第十一章 动量矩定理
- 格式:ppt
- 大小:4.53 MB
- 文档页数:87
第十一章动量矩定理§11-1 引言建立质点或质点系的动量对于某固定点(或固定轴)的矩的变化与作用在该质点或质点系上的力系对同一点(或轴)的主矩之间的关系。
Pr ωε§11-2 动量矩一、质点动量矩Vm r V m M L o o r r r r r ×==)(的动量矩为则质点对固定点的速度为时作空间曲线运动,在瞬的作用下在力的质点设质量为O V t F M m ,r r 方向:右手螺旋法则大小:OAB o S d mV L ∆==2)(1、动量对点之矩V m r L o r r r ×=2、动量对轴之矩)(V m M L z z r =正负:右手规则是标量z L 质点对O 点的动量矩矢在通过O 点的任意轴上的投影,等于质点对该轴的动量矩。
zz O L L =)(r OabS ∆±=2d v m ′′±=)(二、质点系动量矩各质点动量对某点O 的矩的矢量和(即质点系动量对O 点的主矩)称为该质点系对点的动量矩。
n n n o V m r V m r V m r L r r L r r r r r ×++×+×=222111各质点动量对某轴的矩的代数和称为该质点系对该轴的动量矩。
)()()(2211n n z z z z V m M V m M V m M L r L r r +++=∑=)(i i O V m M r r ∑×=i i i V m r r r ∑=)(i i z V m M rV m r L o r r r ×=由§11-3 质点的动量矩定理V m dt r d dt V m d r dt V m r d r r r r r r ×+×=×)()(得:V dt r d r r =∴dt V m r d )(r r ×∴O 点为固定点V m dt r d r r ×∴一、矢量形式0=V m V r r ×=F r r r ×=dt V m d r )(r r ×=oM F)()(F M dt L d F r dt V m r d o o r r r r r r r =×=×或质点的动量对任一固定点的矩对时间的导数等于作用于该质点的力对同一点的矩。
第十一章动量定理动量定理、动量矩定理和动能定理统称为动力学普遍定理.§11--1 动量与冲量1、动量的概念:产生的相互作用力⑴定义:质点的质量与速度的乘积称为质点的动量,-----记为mv。
质点的动量是矢量,它的方向与质点速度的方向一致。
kgms/单位)i p v 质点系的动量()i i i i c im r m r r m m ∑∑==∑质心公式:⑵、质点系内各质点动量的矢量和称为质点系的动量。
)idr p v dt ()i i dm r dt∑注意:质量m i是不变的如何进一步简化?参考重心、形心公式。
李禄昌()i i i i c im r m r r m m ∑∑==∑) p r r cm v =质点系的动量等于质心速度与其全部质量的乘积。
求质点系的动量问题转化为求刚体质心问题。
cωv C =0v Ccωcov C2.冲量的概念:tF IF I d d IF d 物体在力的作用下引起的运动变化,不仅与力的大小和方向有关,还与力作用时间的长短有关。
用力与作用时间的乘积来衡量力在这段时间内积累的作用。
冲量是矢量,方向与常力的方向一致。
冲量的单位是N.S 。
§11-2 动量定理—-确定动量与冲量的关系由牛顿第二定律:F v m )F v m d )称为质点动量定理的微分形式,即质点动量的增量v v ~ ⎰==-21d 12t t It F v m v m称为质点动量定理的积分形式,即在某一时间间隔⎰==-21d 12t t It F v m v m 2、质点系的动量定理(F (F外力:,内力:(F (F M FF F v tF F v i i d )(∑+)()(d d d e ie i It F p ∑=∑=)(d d e i F tp ∑=称为质点系动量定理的微分形式,即质点系动量的质点系动量对时间的导数等于作用于质点系的外力的矢量和(主矢)动力学与静力学联系。
)(112e ini Ip p =∑=-p p ~ 称为质点系动量定理的积分形式,即在某一时间)(d d e xx F tp ∑=)(d d e yy Ftp ∑=)(d d e z z F tp ∑=动量定理微分形式的投影式:动量定理积分形式的投影式:)(12e xx x Ip p ∑=-)(12e yy y Ip p ∑=-)(12e zz z Ip p ∑=-动量定理是矢量式,在应用时应取投影形式。
·125·第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。
(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。
(√)3. 质点系动量矩的变化与外力有关,与内力无关。
(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。
(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。
(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。
(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。
(√)8. 如图11.23所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+2213ml mr =+,式中m 为AB 杆的质量。
(×) 9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。
(×)10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。
(×)图11.23二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。
2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。
3. 质点系的质量与质心速度的乘积称为质点系的动量。
4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。
5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数·126·和等于零。