用公式解法解方程
- 格式:doc
- 大小:32.50 KB
- 文档页数:2
如何使用公式解决数学方程式数学方程式是数学中的重要概念之一,它描述了数学关系并被广泛应用于各个领域。
为了解决数学方程式,我们可以运用公式来辅助我们的计算和推导。
在本文中,我将介绍如何使用公式来解决各种数学方程式,并给出一些实际的例子。
一、一元一次方程一元一次方程是最简单的方程类型之一,形式为:ax + b = 0。
其中,a和b都是已知的数字,x是未知变量。
为了求解该方程,我们可以使用以下公式:x = -b/a通过将已知的数值代入公式,我们可以得到方程的解。
下面是一个例子:例子1:解方程3x + 5 = 0根据公式,我们有:x = -5/3因此,方程的解是x = -5/3。
二、一元二次方程一元二次方程是一种更复杂的方程类型,形式为:ax^2 + bx + c = 0。
同样地,a、b和c是已知的数字,x是未知变量。
为了求解该方程,我们可以使用以下公式:x = (-b ± √(b^2 - 4ac))/(2a)公式中的±表示两个可能的解,取决于方程的判别式(b^2 - 4ac)的正负。
下面是一个例子:例子2:解方程2x^2 + 5x - 3 = 0根据公式,我们有:x = (-5 ±√(5^2 - 4 * 2 * -3))/(2 * 2)x = (-5 ± √(25 + 24))/4x = (-5 ± √49)/4x = (-5 ± 7)/4因此,方程的解是x = (-5 + 7)/4和x = (-5 - 7)/4,即x = 1和x = -3/2。
三、其他类型方程除了一元一次方程和一元二次方程,数学中还存在其他类型的方程,如多项式方程、指数方程和对数方程等。
这些方程的解法通常涉及更复杂的公式和计算方法。
例如,解多项式方程可以运用综合除法、求根公式等方法,解指数方程可以运用对数等方法。
具体的解法略有不同,需要根据方程的特点来决定使用何种公式和方法。
解方程公式1. 引言解方程是数学中常见的问题之一,它要求找到一个或多个使得方程式成立的未知数的值。
本文将介绍解一元一次方程、一元二次方程和一般的高次方程的公式及求解方法。
同时还会涉及到方程的根、判别式的概念,并通过具体的例子来说明。
2. 一元一次方程一元一次方程是指只有一个未知数,并且未知数的最高次数是1的方程。
它的一般形式可以表示为:ax+b=0。
解这类方程的公式为:$x = -\\frac{b}{a}$。
具体求解时,只需要将方程中的系数a和b带入公式即可求得未知数x的值。
例如,求解方程3x+4=0:将a=3和b=4代入公式,得到:$x = -\\frac{4}{3}$。
3. 一元二次方程一元二次方程是指只有一个未知数,并且未知数的最高次数是2的方程。
它的一般形式可以表示为:ax2+bx+c=0。
解这类方程的公式为:$x = \\frac{-b \\pm \\sqrt{b^2 - 4ac}}{2a}$。
其中,$\\pm$表示两个解,分别对应方程的两个根。
根的个数和判别式的符号有关。
判别式的计算公式为:D=b2−4ac。
•当D>0时,方程有两个不相等的实数根;•当D=0时,方程有两个相等的实数根;•当D<0时,方程没有实数根,但有两个共轭复数根。
例如,求解方程2x2−5x+2=0:将a=2,b=−5和c=2代入公式,计算判别式:$D = (-5)^2 - 4 \\cdot 2\\cdot 2 = 1$。
因为D>0,所以方程有两个不相等的实数根。
代入公式,解得:$x_1 = \\frac{-(-5) + \\sqrt{1}}{2 \\cdot 2} = \\frac{5 + 1}{4} = \\frac{3}{2}$,$x_2 = \\frac{-(-5) - \\sqrt{1}}{2 \\cdot 2} = \\frac{5 - 1}{4} = 1$。
4. 高次方程高次方程是指未知数的最高次数大于2的方程。
一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。
解方程的公式范文方程的解是指能够满足方程的未知数的值。
解方程的过程就是通过一系列的运算和推导,找到使方程成立的未知数的值。
解方程的方法有多种,下面将介绍几种常见的解方程的公式。
一元一次方程的解法:一元一次方程是指只包含一个未知数和一次幂的方程。
一元一次方程的一般形式为ax + b = 0,其中a和b是已知数且a不等于0。
解一元一次方程的公式为x=-b/a。
这个公式是通过将方程移项,将未知数的系数和常数项分别除以未知数的系数得到的。
一元一次方程的解法示例:解方程2x-3=5,将常数项-3移至等号右侧得到2x=8,然后除以未知数的系数2得到x=4,所以方程的解为x=4一元二次方程的解法:一元二次方程是指具有未知数的平方的一次方程。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c是已知数且a不等于0。
解一元二次方程的公式为x = (-b ± √(b^2 - 4ac))/(2a)。
这个公式是通过将方程移项,然后将未知数的系数和常数项代入求得的。
一元二次方程的解法示例:解方程x^2+3x-4=0,代入a=1,b=3,c=-4得到x=(-3±√(3^2-4*1*(-4)))/(2*1),计算可得x=1和x=-4,所以方程的解为x=1和x=-4二元一次方程的解法:二元一次方程是指包含两个未知数和一次幂的方程。
二元一次方程的一般形式为ax + by = c和dx + ey = f,其中a、b、c、d、e和f是已知数且ae - bd不等于0。
解二元一次方程的公式为x = (ce - bf)/(ae - bd)和y = (af - cd)/(ae - bd)。
这个公式是通过Cramer法则求得的。
二元一次方程的解法示例:解方程3x-2y=5和2x+y=7,代入a=3,b=-2,c=5,d=2,e=1,f=7得到x=(5*1-(-2)*7)/(3*1-(-2)*2)=(5+14)/(3+4)=19/7,y=(3*7-(-2)*5)/(3*1-(-2)*2)=(21+10)/(3+4)=31/7,所以方程的解为x=19/7和y=31/7以上是解一元一次方程、一元二次方程和二元一次方程的常见公式。
完全平方公式解法完全平方公式是解决一元二次方程的一种方法,它可以帮助我们求解方程的根。
所谓一元二次方程,就是形如ax^2+bx+c=0的方程,其中a、b、c是已知的实数,x是未知数。
完全平方公式的表达式是x=(-b±√(b^2-4ac))/(2a),其中±表示两个解,√表示开平方,b^2-4ac是判别式。
下面我们来详细介绍一下完全平方公式的使用方法。
我们需要确定方程中的a、b、c的值。
这些值可以由题目中直接给出,或者通过观察方程得到。
接下来,我们计算判别式b^2-4ac的值。
判别式的值可以判断方程的解的情况:如果判别式大于0,说明有两个不相等的实数解;如果判别式等于0,说明有一个实数解;如果判别式小于0,说明没有实数解,只有复数解。
然后,我们根据判别式的值来求解方程的根。
如果判别式大于0,我们可以使用完全平方公式的正负两个根来求解;如果判别式等于0,我们只需要使用完全平方公式的一个根来求解;如果判别式小于0,我们需要使用复数来表示方程的根。
我们将求解出来的根带入原方程,验证我们的答案是否正确。
下面我们通过一个例子来演示一下完全平方公式的使用方法。
例子:解方程x^2-6x+8=0。
我们可以看出a=1,b=-6,c=8。
接下来,计算判别式b^2-4ac的值,即(-6)^2-4*1*8=36-32=4。
由于判别式大于0,我们可以使用完全平方公式来求解。
根据完全平方公式,我们有x=(-(-6)±√4)/(2*1)。
化简得到x=(6±2)/2,即x=4或x=2。
我们将求解出来的根带入原方程验证一下。
将x=4带入方程得到4^2-6*4+8=0,等式成立;将x=2带入方程得到2^2-6*2+8=0,等式成立。
因此,我们得出结论,方程x^2-6x+8=0的解是x=4和x=2。
通过以上例子,我们可以看到完全平方公式简化了一元二次方程的求解过程,提高了求解的效率。
掌握了完全平方公式,我们可以更轻松地解决一元二次方程的问题。
一元二次方程解法的公式一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知数,x为未知数。
解一元二次方程的方法有很多种,其中最常用的方法是使用公式法。
公式法是指通过求解一元二次方程的解法公式来求解方程的根。
这个公式叫做“二次方程求根公式”,也叫做“根公式”。
二次方程求根公式是这样的:x = (-b ± √(b²-4ac)) / 2a其中,±表示两个解,√表示开方,b²-4ac叫做判别式。
这个公式的意义是,对于任意一个一元二次方程ax²+bx+c=0,我们可以通过这个公式求出它的两个解x1和x2。
具体来说,我们需要先计算出判别式的值,如果判别式大于0,则方程有两个不相等的实数根;如果判别式等于0,则方程有一个实数根;如果判别式小于0,则方程没有实数根,但有两个共轭复数根。
接下来,我们可以根据公式计算出方程的两个解。
需要注意的是,如果判别式小于0,则需要使用复数的运算方法来计算解。
例如,对于方程2x²+3x-5=0,我们可以先计算出判别式的值:b²-4ac = 3²-4×2×(-5) = 49因为判别式大于0,所以方程有两个不相等的实数根。
接下来,我们可以使用公式计算出方程的两个解:x1 = (-3 + √49) / 4 = 0.5x2 = (-3 - √49) / 4 = -2因此,方程2x²+3x-5=0的两个解分别为0.5和-2。
二次方程求根公式是解一元二次方程的重要工具之一。
通过这个公式,我们可以快速、准确地求解一元二次方程的根,从而解决各种实际问题。
初中数学解方程所有公式大全数学解方程是初中数学的重要内容之一,其中常见的解方程方法有等式的加减法、乘除法、开方法、配方法以及代入法等。
下面是初中数学解方程常用的公式总结:1.一元一次方程的解法:-加减法:对方程两边同加或同减一个数,使方程的其中一边变为0,然后化简即可得到解。
-乘除法:对方程两边同乘或同除一个数,使方程的其中一边的系数变为1,然后化简即可得到解。
2.一元二次方程的解法:-因式分解法:将方程进行因式分解,得到两个一次因式的乘积,令每个因式等于0,然后解得一次方程,即可得到解。
- 公式法:利用求根公式,即一元二次方程的解公式:x = (-b±√(b^2-4ac))/(2a),其中a、b、c分别为一元二次方程的系数,然后求得x的值。
3.线性方程组的解法:-相加减法:将线性方程组中的两个方程相加或相减,消去一个未知数,然后求解另一个未知数,最后代入求得解。
-消元法:通过变形或倍增一方程中的系数,使方程的其中一未知数的系数相同,然后相减消去一个未知数,求解另一个未知数,最后代入求得解。
-代入法:将一些未知数的表达式代入另一个方程,得到一个只含有一个未知数的一元方程,然后求解该方程,最后代回求得解。
4.分式方程的解法:-通分法:将分式方程的分母通分,得到一个通分的方程,然后将分子相等的等式的分子相减,消去分母,求解得到未知数的值。
-代换法:将分式方程中的未知数用一个代换量表示,得到一个含有代换量的方程,然后求解代换量的值,最后代回求得解。
5.开方方程的解法:-消去等号两侧的平方根:对方程两边进行等号两侧的平方操作,消除方程中的平方根,然后化简方程进行求解。
-双边开方:对方程两边同时开方,得到一个新方程,然后化简方程进行求解。
-代入法:将方程中的开方量代入另一个方程,得到一个只含有一个未知数的一元方程,然后求解该方程,最后代回求得解。
一元二次方程解法公式法教案公式法解二元一次方程教案一元二次方程解法公式法教案一、教学目标1. 理解一元二次方程及其解的概念;2. 学习使用求根公式求解一元二次方程;3. 掌握运用求根公式解一元二次方程的方法。
二、教学重难点1. 了解一元二次方程解的概念;2. 理解求根公式的意义和用法。
三、教学准备1. 教师准备:课件、黑板、粉笔、教材、习题册等;2. 学生准备:书本、笔等。
四、教学过程Step 1 引入新知1. 教师通过实例引导学生了解一元二次方程及解的概念,例如:解方程x^2 - 3x + 2 = 0,学生根据因式分解法的知识可以得到(x-2)(x-1)=0,从而得到方程的解x=2和x=1。
教师提问:如何找到方程的解?是否有更简单的方法?引导学生思考:是否可以通过某种公式直接求解?Step 2 介绍求根公式1. 教师出示一元二次方程ax^2 + bx + c = 0的求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)解释公式中的每个符号的含义。
Step 3 求解实例1. 教师通过实例详细解释如何使用求根公式求解一元二次方程。
例1:求解方程x^2 - 3x + 2 = 0。
解:根据公式,a=1,b=-3,c=2。
带入公式:x = (-(-3) ± √((-3)^2 - 4×1×2)) / (2×1)= (3 ± √(9-8)) / 2= (3 ± 1) / 2= 2或1方程的解为x=2和x=1。
Step 4 练习题1. 教师通过一些练习题帮助学生巩固求根公式的应用。
例2:求解方程2x^2 + 3x - 2 = 0。
例3:求解方程x^2 - 6x + 9 = 0。
例4:求解方程3x^2 + 4x + 2 = 0。
学生独立完成习题,并与同桌讨论结果。
五、课堂小结1. 教师对本节课的内容进行小结,强调学习了一元二次方程求解的公式法;2. 强调求解一元二次方程时需要注意判别式的值,判别式为0时有一个实根,大于0时有两个实根,小于0时无实根;3. 提醒学生多加练习,巩固所学知识。
解方程公式法
公式法是指根据一些预先设定好的公式,来求解方程的方法。
这些公式可能是基于一些数学关系或者规律推导出来的。
具体来说,公式法可以包括以下几种常见的方法:
1. 一次方程公式法:对于一次方程,可以使用公式x = -b/a来
求解,其中a是方程中x的系数,b是方程中的常数。
2. 二次方程公式法:对于二次方程,可以使用公式x = (-b ±
√(b²-4ac))/(2a)来求解,其中a、b、c是方程中x的系数和常数。
3. 三角函数公式法:对于涉及三角函数的方程,可以使用三角函数的性质和公式来求解。
例如,对于sin(x) = a的方程,可
以套用反正弦函数的公式x = arcsin(a)来求解。
4. 指数函数公式法:对于涉及指数函数的方程,可以使用指数函数的性质和公式来求解。
例如,对于a^x = b的方程,可以
套用对数函数的公式x = logₐ(b)来求解。
需要注意的是,公式法并不适用于所有的方程,只适用于那些已经预先定义好的公式适用的方程。
对于复杂的方程,可能需要使用其他方法进行求解,例如代入法、消元法、配方法等。
初中数学方程式解法整理数学方程式是初中数学中重要的一部分,解方程是培养学生逻辑思维和解决问题能力的关键内容。
在解方程时,我们需要根据不同的题型选择合适的解法,以便求得方程的解。
本文将从一元一次方程、一元二次方程和分式方程三个方面,整理解方程的方法,帮助初中生更好地理解和掌握解方程的技巧。
一、一元一次方程的解法一元一次方程是初中数学中最基础的方程类型,其形式为ax + b = 0。
解一元一次方程可通过如下步骤进行:1. 消去常数项:如果方程中有常数项b,我们可以通过减去常数项b,将方程化为ax = -b的形式。
2. 消去系数项:我们可以通过除以未知数的系数a,将方程化为x = -b/a的形式。
这样就得到了方程的解x。
3. 检验:为了确认我们的解是正确的,我们可以将求得的解代入原方程中,检验两边是否相等。
如果相等,则解正确;如果不相等,则解错误。
需要注意的是,当方程中含有分数或小数时,我们首先需要将其转化为整数形式,再进行解方程的步骤。
二、一元二次方程的解法一元二次方程是比一元一次方程复杂一些的方程类型,其一般形式为ax² + bx + c = 0。
解一元二次方程需要用到配方法、因式分解法、求根公式和完成平方等方法。
1. 配方法:当一元二次方程的系数正好可以通过配方将其化为完全平方时,我们可以使用配方法解方程。
具体步骤如下:a) 将一元二次方程按照形式“(px + q)² = 0”的方式写出;b) 移项并展开方程,得到px + q = 0;c) 求出px = -q;d) 得到方程的解x = -q/p。
2. 因式分解法:当一元二次方程可以因式分解为两个一元一次方程的乘积时,我们可以使用因式分解法解方程。
具体步骤如下:a) 将一元二次方程进行因式分解;b) 令两个一元一次方程分别等于0,并求出方程的解;c) 得到方程的解为两个一元一次方程的解的并集。
3. 求根公式:一些无法通过配方法或因式分解法解的一元二次方程,我们可以使用求根公式解方程。