排列组合八种方法
- 格式:ppt
- 大小:63.00 KB
- 文档页数:10
一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法乙甲丁丙练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有1种坐法,则共有47A 种方法。
思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法C 14A 34C 13位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
排列、组合题解题方法一、相邻问题捆绑法1、A,B,C,D,E共5人并排站成一排,若A,B必须相邻,则不同的排法种数有多少?2、A,B,C,D,E共5人并排站成一排,若A,B必须相邻且B在A的右边,则不同的排法种数有多少?二、相离问题插空法1、A,B,C,D,E共5人并排站成一排,若A,B不能相邻,则不同的排法种数有多少?2、用1,2,3,4,5,6,7七个数字排成一个七位数,(1)偶数数字不相邻的有多少个?(2)奇数与偶数数字相间的有多少个?3、4男4女排成一排,男女要相间排列,则不同的排法种数有多少?4、某人射击8枪,命中4枪,4枪命中且恰有3枪连在一起的不同种数?射击7枪,击中5枪,击中与未击中的不同顺序?三、定序问题缩倍法1、A,B,C,D,E共5人并排站成一排,若A必须站在B的右方,(A,B可以不相邻),则不同的排法种数有多少?2、书架上放有6本不同的书,现把另外3本不同的新书也放上去,并且不改变原来书的相对顺序,则共有多少种不同的摆放方法?3、一条街上有10盏路灯,为了节约用电,需关掉其中的3盏,但不能关两端的2盏,也不能关相邻的2盏或3盏,则共有多少种关灯方法?4、某人上楼共10级,上楼可以一步上一级,也可一步上两级,规定要用8步走完,则不同的上楼方法?四、定位问题优先法1、一名老师和4名同学排成一排照相,若老师不能在两端,则不同的排法种数有多少?2、用0,1,3,5,7五个数字,可组成多少个没有重复数字且5不在十位位置上的五位数?3、10双不同的鞋子混装在一只口袋中,从中任取4只,(1)4只鞋子没有成双的(2)4只鞋子恰成两双(3)4只鞋子,有2只成双,另2只不成双五、相同元素隔板法1、方程)(*∈=+++NnnxxxmΛ21,共有多少组不同的正整数解?2、某校召开代表会,把6个代表分配给3个班,每班至少一个名额,有多少种方法?3、4()a b c d f++++展开式再合并同类项共有多少项?4、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子至少有一个球的不同放法?(2)12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,不同放法?(3)12个相同的小球放入编号为1,2,3,4的盒子中,每个盒子的小球数不小于其编号数,不同放法?六、有序分配问题逐分法1、有甲,乙,丙三项任务,甲需2人承担,乙,丙各需一人承担,从10人中选出4人承担这3项任务,不同的选法总数有多少?2、6本不同的书,按下列条件,各有多少种不同的分法?(1)分给甲,乙,丙三人,每人两本书(2)分成三份,每份2本(3)分成三份,1份1本,1份2本,1份3本(4)分给甲,乙,丙三人,1人1本,1人2本,1人3本(5)分给甲,乙,丙三人,每人至少1本3、用黄,蓝,白3种颜色粉刷6间办公室,一种颜色粉刷3间,一种颜色粉刷2间,一种颜色粉刷1间,问粉刷这6间办公室有多少种安排方法?七、标号排位树图法1、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有几种?八、多元问题分类法1、由数字0,1,2,3,4,5组成且没有重复数字的六位数,其中个位数字小于十位数字的共有几个?2、从1,2,…,100这100个数中,任取2个数,使其和能被4整除的取法有多少种?3、有11名外语翻译,其中7名英语翻译,6名日语翻译,从中找出8人,组成两个翻译小组,其中4人翻译英语,另4人翻译日语,这两组能同时工作,问这样的8人名单共有多少种?4、9名歌舞演员,7人会唱歌,5人回舞蹈,从中选出2人,一人唱歌,一人跳舞,则不同的选法?5、划船运动员8人,其中3人只会划右舷,2人只会划右舷,3人会划右舷也会划左舷,从这8人中选出6人,平均分配在船的两侧,有多少种选法?九、交叉问题集合法1、从6名运动员中选出4个参加接力赛,若甲不跑第一棒,乙不跑第二棒,共有多少种方式?十、多排问题单排法1、6个不同的元素排成前后两排,每排3个元素,则不同的排法总数?2、8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素要排在后排,则不同的排法总数?十一、“至少”问题间接法1、从4台甲型和5台乙型电视机中任选3台,其中至少有甲型和乙型电视机各一台,则不同的取法有几种?十二、选排问题先选后排法1、4个不同的球放入编号为1,2,3,4的4个盒中,则恰有一个空盒的放法有几种?2、9名乒乓球运动员,其中男5名,女4名,要进行混合双打比赛,有多少种分组方法?十三、部分符合条件问题排除法1、以一个正方体的顶点为顶点的四面体共有多少个?异面直线有多少对?(174)2、从正方体的6个面中选取3个面,其中有两个不相邻的选法有多少种?3、四面体的顶点和各棱的中点共10个点,在其中取不共面的4个点,不同的取法有多少种?4、有1克,2克,3克,4克,的四个砝码,可以称不同重量的物体种数?5、从0,1,2,3,4,5中取出3个不同的元素作为方程ax+by+c=0的系数,则可表示的不同直线的条数?十四、注意问题的转化1、某区有7条南北街道,5条东西街道,如图(1)图中共有多少个矩形?(2)从A到B路径最短的走法有多少种?2、圆内接n边形(n ≥4)的对角线在圆内最多可以有多少个不同的交点?十五、平均分堆问题1、有6本不同的书,(1)平均分成3堆,有多少种分法?(2)平均分给甲,乙,丙三人,有多少种分法?2、8本不同的书,分成三堆,一堆4本,另两堆2本,有多少种分法?。
排列组合常见的九种方法
1. 直接排列法:将元素按照一定次序排列,每种排列方案都是一个不同的结果。
例如,3个元素的排列数为 3! = 3 × 2 × 1 = 6。
2. 递归法:将问题逐步分解成每一步只有相对简单的子问题,从而不断求解。
通过递归,经过一系列不同的子过程,得到最终的结果。
3. 循环法:使用循环来枚举所有的可能的排列组合情况。
通常用于数组、字符串等元素的排列组合问题。
4. 分组排列法:将待排列的元素按照一定属性分组,再对每组内的元素进行排列组合,最终将每组的结果进行组合得到最终的结果。
5. 交换法:通过元素间的交换,对所有可能的排列组合进行枚举。
该方法需要注意元素交换时的顺序。
6. 邻项对换法:将相邻的两项进行对换,直到所有项都被排列组合了一遍。
7. 插入法:将新的元素依次插入已有元素的任意位置,直到所有元素都被排列组合了一遍。
8. 非递增排列法:将待排列的元素按照一定属性进行排序,然后将元素从最大的开始进行排列组合。
9. 非递减排列法:将待排列的元素按照一定属性进行排序,然后将元素从最小的开始进行排列组合。
排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
1.有限制条件的排列问题常见命题形式: “在”与“不在” ,“邻”与“不邻”⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是 ⑵“不邻”问题在解题时最常用的是“插空排列法”.⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.2.有限制条件的组合问题, “含”与“不含” ,“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”.3.闸板法 名额分配或相同物品的分配问题4.合并单元格解决染色问题练习 1.3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?2.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有( )(A)140种 (B)84种 (C)70种 (D)35种3.有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有( ) (A)1260种 (B)2025种 (C)2520种 (D)5040种4.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__5.在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法? 9906.有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 4327.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )8.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ) 9.某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
排列组合的常见题型及其解法一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A 41种站法;第二步再让其余的5人站在其他5个位置上,有A 55种站法,故站法共有:A A 4155⋅=480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A 52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A 44种,故站法共有:A A 5244480⋅=(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 解:把3个女生视为一个元素,与5个男生进行排列,共有A 66种,然后女生内部再进行排列,有A 33种,所以排法共有:A A 66334320⋅=(种) 三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A 44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A 53种,所以排法共有:A A 44531440⋅=(种) 四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
解题方法是:先将n 个元素进行全排列有A n n 种,m m n ()≤个元素的全排列有A m m种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,则有A A n n mm 种排列方法。
排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,n 1m 2m …,在第类办法中有种不同的方法,那么完成这件事共有:n n m 12nN m m m =+++ 种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,n 1m 2m 做第步有种不同的方法,那么完成这件事共有:n n m 12nN m m m =⨯⨯⨯ 种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法522522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中55A 间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种46A 5456A A目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 147A 种坐法,则共有种方法。
排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习、 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略2、7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为三.不相邻问题插空策略3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略4、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?练习、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略5、把6名实习生分配到7个车间实习,共有多少种不同的分法练习1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略6、 8人围桌而坐,共有多少种坐法?练习、 6颗颜色不同的钻石,可穿成几种钻石圈?七.多排问题直排策略7、8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?前 排后 排练习、有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略8、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习、一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种九.小集团问题先整体后局部策略9、用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?练习、1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种十.元素相同问题隔板策略10、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1mn A n一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗? 小集团排列问题中,先整体后局部,再结合其它策略进行处理。
排列组合解法解决排列组合综合性问题的一般过程如下:1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行, 确定分多少步及多少类。
3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一. 特殊元素和特殊位置优先策略1、由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.练习、7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法二.相邻元素捆绑策略2、7 人站成一排, 其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习、某人射击8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为三.不相邻问题插空策略3、一个晚会的节目有4个舞蹈,2 个相声,3 个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略4、7人排队, 其中甲乙丙3人顺序一定共有多少不同的排法练习、10人身高各不相等, 排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法五.重排问题求幂策略5、把6名实习生分配到7 个车间实习, 共有多少种不同的分法练习1.某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两个新节目. 如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8 名乘客人, 他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略6、8 人围桌而坐, 共有多少种坐法一般地,n 个不同元素作圆形排列, 共有(n-1)! 种排法. 如果从n 个不同元素中取出m个元素作1圆形排列共有1An mn练习、 6 颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略7、8 人排成前后两排, 每排 4 人, 其中甲乙在前排,丙在后排,共有多少排法练习、有两排座位,前排11 个座位,后排12 个座位,现安排 2 人就座规定前排中间的 3 个座位不能坐,并且这 2 人不左右相邻,那么不同排法的种数是八.排列组合混合问题先选后排策略8、有5个不同的小球, 装入 4 个不同的盒内, 每盒至少装一个球, 共有多少不同的装法.练习、一个班有 6 名战士, 其中正副班长各 1 人现从中选 4 人完成四种不同的任务, 每人完成一种任务, 且正副班长有且只有 1 人参加, 则不同的选法有种九. 小集团问题先整体后局部策略9、用 1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹 少个练习、1. 计划展出 10 幅不同的画 , 其中 1 幅水彩画 , 4幅油画 , 5幅国画 , 排成一行陈列 , 要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5 男生和5女生站成一排照像 ,男生相邻 ,女生也相邻的排法有 种十. 元素相同问题隔板策略10、有 10个运动员名额,分给 7个班,每班至少一个 , 有多少种分配方案将 n 个相同的元素分成 m 份(n ,m 为正整数) , 每份至少一个元素 ,可以用 m-1块隔板, 插入 n 个元素排成一排的 n-1 个空隙中,所有分法数为 C n m 11练习题:1. 10 个相同的球装 5 个盒中 , 每盒至少一有多少装法2 . x y z w 100 求这个方程组的自然数解的组数十一 .正难则反总体淘汰策略11、从 0,1,2,3,4,5,6,7,8,9 取法有多少种有些排列组合问题 , 正面直接考虑比较复杂 , 而它的反面往往比较简捷 , 可以先求1, 5在两个奇数之间 , 这样的五位数有多这十个数字中取出三个数,使其和为不小于 10 的偶数 , 不同的练习、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种十二.平均分组问题除法策略12、 6 本不同的书平均分成 3 堆,每堆 2 本共有多少分法练习题:1、将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法2、10 名学生分成3组,其中一组 4 人, 另两组 3 人但正副班长不能分在同一组,有多少种不同的分组方法3、某校高二年级共有六个班级,现从外地转入 4 名学生,要安排到该年级的两个班级且每班安排 2 名,则不同的安排方案种数为_____十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目有多少选派方法解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做练习:1、从 4 名男生和 3 名女生中选出 4 人参加某个座谈会,若这 4 人中必须既有男生又有女生,则不同的选法共有2、3 成人 2 小孩乘船游玩,1 号船最多乘 3 人, 2 号船最多乘 2 人,3 号船只能乘1人,他们任选2只船或 3 只船, 但小孩不能单独乘一只船, 这3人共有多少乘船方法.十四.构造模型策略14、马路上有编号为1,2,3,4,5,6,7,8,9 的九只路灯, 现要关掉其中的 3 盏, 但不能关掉相邻的 2 盏或 3 盏, 也不能关掉两端的2盏, 求满足条件的关灯方法有多少种一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒练习、某排共有10个座位,若 4 人就坐,每人左右两边都有空位,那么不同的坐法有多少种十五.实际操作穷举策略15、设有编号1,2,3,4,5 的五个球和编号1,2,3,4,5 的五个盒子,现将 5 个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同, 有多少投法对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收练习1、同一寝室 4 人,每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种2、给图中区域涂色,要求相邻区域不同色, 现有4种可选颜色, 则不同的着色方法有种十六. 分解与合成策略16、30030 能被多少个不同的偶数整除练习: 正方体的8 个顶点可连成多少对异面直线分解与合成策略是排列组合问题的一种最基本的解题策略, 把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构, 用分类计数原理和分步计数原理将问题合成, 从而得到十七.化归策略17、25 人排成5×5 方阵, 现从中选 3 人, 要求 3 人不在同一行也不在同一列, 不同的选法有多少种处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,练习、某城市的街区由12 个全等的矩形区组成其中实线表示马路,从 A 走到的最短路径有多少种十八.数字排序问题查字典策略18、由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105 大的数数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数, 根据分类计数原理求出其总数。
一、排列组合问题(一)基本概念(1)加法原理:分类的用加法乘法原理:分步的用乘法排列:与顺序有关组合:与顺序无关(2)主要解题技巧:逆向考虑法,特殊位置先排,隔板法,插空法,分类法,捆绑法等。
因为这部分内容比较多,所以抽屉原理另外在下一个专题里单独讲。
(二)习题与解析:1、用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?解析:这是一个从8个元素中取5个元素的排列问题,由排列数公式,共可组成:P85=8*7*6*5*4=67202、由数字0、1、2、3可以组成多少个没有重复数字的偶数?解析:分类法注意到由四个数字0、1、2、3可组成的偶数有一位数、二位数、三位数、四位数这四类,所以要一类一类地考虑,再由加法原理解决.第一类:一位偶数只有0、2,共2个;第二类:两位偶数,它包含个位为0、2的两类.若个位取0,则十位可有C13种取法;若个位取2,则十位有C12种取法.故两位偶数共有(C13+C12)种不同的取法;第三类:三位偶数,它包含个位为0、2的两类.若个位取0,则十位和百位共有P23种取法;若个位取2,则十位和百位只能在0、1、3中取,百位有2种取法,十位也有2种取法,由乘法原理,个位为2的三位偶数有2×2个,三位偶数共有(P23+2×2)个;第四类:四位偶数.它包含个位为0、2的两类.若个位取0,则共有P33个;若个位取2,则其他3位只能在0、1、3中取.千位有2种取法,百位和十位在剩下的两个数中取,再排成一列,有P22种取法.由乘法原理,个位为2的四位偶数有2×P22个.所以,四位偶数共有(P33+2×P22)种不同的取法.由加法原理知,共可以组成2+(C13+C12)+(P23+2×2)+(P33+2×P22)=2+5+10+10=27个不同的偶数.3、从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解析:分类法。
排列组合的各种方法
排列组合是一种数学问题,描述的是从给定的元素集合中选择一部分元素来形成一组对象的方法。
下面是一些常见的排列组合方法:
1. 排列
排列是从给定的元素集合中选择一定数量的元素,按照一定的顺序来排列形成一组序列。
常见的排列方法有:
- 全排列:将集合中的所有元素按照不同的顺序排列成一组序列。
- 循环排列:将集合中的元素排列成一组序列,并且其中的某些元素可以循环使用。
2. 组合
组合是从给定的元素集合中选择一定数量的元素,无需考虑元素的顺序。
常见的组合方法有:
- 无重复组合:从集合中选择不同的元素来组成一组对象,元素之间没有重复。
- 有重复组合:从集合中选择元素来组成一组对象,元素之间可以重复。
3. 全排列组合
全排列组合是将排列和组合结合起来,从给定的元素集合中选择一定数量的元素,按照一定的顺序来排列形成一组序列。
其中可以包括全排列和有重复排列两种形式。
这些方法可以通过数学公式或递归算法来实现。
具体的实现方法可以参考相关的数学教材或计算机算法书籍。
排列组合常用十三种解题方法方法一:捆绑法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须相邻且甲在乙的右边,那么不同的排法有多少种?方法二:插空法例题:甲、乙、丙、丁、卯五人并排成一排,如果甲、乙必须不相邻,那么不同的排法有多少种?例题:晚会原定的5个节目已排成节目单,开演前又加了2个节目,若将这2个节目插入原节目单中,则不同的插法有种。
方法三:隔板法例题:小明有10块糖,他每天可以吃1块到10块不等,现在要求小明3天把10块糖吃完,问小明一共有多少种不同的吃糖方法?例题:将10个保送生预选指标分配给某重点中学高三年级六个班,每班至少一名,共有多少种分配方案?方法四:定位问题优先法例题:一个老师和四名学生排成一排,老师不在两端,且老师不能跟其中某个学生相邻,则不同的排法有种例题:2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为方法五:多排问题单排法例题:共有8个人分别站前后2排,每排4人,其中要求某2人站前排,某1人站在后排,则共有__ 种排法。
例题:现有12人排成3行,每行4人,其中小明不站第二行,小红只站第一行,小白不站第三行,问一共有多少种不同的站队方法?方法六:乱坐问题分步法例题:将数字1,2,3,4,填入标号为1,2,3,4的四个方格,每格填一个数,则每个方格的标号与所填数字均不相同的填法有种。
例题:将标有1,2,3,4,5编号的五个小球分别填入标号为1,2,3,4,5的五个箱子,每个箱子放一个球,则每个箱子的标号与放小球标号均不相同的填法有种。
方法七:多元问题罗列法例题:由0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个。
例题:用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为?方法八:至少问题间接法 例题:有9名男生与4名女生共13人,现在要求从所有学生中任选 5人参加知识竞赛,问选择的5人中至少有1名女生的选择情况有多 少种? 例题:甲、乙两人从4门课程中各选修 2门,则甲、乙所选的课程中至少有 1 门不相同的选法共有 种 方法九:条件问题排除法 例题:正六边形中心和顶点共7个点,以其中任意3个点为顶点 的三角形共有 个。
排列组合21法1、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一组,当做一个大元素参与排列。
例1.E D C B A ,,,,五人并排站成一排,如果B A ,必须相邻且B 在A 的右边,那么不同的排法种数有( )种60.A 种48.B 种36.C 种24.D*把B A ,视为一人,且B 固定在A 的右边,则本题相当于4人全排列,2444=A 种。
2、相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
例2.七人并排站成一列,如果甲乙两个必须不相邻,那么不同的排法种数是( )种1440.A 种3600.B 种4820.C 种4800.D*除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是36002655=A A 种。
3、定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
例3.E D C B A ,,,,五人并站成一排,如果B 必须站在A 的右边(B A ,可以不相邻)那么不同的排法种数是( )种24.A 种60.B 种90.C 种120.D*B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即602155=A 种。
4、标号排位问题分步法(错位排列):把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。
例4.将数字4,3,2,1填入标号为4,3,2,1的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )种6.A 种9.B 种11.C 种23.D*先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有9133=⨯⨯种填法。
5、有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。
解决排列组合问题的常用方法一、特殊元素法例:用1,2,3,4,5,6组成无重复的四位数,求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 排除法⑶有三张卡片,正面分别写着1,2,3三个数字,反面分别写着0,5,6三个数字,问这三张卡片可组成多少个三位数?分析:先排列三张卡片,然后再计算组成的三位数的个数,其算式为4022A 222A 2233=⨯⨯-⨯⨯⨯;也可回归到分步计数原理,则是40245=⨯⨯二、相邻问题-----捆绑法:1.⑴6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有几种?2402255=⋅A A⑵4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576不相邻问题-----插空法:2.⑴要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不相邻,问有多少不同的排法?4766A A ⋅ ⑵在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。
等可能问题------缩倍法3.A 、B 、C 、D 、E 五人并排站成一排,如果B 必须站在 A 的右边( A 、B 可以不相邻),那么有多少种排法?60/2255=A A枚举法4.将数字1、2、3、4填在标号为1、2、3、4的四个方格里,每格填上一个数字,且每个方格的标号与所填的数字均不相同的填法有几种?分析:此题的背景是同学们所不熟悉的错排问题,不好利用计数原理解之。
排列组合八大方法
嘿,朋友们!今天咱来聊聊排列组合八大方法呀!这可真是个超级有趣的话题呢!
排列组合,就像是一个神奇的魔法盒子,里面装满了各种奇妙的可能性。
比如说,从一群人中选出几个来站成一排,这就是排列;而从一堆东西里挑出几个不管顺序,那就是组合。
想想看呀,我们生活中的好多事情不都和排列组合有关嘛!就像你去商场买衣服,面对那么多款式和颜色,你得在心里默默排列组合一下,想想怎么搭配才最好看。
这不就和排列组合八大方法挂上钩了嘛!
插空法,就好像是在一群人中间找缝隙挤进去,把新的元素巧妙地安插进去。
捆绑法呢,就像是把几个好伙伴紧紧绑在一起,当成一个整体来考虑。
还有什么定序问题缩倍法呀,那感觉就像是把一些已经有固定顺序的东西进行巧妙处理,让它们变得更有意思。
再比如,在一场比赛中,安排选手的出场顺序,这得多考验对排列组合方法的运用啊!你能想象没有这些方法,那得乱成什么样吗?
分类讨论法,就像是把一个大问题分成好多小块,逐一去解决,多有条理呀!还有什么住店法、染色法等等,每一种方法都有它独特的魅力和用处。
这八大方法可不是随随便便就有的呀,它们是数学家们智慧的结晶!它们就像是我们解决问题的得力助手,帮助我们在复杂的情况中找到清晰的思路。
排列组合八大方法,真的是太重要啦!它们让我们的思维更加灵活,让我们能够应对各种看似复杂的局面。
我们可不能小瞧了它们呀!它们就像是隐藏在数学世界里的宝藏,等待着我们去挖掘,去运用。
所以呀,大家一定要好好掌握这些方法,让它们为我们的生活增添更多的精彩和可能!。