 2ln 2ln 4141414141-=-=-==⎰⎰⎰x xdx x x x d x dx x x.(6) ⎰⎰⎰+-==10221210210121arctan 21arctan 21arctan dxx x x x xdx xdx x214)41(218)arctan (2181-=--=--=ππππx x .(7)⎰⎰⎰-==12202202202sin 2sin sin cos xdxe x e x d e xdx e x xxxπππ⎰⎰-+=+=1220222cos 4cos 2cos 2xdx e x e e x d e e x xxππππ,∴)2(51cos 202-=⎰ππe xdx e x .(8)⎰⎰-=eeedxx x x dx x 111)cos(ln )sin(ln )sin(ln⎰⎰-+-=--=ee edxx e e dx x x x e 111)sin(ln 11cos 1sin )sin(ln )cos(ln 1sin∴)11cos 1sin (21)sin(ln 1+-=⎰e e dx x e.(9)⎰⎰+-+=+2121211)1ln()1ln(dx x x x x dx x)2ln 13ln 2(2ln 3ln 2)]1ln([2ln 3ln 221+----=+---=x x1427ln12ln 23ln 3-=--=.(10)⎰⎰⎰-======πππ0cos 2sin 2sin 22t td tdt t dx x x t t x πππππ2sin 22cos 2cos 2000=+=+-=⎰t tdt t t .(11)1)1(ln ln 111=--=-=⎰⎰e e dx xx xdx ee e,12)11(1ln ln 111111-=--=-=⎰⎰e e e dx x x xdx ee e ,)11(2ln ln |ln |1111exdx xdx dx x e e e e -=+-=⎰⎰⎰.2、利用递推公式计算:(1)⎰=π0100100sin xdx x J ;解:由于⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,于是⎰⎰⎰===2 0100 0100100100sin sin2sinπππππxdx xdx xdx x J2!!100!!992!!100!!992πππ⋅=⋅⋅=.(2)⎰-=1299299)1(dx xI .解:2!!100!!99cos )1(20100sin 1299299ππ⋅=====-=⎰⎰=xdx dx x I tx .习题6-61、判别下列各广义积分的收敛性,如果收敛计算广义积分的值:(1)⎰+∞13x dx ;解:由于13>=p ,01>=a ,故积分⎰⎰+∞+∞=a p xdx x dx13收敛,且211113=-==-∞+∞+⎰⎰p a x dx x dx p a p .(2)⎰+∞13xdx ;解:由于131<=p ,01>=a ,故积分⎰⎰+∞+∞=a p x dx xdx 13发散.(3)⎰+∞-04dx e x ;解:41410404=-=+∞∞+-⎰xx edx e ,积分收敛.(4)⎰+∞-0sin xdx e x ;解:由于xxd e x e x d e x xd ex x x x⎰⎰⎰------=-=cos cos cos sinx xd e x e x e x d e x e x x x x x ⎰⎰-------=--=sin sin cos sin cos ,有C x x e x xd e x x++-=--⎰)cos (sin 21sin ,于是21)cos (sin 21sin 0=+-=+∞-∞+-⎰x x e xdx e x x ,积分收敛.(5)⎰+∞∞-++542x x dx;解:πππ=--=+=+++=++∞+∞-+∞∞-+∞∞-⎰⎰)2(2)2arctan(1)2()2(5422x x x d x x dx ,积分收敛.(6)⎰-121xxdx ;解:1)1(011)1(211102102212=--=--=---=-⎰⎰x xx d x xdx,积分收敛.(7)⎰-23)1(x dx;解:由+∞=-=-=-=-+++→-→-→⎰⎰)2121(lim )1(21lim )1(lim )1(210201030103εεεεεεx x dx x dx ,知⎰-103)1(x dx 发散,故积分⎰-203)1(x dx发散.(8)⎰-211x xdx ;解:38)131(2)3(2)1(211131021121212=+=+=+====-=-⎰⎰⎰-=+=t t dt t x xdx x xdx x t t x ,积分收敛.2、当k 为何值时,广义积分⎰+∞2)(ln kx x dx收敛?当k 为何值时,这广义积分发散?当k 为何值时,这广义积分取得最小值?解:⎪⎩⎪⎨⎧≠--=-=-===---∞+∞+⎰⎰.1 ],)2(ln )[(ln 11)(ln 11,1 ,2ln ln ln ln ln ln )(ln ln )(ln 1121222k b k x kk b x x xd x x dx k k b k b k k(1)当1=k 时,+∞=-=+∞→+∞⎰)2ln ln ln (ln lim )(ln 2b x x dxb k ,积分发散;(2)当1<k 时,+∞=--=--+∞→+∞⎰])2(ln )[(ln 11lim )(ln 112k k b k b k x x dx ,积分发散;(3)当1>k 时,1)2(ln ])2(ln )[(ln 11lim )(ln 1112-=--=---+∞→∞+⎰k b kx x dx k kk b k ,积分收敛,作1)2)(ln 1()(--=k k k ϕ,令2ln ln )2)(ln 1()2(ln )(11---+='k k k k ϕ0)2ln ln 11(2ln ln )2(ln 1=+-=-k k得2ln ln 110-=k ,当0k k <时,0)(>'x ϕ, 当0k k >时,0)(<'x ϕ,可见当0k k =时,)(k ϕ取得最大值,于是当2ln ln 110-==k k 时,积分)(1)(ln 2k x x dx k ϕ=⎰+∞取得最小值.3、用Г-函数表示下列积分,并计算积分值[已知π=Γ)21(](1)!)1(01)1(0m m dx e x dx e x xm xm =+Γ==⎰⎰+∞--++∞-, (m 为自然数);(2)2)21(21)121()23(01230π=Γ=+Γ=Γ==⎰⎰+∞--+∞-dx e xdx e x x x;(3)1!221)3(2121022522=⋅=Γ=====⎰⎰+∞-+∞∞-==-ds e s dx ex s x s xdx ds x .习题6-71、求由下列曲线所围图形的面积:(1)x y =,x y =;解:由 ⎩⎨⎧==xy x y , 得⎩⎨⎧==00y x 或⎩⎨⎧==11y x ,612132232)(1022310 =-=⎥⎦⎤⎢⎣⎡-=-=⎰x x dx x x A .(2)xe y =,0=x ,e y =;解:1)()(11=-=-=⎰xxe ex dx ee A .(3)23x y -=,x y 2=;解:由 ⎩⎨⎧=-=232x y x y , 得⎩⎨⎧-=-=63y x 或⎩⎨⎧==21y x ,332935)33(]2)3[(132310 2=+=--=--=-⎰x x x dx x x A .(4)22x y =,822=+x y (两部分都要计算);解:由 ⎪⎩⎪⎨⎧=+=82222x y x y , 得⎩⎨⎧=-= 22y x 或⎩⎨⎧==22y x ,342)68222arcsin 4()28(223222221+=--+=--=--⎰πx x x x dx x x A ,346)342(82-=+-=πππA .(6)xy 1=与x y =,2=x ;解:2ln 23212ln 2)ln 2()1(21221-=--=-=-=⎰x x dx x x A .(7)x e y =,xe y -=,1=x ;解:2)()(111-+=+=-=---⎰e e e e dx e e A x x x x .(8)x y ln =,0=x ,a y ln =,b y ln =(0>>a b ).解:a b edy e A b ayba y -===⎰ln ln ln ln .2、求由下列各题中的曲线所围图形绕指定轴旋转的旋转体的体积:(1)3x y =,0=y ,2=x 绕x 轴、y 轴;解:712872720 622ππππ====⎰⎰xdx x dx y V x ,564)534()4()2(835832822πππππππ=-=-=-⋅=⎰⎰y y dy y dy x V y .(2)2x y =,2y x =绕y 轴;解:y x =1,22y x =,10≤≤y ,10352)52()()(1521412221πππππππππ=-=-=-=-=⎰⎰y y dy y y dy x x V y .(3)16)5(22=-+y x 绕x 轴;解:21165x y -+=,22165x y --=,44≤≤-x ,24424422211601620)(ππππ=-=-=⎰⎰--dx x dx y y V x .(4)222a y x =+绕b x =(0>>a b ).解:221y a x --=,222y a x -= ,a y a ≤≤-,dy y a b dy x b dy x b dV y 2222214)()(-=---=πππ,222224ππb a dy y a b V aa=-=⎰-.3、用平面截面积已知的立体体积公式计算下列各题中立体的体积:(1)以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为H 的正劈锥体.解:y H x A 221)(⋅=22x R H -=,R x R ≤≤-,⎰⎰---==RRR R dx x R H dx x A V 22 )(2)(H R 22π=.(2)半径为R 的球体中高为H )(R H <的球缺.解:)()(22y R y A -=π,R y H R ≤≤-,yORxR-RR-hyx])([3)()(332 22 H R R H R dy y R dx x A V RH R R H R ---=-==⎰⎰--πππ)3(3232HR H H RH -=-=πππ.(3)底面为椭圆12222≤+b y a x 的椭圆柱体被通过x 轴且与底面夹角α(20πα<<)的平面所截的劈形立体.解:αtan 1121)(2222a xb a x b x A -⋅-=),1(tan 2222a x b -⋅=α )(a x a ≤≤-,ααtan 32)1(tan 2)(2 222 ab dx a x b dx x A V a a a a =-==⎰⎰--.习题6-81、已知边际成本为xx C 257)(+=',固定成本为1000,求总成本函数.解:因x x t t dt tdt t C C x C x xx507)507()257()()0()(00 0 +=+=+='=-⎰⎰,所以x x x x C x C 5071000507)0()(++=++=.2、已知边际收益bx a x R -=')(,求收益函数.解:20 2)()()0()()(x b ax dt bt a dt t R R x R x R x x-=-='=-=⎰⎰.3、已知边际成本为x x C 2100)(-=',求当产量由20=x 增加到30=x 时,应追加的成本数.12222=+b y a x yO axa-xyαbα解:应追加的成本数为500)100()2100()()20()30(3020230203020=-=-='=-⎰⎰x x dx x dx x C C C .4、已知边际成本为x x C 430)(+=',边际收益为x x R 260)(-=',求最大利润(设固定成本为0).解:2020230)230()430()()0()()(x x t t dt t dt t C C x C x C xx x +=+=+='=-=⎰⎰,202060)60()260()()0()()(x x t t dt t dt t R R x R x R xxx-=-=-='=-=⎰⎰,于是x x x C x R x L 303)()()(2+-=-=,令0306)(=+-='x x L ,得5=x ,而06)5(<-=''L ,所以最大利润为7553053)5(2=⨯+⨯-=L .5、某地区居民购买冰箱的消费支出)(x W 的变化率是居民总收入x 的函数,xx W 2001)(=',当居民收入由4亿元增加至9亿元时,购买冰箱的消费支出增加多少?解:消费支出增加数为01.01001100200)()4()9(949494===='=-⎰⎰xx dx dx x W W W (亿元).6、某公司按利率%10(连续复利)贷款100万元购买某设备,该设备使用10年后报废,公司每年可收入b 万元. (1) b 为何值时,公司不会亏本? (2) 当20=b 万元时,求内部利润(应满足的方程); (3) 当20=b 万元时,求收益的资本价值. 解:已知利率1.0=r ,10=T 年,b t P =)(,(1)公司保本的条件是:10年总收入的现值=100万元,即)1(10)(1001101.00----===⎰⎰e b dt be dt e t P t T rt ,82.151101≈-=-e b ,所以,当82.15≈b 万元时,公司不会亏本;(2)设内部利润为μ,那么)1(2020)(1001010μμμμ----===⎰⎰e dt e dt e t P t Tt,μμ1015--=e ,01510=-+-μμe ,%94.151594.0=≈μ,所以,当20=b 万元时,内部利润为%94.15;plot(5*x+exp(-10*x)-1,x=0.15936..0.15937);(3) 收益的资本价值=收益流的现值-投入资金的现值,即100)1(20010020100)(1101.00--=-=----⎰⎰e dt e dt e t P t Trt42.262001001≈-=-e (万元).。
定积分的应用定积分是微积分中的重要概念,它在数学和实际问题的解决中扮演着关键的角色。
本文将探讨定积分的应用,并结合实例详细说明其在解决各类问题中的重要作用。
一、定积分的概念定积分是微积分中的一种运算符号,表示在一定区间上的函数曲线与坐标轴所围成的面积。
通常用符号∫ 表示,即∫f(x)dx,其中f(x)为被积函数,dx表示积分变量。
定积分的结果是一个数值。
二、定积分的几何意义定积分的几何意义是曲线与坐标轴所围成的面积。
例如,我们可以通过计算函数曲线与x轴之间的面积来求取定积分。
这种面积计算方法可以应用于各种形状的曲线,包括折线、曲线、圆弧等。
三、定积分的物理应用定积分在物理学中有广泛的应用。
例如,当我们需要计算物体的质量、体积、位移、功等物理量时,可以通过定积分来进行计算。
定积分可以将一个连续变化的物理量表示为无限个微小变化的和,从而得到准确的结果。
四、定积分的经济学应用定积分在经济学领域也被广泛应用。
例如,当我们需要计算市场供求曲线下的固定区间所代表的消费者剩余或生产者剩余时,可以通过定积分来计算。
定积分可以将变化的价格和数量转化为面积,以方便计算。
五、定积分的工程应用在工程学中,定积分也具有重要的应用价值。
例如,在力学领域,当需要计算曲线所代表的力的作用效果时,可以通过定积分来计算。
定积分可以将一个连续变化的力量表示为无限个微小作用力的和,从而得到准确的结果。
六、定积分的统计学应用再一个例子的统计学领域中,定积分同样发挥着重要作用。
例如,在概率密度函数下计算所得的面积可以表示某一事件发生的概率。
定积分可以将一个连续变化的概率密度函数表示为无限个微小概率的和,从而得到准确的概率结果。
七、定积分的计算方法定积分的计算方法有多种,例如,常用的有牛顿-莱布尼茨公式、变量替换法、分部积分法等。
根据不同的问题和函数形式,选择合适的计算方法对于准确求解定积分非常关键。
八、结语定积分作为微积分中的重要概念,在各个领域中均得到了广泛的应用。
定积分与应用定积分是微积分学中的重要概念之一。
它不仅在数学中具有重要的作用,也在其他学科和实际生活中有着广泛的应用。
本文将围绕定积分及其应用展开讨论。
一、定积分的定义和性质定积分是将一个区间上的函数进行分割,然后求出每个小区间上函数值与区间宽度的乘积之和,这个和在区间无限分割的极限情况下,称为定积分。
定积分的定义可以用以下式子表示:∫[a,b]f(x)dx = lim(n→∞)∑(i=1 to n)f(xi*)Δxi其中,f(x)是定义在[a,b]上的函数,Δxi为小区间的宽度,xi*为小区间内某点的取值。
定积分具有一些重要的性质,如线性性、保号性和积分中值定理。
线性性表明定积分具有加法性和数乘性,即∫[a,b](f(x)+g(x))dx =∫[a,b]f(x)dx + ∫[a,b]g(x)dx,以及∫[a,b]k·f(x)dx = k·∫[a,b]f(x)dx;保号性则表示如果在[a,b]上,f(x)≥0,则∫[a,b]f(x)dx ≥ 0;积分中值定理则说明如果在[a,b]上,f(x)是连续函数,那么必然存在一个点c,使得∫[a,b]f(x)dx = f(c)·(b-a)。
二、定积分的几何意义定积分的几何意义是确定函数图像与坐标轴之间的面积。
当函数在[a,b]上为非负函数时,∫[a,b]f(x)dx表示曲线与x轴、[a,b]之间的面积。
当函数在[a,b]上有正有负时,定积分的几何意义可以理解为对曲线上部分的面积与对曲线下部分的面积进行抵消,最终求出的是坐标轴与曲线围成的区域的有向面积。
三、定积分的应用定积分在数学中有着丰富的应用,特别是在对曲线长度、曲线面积、体积、质量等问题的求解中起到了重要作用。
1. 曲线长度定积分可以用来计算曲线的长度。
对于一条曲线段,若知道曲线段在坐标轴上的参数方程为x=f(t),y=g(t),其中a≤t≤b,那么曲线段的长度可以用定积分求出:L = ∫[a,b]√[f'(t)²+g'(t)²]dt其中,f'(t)和g'(t)分别表示x=f(t),y=g(t)的导数。
定积分的应用定积分是微积分中的重要内容之一,经常被应用于实际问题的解决中。
本文将从三个方面来论述定积分的应用。
一、定积分在几何中的应用首先,定积分可以用于求曲线下面的面积。
以 y=f(x) 为例,若f(x)>0,则曲线 y=f(x) 与 x 轴的两点 a、b 组成的图形的面积为S=∫baf(x)dx这时,可以将曲线 y=f(x) 分成许多小块,每块宽度为Δx,高度为 f(xi),从而可以得到其面积为ΔS=f(xi)Δx因此,当Δx 趋于 0 时,所有小块的面积之和就等于图形的面积,即∑ΔS→S因此,用定积分就可以求出图形的面积。
其次,定积分还可以用于求旋转体的体积。
以曲线 y=f(x) 在 x 轴上旋转360°为例,其体积为V=π∫baf(x)^2dx这里,π为圆周率。
最后,定积分还可以用于求某些奇特图形的长、面积等等。
二、定积分在物理中的应用物理中也有许多问题可以通过定积分来解决。
比如,运动问题中的速度、加速度,可以通过位移的变化来求得。
若某运动物体的速度为 v(t),则其位移 s(t) 为s(t)=∫v(t)dt同样,若某运动物体的加速度为 a(t),速度为 v(t),则其位移为s(t)=∫v(t)dt=∫a(t)dt最后,定积分还可以用于求密度、质量等物理量。
三、定积分在工程中的应用定积分在工程中的应用也非常广泛。
比如,在流体力学中,对于一条管道中的液体,可以通过惯性和重力等因素,求出其中液体的流量和压力。
而这些流量和压力可以通过定积分计算得出。
在电学中,电量、电荷、电流和电势等都可以通过定积分来求解。
在结构设计中,定积分也常常被用来计算约束力、杠杆比例等。
总之,定积分在几何、物理和工程等领域中都有着广泛应用。
熟练地掌握定积分的方法和应用,对于科学研究和实际问题的解决都有着非常积极的帮助。
定积分的应用解析定积分是微积分中重要的一部分,它在物理学、经济学、统计学等各个领域都有广泛的应用。
本文将探讨定积分的应用,并通过具体的例子说明其解析过程。
一、图形面积的计算定积分可以用来计算曲线与坐标轴所围成的图形的面积。
设函数y=f(x)在区间[a,b]上连续且非负,可将该图形分割为许多矩形或梯形,并逐渐将分割趋于无穷细,那么这些矩形或梯形的面积之和就可以通过定积分来表示。
例如,我们计算函数y=x^2在区间[0,1]上的曲线与x轴所围成的图形面积。
首先,将该区间分为n个小区间,每个小区间的宽度为Δx=(b-a)/n,其中a=0,b=1。
然后,选取小区间中的一点xi,计算函数在该点的函数值f(xi),再计算出每个小区间的面积Ai=f(xi)Δx。
最后,将所有小区间的面积之和进行求和运算,即可得到图形的面积:S = ∑(i=1到n) Ai = ∑(i=1到n) f(xi)Δx当n趋近于无穷大时,即Δx趋近于0,上述求和运算将趋近于定积分∫(a到b) f(x)dx。
因此,图形的面积可以表示为:S = ∫(0到1) x^2dx二、物理学中的应用在物理学中,定积分在描述物体的运动、力学、流体力学等方面有着广泛的应用。
1. 位移、速度与加速度设一个物体在某一时刻t的位移为s(t),那么在时间区间[t1,t2]内的位移可以通过定积分来计算:∫(t1到t2) s(t)dt类似地,速度和加速度可以分别表示为位移的一阶和二阶导数。
通过对速度和加速度的定积分,我们可以获得物体在某一时间区间内的位移和速度。
2. 力学工作与功力学工作可以表示为力F在位移s下的力学作用。
假设力在位移方向上的大小与位移成正比,那么力学工作可以通过定积分来进行计算。
工作W = ∫(a到b) F(x)dx功则表示物体由于力的作用而发生的位移,并可以通过力的积分来计算。
功A = ∫(a到b) F(x)ds三、经济学中的应用在经济学中,定积分在计算总量、均值等方面有着广泛的应用。
定积分的若干应用定积分是微积分中的重要概念之一,它可以用来计算曲线下面的面积、求解物理学中的质心、计算概率密度函数等。
下面将分别介绍定积分在这些应用中的具体应用。
一、计算曲线下面的面积定积分最基本的应用就是计算曲线下面的面积。
具体来说,如果我们要计算函数$f(x)$在区间$[a,b]$上的曲线下面的面积,可以使用下面的公式:$$\int_a^b f(x)dx$$其中,$\int$表示积分符号,$a$和$b$分别是积分区间的下限和上限,$f(x)$是被积函数。
这个公式的意义是将区间$[a,b]$分成无数个小区间,然后计算每个小区间内$f(x)$的面积,最后将所有小区间的面积相加得到整个区间$[a,b]$下面的面积。
二、求解物理学中的质心在物理学中,我们经常需要求解物体的质心。
如果物体是由一些离散的质点组成的,那么可以使用下面的公式求解质心:$$\bar{x}=\frac{\sum_{i=1}^n m_ix_i}{\sum_{i=1}^n m_i}$$其中,$\bar{x}$表示质心的位置,$m_i$表示第$i$个质点的质量,$x_i$表示第$i$个质点的位置。
但是,如果物体是由一些连续的质点组成的,那么就需要使用定积分来求解质心。
具体来说,如果物体的密度分布函数为$\rho(x)$,那么可以使用下面的公式求解质心:$$\bar{x}=\frac{\int_a^b x\rho(x)dx}{\int_a^b \rho(x)dx}$$其中,$a$和$b$分别是物体的起始点和终止点。
这个公式的意义是将物体分成无数个小区间,然后计算每个小区间内的质心位置和质量,最后将所有小区间的质心位置和质量相加得到整个物体的质心位置。
三、计算概率密度函数在概率论中,我们经常需要计算概率密度函数。
如果一个随机变量$X$的概率密度函数为$f(x)$,那么可以使用下面的公式计算$X$在区间$[a,b]$内的概率:$$P(a\leq X\leq b)=\int_a^b f(x)dx$$其中,$P(a\leq X\leq b)$表示$X$在区间$[a,b]$内的概率。
定积分及应用61887仅供学习与交流,如有侵权请联系网站删除 谢谢24第六章 定积分及其应用习题6-11、利用定积分的定义计算下列定积分:(1) ⎰-21 xdx ; 解:①令]2,1[)(-∈=C x x f ,因此]2,1[)(-∈R x f ,②取∆为]2,1[-的n 等分,此时有]31,)1(31[],[1ni n i x x i i i +--+-==∆-,n x i 3=∆=∆,.,,2,1n i =③取i i i ni x ∆∈+-==31ξ,于是 )3(33)31()(],[111∑∑∑===+-=+-=∆=∆ni n i n i i i i n n n n n i x f S ξξ 2)1(932++-=n n n , ④23293]2)1(93[lim ],[lim 20||||2 1 =+-=++-=∆=∞→→∆-⎰n n n S xdx n ξ.(2) ⎰10 dx e x . 解:①令]1,0[)(C e x f x ∈=,因此]1,0[)(R x f ∈,②取∆为]1,0[的n 等分,此时有],1[],[1ni n i x x i i i -==∆-, n x i 1=∆=∆,.,,2,1n i =仅供学习与交流,如有侵权请联系网站删除 谢谢24③取i i i ni x ∆∈==ξ,于是 ∑∑∑=====∆=∆n i n i n i n i ni i i e n n e x f S 11111)(],[ξξ, ④n n n ni n i n x e e e n e n S dx e 1110||||1 0 111lim )1(lim ],[lim --==∆=∞→=∞→→∆∑⎰ξ 11lim )1(11lim )1(01-=--=--=→∞→e e t e e n e t t n n .2、利用定积分的几何意义,说明下列等式:(1)1210 =⎰xdx ; 解:因x y 2=,1=x 及0=y 围成的三角形的面积为1,因此由定积分的几何意义知1210 =⎰xdx . (2)4110 2π=-⎰dx x ;解:因圆形122=+y x 的面积为π,那么122=+y x ,0=x 及0=y 围成的是圆形在第一象限的部分,其面积当然为4π,因此由定积分的几何意义知411 0 2π=-⎰dx x .(3)0sin =⎰-ππxdx ;仅供学习与交流,如有侵权请联系网站删除 谢谢24解:因x sin 为奇函数,那么由0=y ,x sin ,π≤≤x 0围成的面积为⎰π0 sin xdx ,而由0=y ,x sin ,0≤≤-x π围成的面积为⎰-0 sin πxdx ,由定积分的几何意义知,两个面积大小相等,符号相反,因此0sin =⎰-ππxdx . (4)⎰⎰=-2 0 2 2 cos 2cos πππxdx xdx . 解:因x cos 为偶函数,那么由0=y ,x cos ,20π≤≤x 围成的面积为⎰2 0 cos πxdx ,而由0=y ,x cos ,02≤≤-x π围成的面积为⎰-0 2cos πxdx ,由定积分的几何意义知,两个面积大小相等,符号相同,因此⎰⎰=-2 0 22 cos 2cos πππxdx xdx .3、讨论狄利克雷函数⎩⎨⎧=. ,0, ,1)(为无理数为有理数x x x D 在区间]1,0[上的可积性. 解:取∆为]1,0[的n 等分,此时有],1[],[1ni n i x x i i i -==∆-, n x i 1=∆=∆,.,,2,1n i = 取i ξ为i ∆中的某个有理数,i η为i ∆中的某个无理数,于是 11)1()(],[111∑∑∑=====∆⋅=∆=∆n i n i i n i i i nx x D S ξξ, 0)0()(],[11=∆⋅=∆=∆∑∑==ni i n i i i x x D S ηη,由于1],[lim =∆∞→ξS n ,0],[lim =∆∞→ηS n ,于是)(x D 在]1,0[上的不可积.仅供学习与交流,如有侵权请联系网站删除 谢谢244、用定积分表示下列极限: (1) ∑=∞→+n i n in n 122lim ; 解:⎰∑∑∑+=∆=+=+=∞→=∞→=∞→1 0 211212211)(lim 1)(11lim lim dx x x f n ni i n n n i i i n n i n n i n ξ. 其中:①]1,0[11)(2C x x f ∈+=,]1,0[)(R x f ∈, ②取∆为]1,0[的n 等分,此时有],1[],[1ni n i x x i i i -==∆-, n x i 1=∆=∆,.,,2,1n i = ③取i i i ni x ∆∈==ξ,于是 n ni x f S n i n n i i i 1)(11lim )(],[121∑∑=∞→=+=∆=∆ξξ, ④∑∑⎰=∞→=∞→+=+=+n i n n i n i n n nni dx x 122121 0 2lim 1)(11lim 11. (2) ∑=∞→+n i n i n 11lim ; 解:⎰∑∑∑+=∆=+=+=∞→=∞→=∞→1 0 11111)(lim 111lim 1lim dx x x f nni i n n i i i n n i n n i n ξ. 其中:①]1,0[11)(C xx f ∈+=,]1,0[)(R x f ∈, ②取∆为]1,0[的n 等分,此时有],1[],[1ni n i x x i i i -==∆-, n x i 1=∆=∆,.,,2,1n i =仅供学习与交流,如有侵权请联系网站删除 谢谢24③取i i i ni x ∆∈==ξ,于是 nni x f S n i n n i i i 111lim )(],[11∑∑=∞→=+=∆=∆ξξ, ④∑∑⎰=∞→=∞→+=+=+n i n n i n i n nni dx x 111 0 1lim 111lim 11.习题6-21、估计下列积分的值: (1) ⎰-41 2)1(dx x ; 解:1)(2-=x x f ,]4,1[∈∀x ,1612≤≤x ,15102≤-≤x ,那么⎰-⋅<-<-⋅41 2)14(15)1()14(0dx x , ∴⎰<-<41 245)1(0dx x . (2) ⎰+45 4 2)cos 1(ππdx x ; 解:x x f 2cos 1)(+=,]45,4[ππ∈∀x ,21cos 1≤≤-x , 1cos 02≤≤x , 2cos 112≤+≤x ,那么 )445(2)cos 1()445(145 42ππππππ-⋅<+<-⋅⎰dx x , ∴ππππ2)cos 1(45 4 2<+<⎰dx x .仅供学习与交流,如有侵权请联系网站删除 谢谢2431解:x x x f arctan )(=,]3,31[∈∀x ,3arctan 6ππ≤≤x , 33arctan 36ππ≤≤x x ,那么 )313(33arctan )313(363 31 -⋅<<-⋅⎰ππxdx x , )13(3arctan )311(63 31 -<<-⋅⎰ππxdx x ,∴32arctan 9331 ππ<<⎰xdx x .(4) ⎰-0 2 2dx e x x .解:41)21(22)(---==x x x ee xf ,]2,0[∈∀x ,49)21(02≤-≤x , 24841)21(412=≤--≤-x ,241)21(412e e e x ≤≤---那么 )02()02(22 0 412-⋅<<-⋅⎰--e dx e e x x ,22 0 41222e dx e ex x <<⎰--, ∴410 2 2222---<<-⎰e dx e e x x .2、比较下列各题中的两个积分的大小:(1) ⎰=1 0 21dx x I ,⎰=10 42dx x I ; 解:由于24x x ≤,]1,0[∈x ,所以11 0 21 0 42I dx x dx x I =<=⎰⎰.仅供学习与交流,如有侵权请联系网站删除 谢谢24(2) ⎰=2 1 21dx x I ,⎰=2 142dx x I ; 解:由于42x x ≤,]2,1[∈x ,所以22 1 42 1 21I dx x dx x I =<=⎰⎰.(3) ⎰=4 3 1ln xdx I ,⎰=43 32)(ln dx x I ; 解:由于3)(ln ln 1x x ≤<,]4,3[∈x ,所以24 334 3 1)(ln ln I dx x xdx I =<=⎰⎰.(4) ⎰=1 0 1xdx I ,⎰+=10 2)1ln(dx x I ; 解:由于x x ≤+)1ln(,]1,0[∈x ,所以11 01 0 2)1ln(I xdx dx x I =<+=⎰⎰.(5) ⎰=1 0 1dx e I x ,⎰+=10 2)1(dx x I . 解:由于x e x ≤+1,]1,0[∈x ,所以11 01 0 2)1(I dx e dx x I x =<+=⎰⎰.3、设)(x f 及)(x g 在],[b a 上连续)(b a <,证明:(1)若在],[b a 上0)(≥x f ,且0)(≡/x f ,则0)( >⎰b a dx x f ; 证明:因)(x f 在],[b a 上连续,0)(≥x f ,且0)(≡/x f ,则),(0b a x ∈∃..t s 0)(0>x f ,这样0>∃δ..t s)(21)(0x f x f >,],[),(00b a x x x ⊂+-∈δδ, 那么⎰⎰⎰⎰++--++=b x x x x a b a dx x f dx x f dx x f dx x f 0000)()()()(δδδδ 0)(2)(210)(21000 000>=⋅=++≥⎰+-x f x f dx x f x x δδδδ.仅供学习与交流,如有侵权请联系网站删除 谢谢24(2)若在],[b a 上0)(≥x f ,且0)( =⎰ba dx x f ,则在],[b a 上0)(≡x f ; 证明:由(1)显然.(3)若],[b a 在上)()(x g x f ≤,且⎰⎰=b a b a dx x g dx x f )()(,则若],[b a 在上)()(x g x f ≡.证明:由条件知在],[b a 上0)()()(≥-=x f x g x F ,0)(≥x F ,且0)( =⎰ba dx x F ,由(2)知在],[b a 上0)(≡x F ,即)()(x g x f ≡.习题6-31、计算下列各导数: (1) ⎰+321x dt t dx d ; 解:62232 0213)(1313x x x x dt t dx d x +=+=+⎰. (2) ⎰+42 21x x tdt dx d ; 解:48322243 21214)(12)(14142x x x x x x x x t dt dx d x x +-+=+-+=+⎰. (3)⎰x x dt t dxd cos sin 2)cos(π. 解:x x x x dt t dx d x xcos ])(sin cos[sin ])(cos cos[)cos(22cos sin 2⋅-⋅-=⎰πππ.仅供学习与交流,如有侵权请联系网站删除 谢谢242、计算下列各积分: (1) 2)2()3(23023 0 2a a x x dx x x aa -=-=-⎰; (2) 82124632312223132)313()1(3333321332 1 42==⋅-⋅=⋅-=-=+⎰x x dx x x ; (3) 67)2132()232()1(012230 1-=+-=+=+⎰x x dx x x ; (4) 631 arctan arctan 1010 31 2π-=-==+⎰x x dx ; (5) 621 arcsin arcsin 121021 0 2π===-⎰x x dx ; (6) a a a x a x a dx a a 33arctan 1arctan 1303 0 22π===+⎰; (7) 621 arcsin 2arcsin 41010 2π===-⎰x x dx ; (8)21)arctan 2()123(12330130 1 220 1 224π+=+=++=+++---⎰⎰x x dx x x dx x x x ;24(9) 1|1|ln 1212 1 -=+=+------⎰e e x dx xdx ;(10) 41)(tan )1(sec tan 404240 2πθθθθθθπππ-=-=-=⎰⎰d d ;(11) dx x dx x dx x ⎰⎰⎰-=ππππ2 02 0sin sin |sin |422cos cos 20=+=+-=πππθθ;(12) dx x f ⎰2 0)(,其中⎩⎨⎧≥<=.1 ,,1 ,)(2x x x x x f解:617)3138(2132)(2131022121 02 0=-+=+=+=⎰⎰⎰x x dx x dx x dx x f .3、求下列极限:(1)1lim 1lim lim 222200000====→→→⎰⎰x x x x t x x t x e e dt e dx d x dt e ;(2)32022003202200320220sin sin sin 2lim sin )sin (lim sin )sin (lim x x dt t x dt t t dx d dt t dx d dtt t dt t xx x x x x x x ⎰⎰⎰⎰⎰→→→==; 322030203020220cos 3sin lim 2)(sin sin lim 2sin sin lim sin lim 2x x x x dxd dt t dx d x dt t x x x x x xx x →→→→===⎰⎰2432cos 1lim sin lim 3230220==→→x x x x x .4、设⎰=xtdt x f 0sin )(,求)0(f ',)4(πf '.解:显然x x f sin )(=',于是0)0(='f ,224sin )4(=='ππf .5、求由方程0cos 0=+⎰⎰xyt tdt dt e 所确定的隐函数)(x y y =的导数dxdy . 解:方程两端对x 求导,得0cos =+x dx dy e y ,所以y ex dx dy cos -=.6、求函数⎰-=xt dt te x f 02)(的极值.解:令0)(2=='-x xe x f ,得0=x ,由于当0<x 时,0)(<'x f ,当0>x 时,0)(>'x f , 所以函数有极小值0)0(=f .7、设)(x f 在],[b a 上连续,在),(b a 内可导,且0)(<'x f ,证明函数⎰-=xa dt t f ax x F )(1)( 在),(b a 内的二阶导数0)(<''x F .题目有误:例如,设x x f -=)(,01)(<-='x f ,有2)(1)(0x dt t x x F x -=-=⎰,21)(-='x F ,0)(=''x F .习题6-4241、计算下列定积分:(1)ππππππππππ333)3cos()3()3sin()3sin(+-=++=+⎰⎰x x d x dx x02121)33cos()3cos(=-=+++-=ππππ.(2)16921)49(81)49()49(41)49(122123123=+-=++=+---⎰⎰x x x d x dx .(3)31cos 31cos cos cos sin 20322202=-=-=⎰⎰πππϕϕϕϕϕϕd d .(4)2)2sin 412(22cos 1sin )cos 1(022πθθθθθθθθππππ=-=-==-⎰⎰⎰d d d .(5)232)2(31)2(22122232202222=--=---=-⎰⎰x x d x dx x x .(6)⎰⎰⎰======-==2022022sin cos 1222sin 41cos sin 1ππtdt tdt t dx x xtx tdt dx16)4sin 41(81)4cos 1(812020πππ=+=-=⎰t t dt t .24(7)61)315(81)5(81 451331324554112=--=--=====-⎰⎰-=-=-t t dt t xxdx x t t x . (8)32ln 2223ln 22)]1ln([212 12121412+=-=+-=+=====+⎰⎰==t t t tdt x dx x t t x .(9))1(2121211110210222-----=-==⎰⎰e e dt e dt te t t t.(10))12ln 1(2ln 12ln 1)ln 1(ln 1212121-+=+=++=+⎰⎰x xx d x x dx.(11)4)2arctan(1)2()2(5412122122π=+=+++=++------⎰⎰x x x d x x dx .(12)32)sin 32(sin sin )sin 21(2cos cos 22322222=-=-=---⎰⎰ππππππx x x d x xdx x .(13)34)(cos 34cos cos 2cos cos 22320223=-=-=-⎰⎰-ππππx x d x dx x x . (14)⎰⎰⎰==+202cos 22cos 22cos 1πππxdx dx x dx x22sin 2220==πx .242、利用奇偶性计算下列定积分: (1)⎰⎰⎰=-=--210221022212122)(arcsin )(arcsin 21)(arcsin 21)(arcsin x d x dx x x dx x x324)6(32)21(arcsin 32)(arcsin 323332103ππ====x . (2)012sin 552432=++⎰-dx x x x x .3、证明下列各题:(1) ⎰⎰+=+xx x dx x dx 1121211,)0(>x ; 证明:⎰⎰⎰⎰⎰+=+=+=+-===+=x x x x x t x x dx t dt tdt t t dt t x dx 1121121122112211211)1(11)1(1)1(1.(2) ⎰⎰-=-11)1()1(dx x x dx x x m n nm ;证明:⎰⎰⎰⎰-=-=--===--=1100111)1()1()1()1(dx x x dt t t dt t t dx x x m n n m n m xt nm .(3) ⎰⎰=2010010cos 2cos ππxdx xdx .证明:因⎰⎰⎰=--===-=20100210210cos )(cos cos ππππππtdt dt t xdx xt ,所以⎰⎰⎰⎰=+=2010210201010cos 2cos cos cos πππππxdx xdx xdx xdx .24证明:⎰⎰⎰⎰==--===---=2010221022102010sin 2sin )2(cos cos ππππππππtdt tdt dt t xdx tx⎰⎰==20102010cos 2cos 2ππxdx tdt .证明:⎰⎰⎰======-2010221010cos 2cos cos πππππxdx x xd xdx 偶函数周期.习题6-51、计算下列定积分:(1)1)1(1011011=--=-=-==⎰⎰⎰e e e e dx e xe xde dx xe x x x x x .(2)eeeeex e xdx x x xdx xdx x 12211212142121ln 21ln 21ln -=-==⎰⎰⎰)1(4141421222+=+-=e e e .(3)πππππππ2sin 2cos cos cos sin 2020202020-=+-=+-=-=⎰⎰⎰x xdx x x x xd xdx x .(4)2ln 33|cos |ln 33tan tan tan cos 30303030302-=+=-==⎰⎰⎰πππππππx xdx x x x xd x xdx .24(5)42ln 842ln 82ln 2ln 2ln 4141414141-=-=-==⎰⎰⎰x xdx x x x d x dx x x.(6) ⎰⎰⎰+-==10221210210121arctan 21arctan 21arctan dx x x x x xdx xdx x 214)41(218)arctan (2181-=--=--=ππππx x .(7) ⎰⎰⎰-==12202202202sin 2sin sin cos xdx e x e x d e xdx e x xxx πππ⎰⎰-+=+=12202202cos 4cos 2cos 2xdx e x e e x d e e x xxππππ,∴)2(51cos 202-=⎰ππe xdx e x .(8)⎰⎰-=eeedx x x x dx x 111)cos(ln )sin(ln )sin(ln⎰⎰-+-=--=ee edxx e e dx x x x e 111)sin(ln 11cos 1sin )sin(ln )cos(ln 1sin∴)11cos 1sin (21)sin(ln 1+-=⎰e e dx x e.(9)⎰⎰+-+=+2121211)1ln()1ln(dxx x x x dx x)2ln 13ln 2(2ln 3ln 2)]1ln([2ln 3ln 221+----=+---=x x1427ln 12ln 23ln 3-=--=.(10)⎰⎰⎰-======πππ0cos 2sin 2sin 22t td tdt t dx x x t tx24πππππ2sin 22cos 2cos 2000=+=+-=⎰t tdt t t .(11)1)1(ln ln 111=--=-=⎰⎰e e dx x x xdx eee,12)11(1ln ln 111111-=--=-=⎰⎰e e e dx x x xdx ee e , ∴)11(2ln ln |ln |1111e xdx xdx dx x e ee e -=+-=⎰⎰⎰.2、利用递推公式计算: (1)⎰=π100100sin xdx x J ;解:由于⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,于是⎰⎰⎰===2 0100 0100100100sin sin2sinπππππxdx xdx xdx x J2!!100!!992!!100!!992πππ⋅=⋅⋅=.(2)⎰-=10299299)1(dx x I .解:2!!100!!99cos )1(20100sin 1299299ππ⋅=====-=⎰⎰=xdx dx x I tx .习题6-61、判别下列各广义积分的收敛性,如果收敛计算广义积分的值:(1)⎰+∞13x dx ;24解:由于13>=p ,01>=a ,故积分⎰⎰+∞+∞=a px dx x dx 13收敛,且 211113=-==-∞+∞+⎰⎰p a x dx x dx p a p . (2)⎰+∞13xdx ; 解:由于131<=p ,01>=a ,故积分⎰⎰+∞+∞=a p x dx x dx 13发散.(3)⎰+∞-04dx e x ;解:4141404=-=+∞∞+-⎰xxedx e,积分收敛.(4)⎰+∞-0sin xdx e x ;解:由于x xd e x e x d e x xd e x x x x ⎰⎰⎰------=-=cos cos cos sinx xd e x e x e x d e x e x x x x x ⎰⎰-------=--=sin sin cos sin cos ,有C x x e x xd e x x++-=--⎰)cos (sin 21sin ,于是21)cos (sin 21sin 0=+-=+∞-∞+-⎰x x e xdx e x x ,积分收敛.(5) ⎰+∞∞-++542x x dx;解:πππ=--=+=+++=++∞+∞-+∞∞-+∞∞-⎰⎰)2(2)2arctan(1)2()2(5422x x x d x x dx ,积分收敛.24(6) ⎰-121xxdx ;解:1)1(011)1(211102102212=--=--=---=-⎰⎰x xx d x xdx,积分收敛.(7) ⎰-203)1(x dx;解:由+∞=-=-=-=-+++→-→-→⎰⎰)2121(lim )1(21lim )1(lim )1(2010201030103εεεεεεx x dx x dx , 知⎰-103)1(x dx 发散,故积分⎰-203)1(x dx发散. (8) ⎰-211x xdx; 解:38)131(2)3(2)1(211131021121212=+=+=+====-=-⎰⎰⎰-=+=t t dt t x xdx x xdx x t t x ,积分收敛.2、当k 为何值时,广义积分⎰+∞2)(ln kx x dx收敛?当k 为何值时,这广义积分发散?当k 为何值时,这广义积分取得最小值? 解:⎪⎩⎪⎨⎧≠--=-=-===---∞+∞+⎰⎰.1 ],)2(ln )[(ln 11)(ln 11,1 ,2ln ln ln ln ln ln )(ln ln )(ln 1121222k b k x kk b x x x d x x dxk k b k b k k24(1)当1=k 时,+∞=-=+∞→+∞⎰)2ln ln ln (ln lim )(ln 2b x x dxb k ,积分发散;(2)当1<k 时,+∞=--=--+∞→+∞⎰])2(ln )[(ln 11lim )(ln 112k k b k b kx x dx ,积分发散;(3)当1>k 时,1)2(ln ])2(ln )[(ln 11lim )(ln 1112-=--=---+∞→∞+⎰k b k x x dx k kk b k ,积分收敛,作1)2)(ln 1()(--=k k k ϕ,令2ln ln )2)(ln 1()2(ln )(11---+='k k k k ϕ0)2ln ln 11(2ln ln )2(ln 1=+-=-k k得2ln ln 110-=k ,当0k k <时,0)(>'x ϕ, 当0k k >时,0)(<'x ϕ,可见当0k k =时,)(k ϕ取得最大值,于是当2ln ln 110-==k k 时,积分)(1)(ln 2k x x dx k ϕ=⎰+∞取得最小值.3、用Г-函数表示下列积分,并计算积分值[已知π=Γ)21(](1) !)1(01)1(0m m dx e x dx e x x m x m =+Γ==⎰⎰+∞--++∞-, (m 为自然数);(2) 2)21(21)121()23(01230π=Γ=+Γ=Γ==⎰⎰+∞--+∞-dx e xdx e x x x;24(3) 1!221)3(2121022522=⋅=Γ=====⎰⎰+∞-+∞∞-==-ds e s dx ex s x s xdx ds x.习题6-71、求由下列曲线所围图形的面积: (1)x y =,x y =;解:由 ⎩⎨⎧==xy x y , 得⎩⎨⎧==00y x 或⎩⎨⎧==11y x ,612132232)(1022310 =-=⎥⎦⎤⎢⎣⎡-=-=⎰x x dx x x A .(2)x e y =,0=x ,e y =;解:1)()(1010 =-=-=⎰x x e ex dx e e A .(3)23x y -=,x y 2=;解:由 ⎩⎨⎧=-=232x y x y , 得⎩⎨⎧-=-=63y x 或⎩⎨⎧==21y x ,332935)33(]2)3[(132310 2=+=--=--=-⎰x x x dx x x A .(4)22x y =,822=+x y (两部分都要计算);解:由 ⎪⎩⎪⎨⎧=+=82222x y x y , 得⎩⎨⎧=-= 22y x 或⎩⎨⎧==22y x ,24342)68222arcsin 4()28(223222221+=--+=--=--⎰πx x x x dx x x A , 346)342(82-=+-=πππA .(6)xy 1=与x y =,2=x ; 解:2ln 23212ln 2)ln 2()1(21221-=--=-=-=⎰x x dx x x A .(7)x e y =,x e y -=,1=x ;解:2)()(11010-+=+=-=---⎰e e e e dx e e A x x x x .(8)x y ln =,0=x ,a y ln =,b y ln =(0>>a b ). 解:a b e dy e A b ayba y -===⎰ln ln ln ln .2、求由下列各题中的曲线所围图形绕指定轴旋转的旋转体的体积:(1)3x y =,0=y ,2=x 绕x 轴、y 轴; 解:712872726202ππππ====⎰⎰x dx x dx y V x , 564)534()4()2(835832822πππππππ=-=-=-⋅=⎰⎰y y dy y dy x V y .(2)2x y =,2y x =绕y 轴;2410352)52()()(1521412221πππππππππ=-=-=-=-=⎰⎰y y dy y y dy x x V y .(3)16)5(22=-+y x 绕x 轴;解:21165x y -+=,22165x y --=,44≤≤-x ,24424422211601620)(ππππ=-=-=⎰⎰--dx x dx y y V x .(4)222a y x =+绕b x =(0>>a b ).解:221y a x --=,222y a x -= ,a y a ≤≤-,dy y a b dy x b dy x b dV y 2222214)()(-=---=πππ, 222224ππb a dy y a b V aa =-=⎰-.3、用平面截面积已知的立体体积公式计算下列各题中立体的体积:(1)以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为H 的正劈锥体.解:y H x A 221)(⋅=22x R H -=,R x R ≤≤-⎰⎰---==R RR R dx x R H dx x A V 22 )(2)( H R 22π=.(2)半径为R 的球体中高为H )(R H <的球缺.24解:)()(22y R y A -=π,R y H R ≤≤-,])([3)()(332 22 H R R H R dy y R dx x A V RH R R H R ---=-==⎰⎰--πππ)3(3232HR H H RH -=-=πππ.(3)底面为椭圆12222≤+b y a x 的椭圆柱体被通过x 轴且与底面夹角α(20πα<<)的平面所截的劈形立体.解:αtan 1121)(2222a x b a x b x A -⋅-= ),1(tan 2222a x b -⋅=α )(a x a ≤≤-, ∴ααtan 32)1(tan 2)(2 222 ab dx a x b dx x A V a a a a =-==⎰⎰--.习题6-81、已知边际成本为xx C 257)(+=',固定成本为1000,求总成本函数.解:因x x t t dt tdt t C C x C x x x 507)507()257()()0()(00 0 +=+=+='=-⎰⎰, 所以x x x x C x C 5071000507)0()(++=++=.2、已知边际收益bx a x R -=')(,求收益函数.24解:20 0 2)()()0()()(x bax dt bt a dt t R R x R x R x x-=-='=-=⎰⎰.3、已知边际成本为x x C 2100)(-=',求当产量由20=x 增加到30=x 时,应追加的成本数. 解:应追加的成本数为500)100()2100()()20()30(3020230203020=-=-='=-⎰⎰x x dx x dx x C C C .4、已知边际成本为x x C 430)(+=',边际收益为x x R 260)(-=',求最大利润(设固定成本为0). 解:2020230)230()430()()0()()(x x t t dt t dt t C C x C x C xx x +=+=+='=-=⎰⎰,202060)60()260()()0()()(x x t t dt t dt t R R x R x R xx x-=-=-='=-=⎰⎰,于是x x x C x R x L 303)()()(2+-=-=,令0306)(=+-='x x L ,得5=x ,而06)5(<-=''L , 所以最大利润为7553053)5(2=⨯+⨯-=L .5、某地区居民购买冰箱的消费支出)(x W 的变化率是居民总收入x的函数,xx W 2001)(=',当居民收入由4亿元增加至9亿元时,购买冰箱的消费支出增加多少? 解:消费支出增加数为01.01001100200)()4()9(949494===='=-⎰⎰xx dx dx x W W W (亿元).246、某公司按利率%10(连续复利)贷款100万元购买某设备,该设备使用10年后报废,公司每年可收入b 万元. (1) b 为何值时,公司不会亏本?(2) 当20=b 万元时,求内部利润(应满足的方程); (3) 当20=b 万元时,求收益的资本价值. 解:已知利率1.0=r ,10=T 年,b t P =)(,(1)公司保本的条件是:10年总收入的现值=100万元,即)1(10)(1001101.00----===⎰⎰e b dt be dt e t P t Trt,82.151101≈-=-e b , 所以,当82.15≈b 万元时,公司不会亏本; (2)设内部利润为μ,那么)1(2020)(100101000μμμμ----===⎰⎰e dt e dt e t P t T t,μμ1015--=e ,01510=-+-μμe ,%94.151594.0=≈μ, 所以,当20=b 万元时,内部利润为%94.15;plot(5*x+exp(-10*x)-1,x=0.15936..0.15937);(3) 收益的资本价值=收益流的现值-投入资金的现值,即100)1(20010020100)(1101.00--=-=----⎰⎰e dt e dt e t P t Trt42.262001001≈-=-e (万元).。