八年级数学上册等腰梯形的性质及证明(人教版)
- 格式:doc
- 大小:61.00 KB
- 文档页数:6
第19讲梯形及等腰梯形知识定位讲解用时:3分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习梯形及等腰梯形。
梯形和等腰梯形属于四边形章节,选择填空中会涉及到,也经常出现在几何大题中,是中考考查范围内的一个重要知识点,熟练掌握一般梯形、直角梯形和等腰梯形及它们的性质和判定,灵活运用并处理含梯形的综合类型题目.知识梳理讲解用时:20分钟梯形的认识1、定义:一组对边平行而另一组对边不平行的四边形叫做梯形(概念记清楚哦)一般梯形梯形标注:梯形是特殊的四边形,有且只有一组对边平行哦梯形的分类2、梯形的分类:一般梯形、特殊梯形(直角梯形、等腰梯形)直角梯形:有一个角是直角的梯形叫做直角梯形等腰梯形:两腰相等的梯形叫做等腰梯形直角梯形等腰梯形AB//CD AB//CDAD≠BC AD=BCAD⊥CD AD不平行BC梯形的中位线3、梯形的中位线:连接梯形两腰上的中点的线段叫做梯形的中位线. 梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半你知道怎么证明吗?EF//AB//CDEF=12(AB+CD)等腰梯形的性质和判定1、等腰梯形的性质定理性质定理1:等腰梯形同一底边上的两个角相等性质定理2:等腰梯形的两条对角线相等性质3:等腰梯形既是轴对称图形,只有一条对称轴(底边的垂直平分线)∠A=∠B AC=BD 虚线为等腰梯形的对称轴∠C=∠D2、等腰梯形的判定定理判定定理1:同一底边上两个内角相等的梯形是等腰梯形判定定理2:对角线相等的梯形是等腰梯形判定3:利用定义课堂精讲精练【例题1】已知,在梯形ABCD中,AD∥BC,AD=4,AB=CD=6,∠B=60°,那么下底BC的长为.【答案】10【解析】首先过A作AE∥DC交BC与E,可以证明四边形ADCE是平行四边形,进而得到CE=AD=4,再证明△ABE是等边三角形,进而得到BE=AB=6,从而得到答案.解:如图,过A作AE∥DC交BC与E,∵AD∥BC,∴四边形AECD是平行四边形,∴AD=EC=4,AE=CD,∵AB=CD=6,∴AE=AB=6,∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=6,∴BC=6+4=10.故答案为:10.讲解用时:3分钟解题思路:此题主要考查了梯形,关键是掌握梯形中的重要辅助线,过一个顶点作一腰的平行线得到一个平行四边形.教学建议:利用梯形的知识作辅助线构造出平行四边形和等边三角形.难度: 3 适应场景:当堂例题例题来源:普陀区期中年份:2017【练习1.1】如图,已知在梯形ABCD中,AD∥BC,∠B=30°,∠C=75°,AD=2,BC=7,那么AB= .【答案】5【解析】过点D作DE∥AB交BC于E,根据平行线的性质,得∠DEC=∠B=30°,根据三角形的内角和定理,得∠EDC=75°,再根据等角对等边,得DE=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则AB=DE=CE=7﹣2=5,从而求解.解:过点D作DE∥AB交BC于E,∴∠DEC=∠B=30°.又∵∠C=75°,∴∠CDE=75°.∴DE=CE.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE=2.﹣BE=BC﹣AD=7﹣2=5.∴AB=DE=CE=BC故答案为:5.讲解用时:3分钟解题思路:此题综合考查了平行四边形的判定及性质、平行线的性质、等角对等边的性质,解题的关键是作平行线构造平行四边形.教学建议:利用梯形的知识作辅助线构造出平行四边形进行求解.难度: 3 适应场景:当堂练习例题来源:潍坊三模年份:2016【例题2】如图,在梯形ABCD中,AB∥CD,∠ABC=90°,如果AB=5,BC=4,CD=3,那么AD= .【答案】2【解析】试题分析:过点D作DE⊥AB于点E,后根据勾股定理即可得出答案.解:过点D作DE⊥AB于点E,如下图所示:则DE=BC=4,AE=AB﹣EB=AB﹣DC=2,AD==2.故答案为:2.讲解用时:3分钟解题思路:本题考查了梯形及勾股定理的知识,难度不大,属于基础题.教学建议:利用梯形和勾股定理的知识进行求解.难度: 3 适应场景:当堂例题例题来源:普陀区期末年份:2016【练习2.1】如图,已知梯形ABCD中,AD∥BC,E为AB中点,DE⊥EC.求证:(1)DE平分∠ADC;(2)AD+BC=DC.【答案】(1)DE平分∠ADC;(2)AD+BC=DC【解析】试题分析:(1)延长DE交CB的延长线于F,可证得△AED≌△BEF,根据三线合一的性质可得出CD=CF,推出∠CDF=∠F,由∠ADF=∠F即可证明;(2)由△AED≌△BEF,根据三线合一的性质可得出CD=CF,进而利用等线段的代换可证得结论;证明:(1)延长DE交CB的延长线于F,∵AD∥CF,∴∠A=∠ABF,∠ADE=∠F.在△AED与△BEF中,,∴△AED≌△BEF,∴AD=BF,DE=EF,∵CE⊥DF,∴∠CDF=∠F,∵AD∥CF,∴∠ADE=∠F,∴∠ADE=∠CDF,∴ED平分∠ADC.(2)∵△AED≌△BEF,∴AD=BF,DE=EF,∵CE⊥DF,∴CD=CF=BC+BF,∴AD+BC=DC.讲解用时:4分钟解题思路:本题考查梯形、全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是因为点E是中点,所以应该联想到构造全等三角形,这是经常用到的解题思路,同学们要注意掌握.教学建议:学会运用梯形、全等三角形的判定和性质、线段垂直平分线的性质进行解题.难度: 4 适应场景:当堂练习例题来源:松江区期末年份:2017【例题3】如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= .【答案】4【解析】试题分析:根据梯形中位线性质得出EF∥AD∥BC,推出DG=BG,则EG 是△ABD的中位线,即可求得EG的长,则FG即可求得.解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.讲解用时:3分钟解题思路:本题考查了梯形的中位线,三角形的中位线的应用,主要考查学生的推理能力和计算能力.教学建议:熟练掌握梯形的中位线、三角形的中位线知识并灵活运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】边长为8的正方形ABCD中,E、F是边AD、AB的中点,连接CE,取CE中点G,那么FG= .【答案】6【解析】试题分析:根据题意,正方形ABCD的边长为8,E边AD的中点,可得出AE、BC的长;又由点F、G分别是AB、CE的中点,根据梯形的中位线定理,可得出FG的长;解:如图,∵正方形ABCD的边长为8,E、F是边AD、AB的中点,∴AE=4,BC=8,又∵点G是CE的中点,∴FG为梯形ABCE的中位线,∴EF==×(4+8)=6.故答案为:6.讲解用时:3分钟解题思路:本题主要考查了梯形的中位线定理,熟练掌握梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.教学建议:学会应用梯形的中位线定理.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】在梯形ABCD中.AB∥CD,EF为中位线,则△AEF的面积与梯形ABCD的面积之比是.【答案】1:4【解析】试题分析:过A作AG⊥BC于G,交EF于H,再根据梯形的中位线定理及面积公式解答即可.解:过A作AG⊥BC于G,交EF于H,∵EF是梯形ABCD的中位线,∴AD+BC=2EF,AG=2AH,设△AEF的面积为xcm2,即EF?AH=xcm2,∴EF?AH=2xcm2,∴S梯形ABCD=(AD+BC)?AG=×2EF×2AH=2EF?AH=2×2xcm2=4xcm2.∴△AEF的面积与梯形ABCD的面积之比为:1:4.故答案为:1:4.讲解用时:3分钟解题思路:本题考查了梯形的中位线定理,比较简单,注意掌握梯形的中位线定理即是梯形的中位线等于上下底和的一半.教学建议:学会应用梯形的中位线定理.难度: 3 适应场景:当堂例题例题来源:六安期末年份:2013【练习4.1】在梯形ABCD中,AD∥BC,E、F分别是边AB、CD的中点.如果AD=5,EF=11,那么BC= .【答案】17【解析】试题分析:根据梯形中位线定理“梯形的中位线长是上下底和的一半”,进行计算.解:根据梯形中位线定理,得EF=(AD+BC),则BC=2EF﹣AD=2×11﹣5=17.讲解用时:2分钟解题思路:考查了梯形的中位线定理.教学建议:熟练掌握并应用梯形的中位线定理.难度: 2 适应场景:当堂练习例题来源:无年份:2018【例题5】已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC,∠A=60°.求:梯形ABCD的周长.【答案】10【解析】试题分析:由等腰梯形的性质得出∴∠ABC=∠A=60°.周长∠ABD=∠CBD=30°,∠ADB=90°,由直角三角形的性质得出AD=AB.AB=2AD=4.证出∠CDB=∠CBD.得出CD=BC=2.即可求出梯形ABCD的周长.解:在梯形ABCD中,∵DC∥AB,AD=BC=2,∠A=60°.∴∠ABC=∠A=60°.∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∴∠ADB=90°,∴AD=AB.∴AB=2AD=4.又 DC∥AB,∴∠CDB=∠ABD,又∠ABD=∠CBD,∴∠CDB=∠CBD.∴CD=BC=2..∴梯形ABCD的周长=AB+BC+CD+AD=4+2+2+2=10讲解用时:3分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:掌握等腰梯形的性质和判定并灵活运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.【答案】(1)2√3;(2)3√3【解析】试题分析:(1)根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解;(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH和AH的长,则AB即可求得,然后利用梯形的面积公式求解.解:(1)∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在RT△ADH和RT△BCG中,,∴RT△ADH≌RT△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴.讲解用时:3分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:掌握等腰梯形的性质并灵活应用.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题6】如图,在等腰梯形ABCD中,DC∥AB,AD=BC=2,BD平分∠ABC.∠A=60°,求对角线BD的长和梯形ABCD的面积.【答案】3√3【解析】根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解,过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH和AH的长,则AB即可求得,然后利用梯形的面积公式求解.解:∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在Rt△ADH和Rt△BCG中,,∴Rt△ADH≌Rt△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴梯形ABCD的面积=.讲解用时:4分钟解题思路:本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出DC=BC是解此题的关键.教学建议:熟练地运用等腰梯形、平行线、等腰三角形的性质进行解题.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】已知:如图,等腰梯形ABCD的中位线EF的长为6cm,对角线BD平分∠ADC,下底BC的长比等腰梯形的周长小20cm,求上底AD的长.【答案】4cm【解析】试题分析:由等腰梯形的性质得出AB=DC,AD∥BC,得出∠ADB=∠CBD,,由已知再由已知条件得出BC=DC=AB,由梯形中位线定理得出AD+BC=2EF=12cm条件求出BC,即可得出AD的长.解:∵四边形ABCD是等腰梯形,∴AB=DC,AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ADC,∴∠ADB=∠CDB,∴∠CBD=∠CDB,∴BC=DC=AB,∵EF是等腰梯形的中位线,,∴AD+BC=2EF=12cm∵下底BC的长比等腰梯形的周长小20cm,﹣20,∴BC=AB+BC+CD+AD即BC=AB+DC﹣8,∴BC=8cm,∴AD=4cm.讲解用时:3分钟解题思路:本题考查了等腰梯形的性质、等腰三角形的判定、梯形中位线定理;熟练掌握等腰梯形的性质,并能进行推理论证与计算是解决问题的关键.教学建议:利用等腰梯形、等腰三角形的判定、梯形中位线等知识点进行解题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.(1)求证:四边形AECD是平行四边形;(2)当∠B=2∠DCA时,求证:四边形AECD是菱形.【答案】(1)四边形AECD是平行四边形;(2)四边形AECD是菱形【解析】试题分析:(1)由等腰梯形的性质(等腰梯形同一底上的角相等),可得∠B=∠DCB,又由等腰三角形的性质(等边对等角)证得∠DCB=∠AEB,即可得AE∥DC,则四边形AECD为平行四边形;(2)根据平行线的性质,易得∠EAC=∠DCA,又由已知,由等量代换即可证得∠EAC=∠ECA,根据等角对等边,即可得AE=CE,则四边形AECD为菱形.证明:(1)∵在等腰梯形ABCD中,AD∥BC,AB=DC,∴∠B=∠DCB,∵AE=DC,∴AE=AB,∴∠B=∠AEB,∴∠DCB=∠AEB,∴AE∥DC,∴四边形AECD为平行四边形;(2)∵AE∥DC,∴∠EAC=∠DCA,∵∠B=2∠DCA,∠B=∠DCB,∴∠DCB=2∠DCA,∴∠ECA=∠DCA,∴∠EAC=∠ECA,∴AE=CE,∵四边形AECD为平行四边形,∴四边形AECD为菱形.讲解用时:3分钟解题思路:此题考查了等腰梯形的性质、平行四边形的判定、菱形的判定以及等腰三角形的判定与性质.解题的关键是仔细识图,应用数形结合思想解答.教学建议:利用等腰梯形、平行四边形的判定、菱形的判定等知识点进行解题.难度: 3 适应场景:当堂例题例题来源:连云港校级模拟年份:2010【练习7.1】如图,在梯形ABCD中,AD∥BC,BA=AD=DC,点E在边CB的延长线上,并且BE=AD,点F在边BC上.(1)求证:AC=AE;(2)如果∠AFB=2∠AEF,求证:四边形AFCD是菱形.【答案】(1)AC=AE;(2)四边形AFCD是菱形【解析】试题分析:(1)由已知条件可判定四边形ABCD是等腰梯形,利用等腰梯形的性质以及给出的条件利用SAS可判定△ABE≌△ADC,从而可证得结论;,所以四边形AFCD是菱形.(2)由(1)和外角和定理可证得AD=DC=AF=CF证明:(1)∵AD∥BC,BA=AD=DC,∴梯形ABCD是等腰梯形,∴∠ABC=∠DCE,∵∠ABE+∠ABC=180°,∠DCE+∠D=180°,∴∠D=∠ABE,又∵BE=AD,∴△ABE≌△ADC,∴AC=AE.(2)∵∠AFB=∠CAF+∠FCA,∠AFB=2∠E,∴2∠E=∠CAF+∠FCA,∵∠E=∠DAC=∠DCA,又∵AD∥BC,∴∠DAC=∠FCA,,∴AD=DC=AF=CF∴四边形AFCD是菱形.讲解用时:3分钟解题思路:此题主要考查等腰梯形的性质及全等三角形的判定方法的综合运用,难度较大,解答此类综合题目还需从基本做起,掌握一些基本性质是解答此类题目必备的.教学建议:利用等腰梯形的性质、全等三角形的判定等知识点进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于.【答案】4【解析】只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.解:根据梯形的中位线定理,得另一底边长=中位线×2﹣一底边长=2×6﹣8=4.故答案为:4难度:2 适应场景:练习题例题来源:金山区二模年份:2018【作业2】如图,等腰梯形ABCD的面积为144,AD∥BC,AB=DC,且AC⊥BD.求等腰梯形ABCD的高.【答案】12【解析】过点D 分别作DE∥AC与BC的延长线交于点E,DF⊥BC,垂足为点F,将等腰梯形的面积转化为△DBE的面积,从而求得三角形的高即可得到等腰梯形的高.解:过点D 分别作DE∥AC与BC的延长线交于点E,DF⊥BC,垂足为点F.∵AD∥BC,∴四边形ACED是平行四边形.∴AD=CE,AC=DE.又∵四边形ABCD是等腰梯形,∴AC=BD.∴BD=DE.∴BF=FE.∵AC⊥BD,∴∠BGC=∠BDE=90°.∴.又∵AB=CD,∴△ADB≌△CED.∴S△BED=S梯形ABCD=144,∵BE?DF=144,∴×2DF2=144∴等腰梯形ABCD的高等于12.难度: 3 适应场景:练习题例题来源:普陀区期末年份:2014【作业3】如图,在等腰梯形ABCD中,AB∥DC,AC、BD是对角线,△ABD≌△ABE.求证:四边形AEBC是平行四边形.【答案】四边形AEBC是平行四边形【解析】根据等腰梯形的对角线相等,易得AC=BD,又由△ABD≌△ABE,易得AD=AE,BD=BE,则可证得AE=BC,AC=BE,根据有两组对边分别相等的四边形是平行四边形,可证得四边形AEBC是平行四边形.证明:∵四边形ABCD是等腰梯形,∴AD=BC,AC=BD,又∵△ABD≌△ABE,∴AD=AE,BD=BE,∴AE=BC,AC=BE,∴四边形AEBC是平行四边形.难度: 3 适应场景:练习题例题来源:香坊区期末年份:2011。
第八讲梯形第一部分知识梳理一、梯形的性质和判定1.梯形有关概念:一组对边平行而另一组对边______的四边形叫做梯形,梯形中平行的两边叫做底,按______分别叫做上底、下底(与位置无关),梯形中不平行的两边叫做______,两底间的______叫做梯形的高.一腰垂直于底边的梯形叫做______;两腰______的梯形叫做等腰梯形.2.等腰梯形的性质:等腰梯形中______的两个角相等,两腰______,两对角线______,等腰梯形是轴对称图形,只有一条对称轴,______就是它的对称轴.3.等腰梯形的判定:______的梯形是等腰梯形;同一底上的两个角______的梯形是等腰梯形.第二部分例题与解题思路方法归纳类型一梯形的面积【例题1】如图,点C是线段AB上的一个动点,△ACD和△BCE是在AB同侧的两个等边三角形,DM,EN分别是△ACD和△BCE的高,点C在线段AB上沿着从点A向点B的方向移动(不与点A,B重合),连接DE,得到四边形DMNE.这个四边形的面积变化情况为()A、逐渐增大B、逐渐减小C、始终不变D、先增大后变小〖选题意图〗考查等边三角形的性质和梯形的面积公式.〖解题思路〗易得此四边形为直角梯形,AB的长度一定,那么直角梯形的高为AB的长度的一半,上下底的和也一定,所以面积不变.〖参考答案〗解:当点C在线段AB上沿着从点A向点B的方向移动时,设两个等边三角形的边长分别为a,b,根据等边三角形的性质,等边△ACD和△BCE的高DM和EN的和不会改变,即DM+EN=MC+CN=AC+CB=AB,而且MN的长度也不会改变,即MN=AC+CB=AB.∴四边形DMNE 面积= AB 2, ∴面积不会改变.故选C .【课堂训练题】1.某校研究性学习小组在研究列车的行驶速度时,得到一个数学问题.如图,若v 是关于t 的函数,图象为折线O ﹣A ﹣B ﹣C ,其中A (t 1,350),B (t 2,350),C (,0),四边形OABC 的面积为70,则t 2﹣t 1=( )A .B .C .D .〖参考答案〗解:根据题意得, (AB+)×350=70,解之得,AB= ;读图可知,t 2﹣t 1=AB=.故选B . 2.如图为菱形ABCD 与正方形EFGH 的重迭情形,其中E 在CD 上,AD 与GH 相交于I点,且AD ∥HE .若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI 的面积为( )A .6B .8C .10﹣2D .10+2〖参考答案〗解:四边形ABCD 为菱形且∠A=60°⇒∠ADE=180°﹣60°=120°,又AD ∥HE ⇒∠DEH=180°﹣120°=60°,作DM ⊥HE 于M 点,则△DEM 为30°﹣60°﹣90°的三角形,又DE=4⇒EM=2,DM=2 ,且四边形EFGH 为正方形⇒∠H=∠I=90°,即四边形IDMH 为矩形⇒ID=HM=5﹣2=3,梯形HEDI 面积=( )=8 . 故选B .类型二梯形的中位线相关【例题2】如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值一定等于()A.6 B.8C.4 D.4〖选题意图〗解决此题的关键是确定点M的位置.如果在直线的同侧有两个点,要在直线上找一点到两个点的距离之和最短,方法是找其中一个点关于直线的对称点,连接该点和另一个点,与直线的交点即为到两个点的距离之和最小的点的位置.〖解题思路〗此题关键是确定M的位置,将EM、MN转化到一条直线上,就可求出其和最小值.〖参考答案〗解:作N点关于AC的对称点N’,连接N’E交AC于M∴∠DAC=∠ACB,∠DAC=∠DCA,∴∠ACB=∠DCA,∵点N关于AC对称点N′在CD上,CN=CN′=2又∵DC=4∴EN’为等腰梯形的中线∴EN′=(AD+BC)=6,∴EM+MN最小值为:EN′=6故选A【课堂训练题】1.如图所示,DE是△ABC的中位线,FG为梯形BCED的中位线,若BC=8,则FG等于()A.2cm B.3cmC.4cm D.6cm〖参考答案〗解:∵DE是△ABC的中位线,∴DE=BC=×8=4;∵FG为梯形BCED的中位线,∴FG=(DE+BC)=(4+8)=6.故选D.2.如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF 与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的()A.B.C.D.〖参考答案〗解:过点D作DQ⊥AB,交EF于一点W,∵EF是梯形的中位线,∴EF∥CD∥AB,DW=WQ,∴AM=CM,BN=DN.∴EM=CD,NF=CD.∴EM=NF,∵AB=3CD,设CD=x,∴AB=3x,EF=2x,∴MN=EF﹣(EM+FN)=x,∴S△AME+S△BFN=×EM×WQ+×FN×WQ=(EM+FN)QW=x•QW,S梯形ABFE=(EF+AB)×WQ=QW,S△DOC+S△OMN=CD×DW=xQW,S梯形FECD=(EF+CD)×DW=xQW,∴梯形ABCD面积=xQW+xQW=4xQW,图中阴影部分的面积=x•QW+xQW=xQW,∴图中阴影部分的面积是梯形ABCD面积的:=.故选:C.类型三角度的相关问题【例题3】如图,在梯形ABCD中,AB∥CD,AD=DC,求证:AC是∠DAB的平分线.〖选题意图〗本题考查了梯形的定义、平行线的性质及等腰三角形的性质,难度较小,是一道不错的证明题.〖解题思路〗利用梯形的一组对边平行可以得到内错角相等,然后利用等边对等角得到两个角相等,从而得到两个角相等,证得结论.〖参考答案〗解:∵AB ∥CD ,∴∠CAB=∠DCA .∵AD=DC ,∴∠DAC=∠DCA .∴∠DAC=∠CAB ,即AC 是∠DAB 的角平分线.【课堂训练题】1.在梯形ABCD 中,DC ∥AB ,AD =BC ,∠A =60°,BD ⊥AD .求∠DBC 和∠C 的大小.〖参考答案〗如图1,梯形ABCD 中,因为DC ∥AB ,∠A =60°,所以∠ADC =120°,又因为BD ⊥AD ,所以∠ADB =90°,即∠ABD =30°,而AD =BC ,所以∠ABC =60°,∠C =∠ADC =120°,所以∠DBC =30°.2.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°.点E 是DC 的中点,过点E 作DC 的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足CF=AD ,MF=MA .(1)若∠MFC=120°,求证:AM=2MB ;(2)求证:∠MPB=90°﹣∠FCM .〖参考答案〗证明:(1)连接MD ,∵点E 是DC 的中点,ME ⊥DC ,∴MD=MC ,A D C B又∵AD=CF,MF=MA,∴△AMD≌△FMC,∴∠MAD=∠MFC=120°,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∴∠MAB=30°,在Rt△AMB中,∠MAB=30°,∴BM=AM,即AM=2BM;(2)∵△AMD≌△FMC,∴∠ADM=∠FCM,∵AD∥BC,∴∠ADM=∠CMD∴∠CMD=∠FCM,∵MD=MC,ME⊥DC,∴∠DME=∠CME=∠CMD,∴∠CME=∠FCM,在Rt△MBP中,∠MPB=90°﹣∠CME=90°﹣∠FCM.类型四求线段的长的问题【例题4】如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.(1)求证:△AMD≌△BME;(2)若N是CD的中点,且MN=5,BE=2,求BC的长.〖选题意图〗本题考查了全等三角形的判断及三角形中位线定理的应用,熟记其性质、定理是证明、解答的基础.〖解题思路〗(1)找出全等的条件:BE=AD ,∠A=∠ABE ,∠E=∠ADE ,即可证明;(2)首先证得MN 是三角形的中位线,根据MN= (BE+BC ),又BE=2,即可求得. 〖参考答案〗证明:(1)∵AD ∥BC ,∴∠A=MBE ,∠ADM=∠E ,在△AMD 和△BME 中,,∴△AMD ≌△BME ;(2)∵△AMD ≌△BME ,∴MD=ME ,ND=NC ,∴MN= EC ,∴EC=2MN=2×5=10,∴BC=EC ﹣EB=10﹣2=8.【课堂训练题】1.如图,已知梯形ABCD ,上底AD =12,下底BC =28,EF ∥AB 分别交AD 、BC 于点E 、F ,且将梯形分成面积相等的两部分.试求BF 的长.〖参考答案〗设BF =x ,则FC =28-x.又设AD 与BC 间的距离为h ,即梯形和平行四边形ABFE 的BF 边上的高为h.在梯形ABCD 中,因为AD ∥BC ,EF ∥AB ,所以四边形ABFE 是平行四边形,所以AE =BF =x ,DE =12-x.因为平行四边形ABFE 的面积=BE×h ,梯形EFCD 的面积=12(DE+FC)×h , 所以x×h =12[(12-x)+(28-x)]×h ,解得x =10, 答 BF 的长为10.2.如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥DC ,AB=BC ,且AE ⊥BC .(1)求证:AD=AE ; D A FB C E(2)若AD=8,DC=4,求AB 的长.〖参考答案〗解:(1)连接AC ,∵AB ∥CD ,∴∠ACD=∠BAC ,∵AB=BC ,∴∠ACB=∠BAC ,∴∠ACD=∠ACB ,∵AD ⊥DC ,AE ⊥BC ,∴∠D=∠AEC=90°,∵AC=AC ,∴, ∴△ADC ≌△AEC ,(AAS )∴AD=AE ;(2)由(1)知:AD=AE ,DC=EC ,设AB=x ,则BE=x ﹣4,AE=8,在Rt △ABE 中∠AEB=90°,由勾股定理得:82+(x ﹣4)2=x 2,解得:x=10,∴AB=10. 类型五 线段的和差问题【例题5】已知:等腰梯形ABCD 中,AD ∥BC ,MN 是中位线交AC 于P ,AC 平分∠BCD ,MP=12,PN=8,求:梯形ABCD 的周长.〖选题意图〗此题主要考查梯形、三角形中位线的性质和角平分线的定义,难度中等.〖解题思路〗由三角形中位线性质可求得上底为16,下底为24,再由角平分线和平行的性质,可求得腰长和上底相等,据此求解.〖参考答案〗解:∵AD∥BC,MN是中位线交AC于P,∴MP是△ABC的中位线,PN是△ACD的中位线,∠1=∠3,∵MP=12,PN=8,∴BC=2MP=24,AD=2PN=16,∵AC平分∠BCD,∴∠1=∠2,∴∠2=∠3,∴AD=CD=16,∴AB=CD=16,∴梯形ABCD的周长为:16×3+24=72.【课堂训练题】1.如图所示.△ABC外一条直线l,D,E,F分别是三边的中点,AA1,FF1,DD1,EE1都垂直l于A1,F1,D1,E1.求证:AA1+EE1=FF1+DD1.〖参考答案〗证明:连接EF,EA,ED.由中位线定理知,EF∥AD,DE∥AF,∴ADEF是平行四边形,∴对角线AE,DF互相平分,设它们交于O,作OO1⊥l于O1,则OO1是梯形AA1E1E及FF1D1D的公共中位线,∴(AA1+EE1)=(FF1+DD1)=OO1,即AA1+EE1=FF1+DD1.2.如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,按下列要求画图并回答:(1)画∠MAB、∠NBA的平分线交于E,∠AEB是什么角?(2)过点E作一直线交AM于D,交BN于C,观察线段DE、CE,你有何发现?(3)无论DC的两端点在AM、BN如何移动,只要DC经过点E,AD+BC的值是否有变化?并说明理由.〖参考答案〗解:(1)∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠1+∠3=(∠MAB+∠ABN)=90°,∴∠AEB=180°﹣∠1﹣∠3=90°,即∠AEB为直角;(2)过E点作辅助线EF使其平行于AM,如图则EF∥AD∥BC,∴∠AEF=∠4,∠BEF=∠2,∵∠3=∠4,∠1=∠2,∴∠AEF=∠3,∠BEF=∠1,∴AF=FE=FB,∴F为AB的中点,又EF∥AD∥BC,根据平行线等分线段定理得到E为DC中点,∴ED=EC;(3)由(2)中结论可知,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总满足EF为梯形ABCD中位线的条件,所以总有AD+BC=2EF=AB.类型六等腰梯形的判定【例题6】(2011•百色)已知矩形ABCD的对角线相交于点O,M、N分别是OD、OC上异于O、C、D的点.(1)请你在下列条件①DM=CN,②OM=ON,③MN是△OCD的中位线,④MN∥AB中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM为等腰梯形,你添加的条件是.(2)添加条件后,请证明四边形ABNM是等腰梯形.〖选题意图〗本题主要考查了等腰梯形的判定,难度中等,注意灵活运用全等三角形的判定与性质、矩形的性质和平行线分线段成比例的关系.〖解题思路〗(1)从4个条件中任选一个即可,可以添加的条件为①.(2)先根据SAS证明△AND≌△BCN,所以可得AM=BN,有矩形的对角线相等且平分,可得OD=OC即OM=ON,从而知,根据平行线分线段成比例,所以MN∥CD ∥AB,且MN≠AB,即四边形ABNM是等腰梯形.〖参考答案〗解:(1)选择①DM=CN;(2)证明:∵AD=BC,∠ADM=∠BCN,DM=CN∴△AND≌△BCN,∴AM=BN,由OD=OC知OM=ON,∴∴MN∥CD∥AB,且MN≠AB∴四边形ABNM是等腰梯形.【课堂训练题】1.如图,在四边形ABCD中,AD<BC,对角线AC、BD相交于O点,AC=BD,∠ACB=∠DBC.(1)求证:四边形ABCD为等腰梯形.(2)若E为AB上一点,延长DC至F,使CF=BE,连接EF交BC于G,请判断G点是否为EF中点,并说明理由.〖参考答案〗证明:(1)∵∠ACB=∠DBC,∴OB=OC∵AC=BD,∴OA=OD,∴∠OAD=∠ODA∵∠DOC=∠OAD+∠ODA=∠OBC+∠OCB∴2∠OAD=2∠OCB,∴∠OAD=∠OCB∴AD∥BC∵AD<BC∴四边形ABCD为梯形.在△ABC和△DCB中:AC=BD,∠ACB=∠DBC,CB=BC.∴△ABC≌△DCB∴AB=CD∴四边形ABCD为等腰梯形.(2)点G是EF中点理由:过E作EH∥CD交BC于H.∴∠EHB=∠DCB,∠EHG=∠GOF∵梯形ABCD为等腰梯形∴∠EBH=∠DCB,∴EB=EH∵EB=CF,∴EH=CF在△EHG和△FGC中:∠EHG=∠FCG∠EGH=∠FGCEH=CF∴△EHG≌△FGC∴EG=FG即G为EF中点.2.如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.(1)求证:梯形ABCD是等腰梯形;(2)若∠BDC=30°,AD=5,求CD的长.〖参考答案〗证明:(1)∵AE∥BD,∴∠E=∠BDC.∵DB平分∠ADC,∴∠ADC=2∠BDC.又∵∠C=2∠E,∴∠ADC=∠BCD.∴梯形ABCD是等腰梯形.(2)由第(1)问,得∠C=2∠E=2∠BDC=60°,且BC=AD=5,∵在△BCD中,∠C=60°,∠BDC=30°,∴∠DBC=90°.∴DC=2BC=10.第三部分课后自我检测试卷A类试题:1.我们学习了四边形和一些特殊的四边形,如图表示了在某种条件下它们之间的关系.如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行.那么请你对标上的其他6个数字序号写出相对应的条件.2.如图,在正六边形ABCDEF中,对角线AE与BF相交于点M,BD与CE相交于点N.(1)观察图形,写出图中两个不同形状的特殊四边形;(2)选择(1)中的一个结论加以证明.3.在▱ABCD中,AC是一条对角线,∠B=∠CAD,延长BC至点E,使CE=BC,连接DE.(1)求证:四边形ABED是等腰梯形;(2)若AB=AD=4,求梯形ABED的面积.4.如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.过点D作DE ⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF,求证:△DEF为等边三角形.5.已知,如图,MN是▱ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.B类试题:6.如图,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠B=60°,BC=2AD,E、F分别为AB、BC的中点.(1)求证:四边形AFCD是矩形;(2)求证:DE⊥EF.7.在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,连接EF、EC、BF、CF.(1)判断四边形AECD的形状(不证明);(2)在不添加其它条件下,写出图中一对全等的三角形,用符号“≌”表示,并证明;(3)若CD=2,求四边形BCFE的面积.8.如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA,∠AEB=90°,设AD=x,BC=y,且(x﹣3)2+|y﹣4|=0.(1)求AD和BC的长;(2)你认为AD和BC还有什么关系?并验证你的结论;(3)你能求出AB的长度吗?若能,请写出推理过程;若不能,请说明理由.C类试题:9.如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.10.如图,在四边形ABCD中,AD∥BC,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)求证:AE⊥BF;(2)求证:点M在AB、CD边中点的连线上.课后自我检测试卷参考答案A类试题:1.解:③﹣﹣相邻两边垂直;④﹣﹣相邻两边相等;⑤﹣﹣相邻两边相等;⑥﹣﹣相邻两边垂直;⑦﹣﹣两腰相等;⑧﹣﹣一条腰垂直于底边.2.解:(1)矩形ABDE,矩形BCEF;或菱形BNEM;或直角梯形BDEM,AENB等.(2)选择ABDE是矩形.证明:∵ABCDEF是正六边形,∴∠AFE=∠FAB=120°,∴∠EAF=30°,∴∠EAB=∠FAB﹣∠FAE=90°.同理可证∠ABD=∠BDE=90°.∴四边形ABDE是矩形.选择四边形BNEM是菱形.证明:同理可证:∠FBC=∠ECB=90°,∠EAB=∠ABD=90°,∴BM∥NE,BN∥ME.∴四边形BNEM是平行四边形.∵BC=DE,∠CBD=∠DEN=30°,∠BNC=∠END,∴△BCN≌△EDN.∴BN=NE.∴四边形BNEM是菱形.选择四边形BCEM是直角梯形.证明:同理可证:BM∥CE,∠FBC=90°,又由BC与ME不平行,得四边形BCEM是直角梯形.3.(1)证明:∵在□ABCD中,AD∥BC,∴∠CAD=∠ACB.∵∠B=∠CAD,∴∠ACB=∠B.∴AB=AC.∵AB∥CD,∴∠B=∠DCE.又∵BC=CE,∴△ABC≌△DCE(SAS).∴AC=DE=AB.∵AD∥BE,∴为等腰梯形.(2)解:∵四边形ABCD为平行四边形,∴AD=BC=CE=4.∴△ABC为等边三角形.∴梯形高=三角形高=2.∴S=(4+8)×2×=12.4.证明:∵DC∥AB,AD=BC,∠A=60°,∴∠A=∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=30°,∵DC∥AB,∴∠BDC=∠ABD=30°,∴∠CBD=∠CDB,∴CB=CD,∵CF⊥BD,∴F为BD的中点,∵DE⊥AB,∴DF=BF=EF,由∠ABD=30°,得∠BDE=60°,∴△DEF为等边三角形.5.证明:连接AC,BD交于O,过O作OO′⊥MN垂足为O′根据平行四边形的性质知OO′同为梯形BB′D′D与梯形AA′C′C的中位线得AA′+CC′=BB′+DD′.B类试题:6.证明:(1)∵F为BC的中点,∴BF=CF=BC,∵BC=2AD,即AD=BC,∴AD=CF,∵AD∥BC,∴四边形AFCD是平行四边形,∵BC⊥CD,∴∠C=90°,∴▱AFCD是矩形;(2)∵四边形AFCD是矩形,∴∠AFB=∠FAD=90°,∵∠B=60°,∴∠BAF=30°,∴∠EAD=∠EAF+∠FAD=120°,∵E是AB的中点,∴BE=AE=EF=AB,∴△BEF是等边三角形,∴∠BEF=60°,BE=BF=AE,∵AD=BF,∴AE=AD,∴∠AED=∠ADE=﹣=30°,∴∠DEF=180°﹣∠AED﹣∠BF=180°﹣30°﹣60°=90°.∴DE⊥EF.7.解:(1)平行四边形;(2)△BEF≌△FDC或(△AFB≌△EBC≌△EFC)证明:连接DE,∵AB=2CD,E为AB中点,∴DC=EB,又∵DC∥EB,∴四边形BCDE是平行四边形,∵AB⊥BC,∴四边形BCDE为矩形,∴∠AED=90°,Rt△ABF中,∠A=60°,F为AD中点,∴AE=AD=AF=FD,∴△AEF为等边三角形,∴∠BEF=180°﹣60°=120°,而∠FDC=120°,在△BEF和△FDC中DC=BE,∠CDA=∠FEB=120°,DF=EF,∴△BEF≌△FDC(SAS).(其他情况证明略)(3)若CD=2,则AD=4,DE=BC=2,∴S△ECF=S AECD=CD•DE=×2×2=2,S△CBE=BE•BC=×2×2=2,∴S四边形BCFE=S△ECF+S△EBC=2+2=4.8.解:(1)∵AD=x,BC=y,且(x﹣3)2+|y﹣4|=0,∴AD=3,BC=4.(2)AD∥BC,∵在△AEB中,∠AEB=90°,∴∠EAB+∠EBA=90°,又∵EA、EB分别平分∠DAB和∠CBA,∴∠DAB+∠ABC=180°.∴AD∥BC.(3)能.如图,过E作EF∥AD,交AB于F,则∠DAE=∠AEF,∠EBC=∠BEF,∵EA、EB分别平分∠DAB和∠CBA,∴∠EAF=∠AEF,∠EBF=∠BEF,∴AF=EF=FB,又∵EF∥AD∥BC,∴EF是梯形ABCD的中位线,∴EF=,∴AB=7.C类试题:9.(1)证明:如图,∵AE平分∠BAD,∴∠1=∠2,∵AB=AD,AE=AE,∴△BAE≌△DAE,∴BE=DE,∴∠2=∠3=∠1,∴AB=BE,∴AB=BE=DE=AD,∴四边形ABED是菱形.(2)解:△CDE是直角三角形.如图,过点D作DF∥AE交BC于点F,则四边形AEFD是平行四边形,∴DF=AE,AD=EF=BE,∵CE=2BE,∴BE=EF=FC,∴DE=EF,又∵∠ABC=60°,AB∥DE,∴∠DEF=60°,∴△DEF是等边三角形,∴DF=EF=FC,∴△CDE是直角三角形.10.(1)证明:如图,∵AE、BF分别平分∠DAB和∠ABC,∴∠1=∠2,∠3=∠4,∵AD∥BC,∴∠DAB+∠CBA=180°,即(∠1+∠2)+(∠3+∠4)=180°,2∠2+2∠3=180°,∴∠2+∠3=90°,而∠2+∠3+∠AMB=180°,∴∠AMB=90°,即AE⊥BF;(2)证明:如图,设AB、CD的中点分别为G、H,连接MG,∵M为Rt△ABM斜边AB的中点,∴MG=AG=GB,又∵∠1=∠2,∴∠1=∠5,∴GM∥AD.∵AD∥BC,∴四边形ABCD是以AD、BC为底的梯形,又G、H分别为两腰AB、DC的中点,由梯形中位线定理可知,GH∥AD,而证得GM∥AD,根据平行公理可知,过点G与AD平行的直线只有一条,∴M点在GH上,即M点在AB、CD边中点的连线上.。
八年级数学上册第十一章梯形知识点总
结 (新版)新人教版
1. 梯形的定义
梯形是指有两条平行边的四边形。
其中,较长的两边叫做上底和下底,两条连接上底和下底的斜边叫做腰,而两条腰的交点叫做顶点。
2. 梯形的分类
根据上底和下底的长度关系,梯形可以分为以下几类:
- 等腰梯形:上底和下底长度相等的梯形。
- 直角梯形:腰和底边之间有直角的梯形。
- 一般梯形:除了等腰梯形和直角梯形以外的其他梯形。
3. 梯形的性质
- 梯形的对边平行:一条边和与之不共顶点的另一条边平行。
- 梯形的底角和顶角互补:底边的两个邻角和顶边的两个邻角互补,即它们的和为180度。
- 等腰梯形的性质:等腰梯形的底角相等,顶角相等,且底边中点连线与顶边中点连线平行。
4. 梯形的面积计算
梯形的面积可以用以下公式计算:
面积 = [(上底 + 下底) ×高] ÷ 2
5. 梯形的周长计算
梯形的周长可以用以下公式计算:
周长 = 上底 + 下底 + 两条腰的长度
以上是八年级数学上册第十一章梯形的基本知识点总结,希望对您的研究有所帮助!。
人教版八年级数学上册说课稿13.3 等腰三角形一. 教材分析等腰三角形是八年级数学上册第十三章《三角形》的一个小节,本节内容主要让学生掌握等腰三角形的性质,并能运用等腰三角形的性质解决一些实际问题。
在教材中,通过引入等腰三角形的定义,让学生通过观察、操作、猜想、验证等方法,探究等腰三角形的性质,从而培养学生的动手操作能力和探究能力。
二. 学情分析学生在学习本节内容前,已经学习了三角形的概念、性质和分类,对三角形有了一定的了解。
但等腰三角形作为一种特殊的三角形,学生可能还比较陌生。
因此,在教学过程中,我将会引导学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质,从而加深学生对三角形知识的理解。
三. 说教学目标1.知识与技能目标:让学生掌握等腰三角形的性质,并能运用等腰三角形的性质解决一些实际问题。
2.过程与方法目标:通过观察、操作、猜想、验证等方法,培养学生的动手操作能力和探究能力。
3.情感态度与价值观目标:让学生在探究等腰三角形性质的过程中,体验到数学的乐趣,增强对数学的兴趣。
四. 说教学重难点1.教学重点:等腰三角形的性质。
2.教学难点:如何引导学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、小组合作法等。
2.教学手段:多媒体课件、几何画板、实物模型等。
六. 说教学过程1.导入新课:通过复习三角形的相关知识,引出等腰三角形的概念。
2.探究等腰三角形的性质:(1)让学生观察等腰三角形的模型,引导学生发现等腰三角形的两腰相等。
(2)让学生用几何画板画出一个等腰三角形,并测量其角度,引导学生发现等腰三角形的底角相等。
(3)让学生分组讨论,总结等腰三角形的性质,并展示成果。
3.验证等腰三角形的性质:(1)让学生运用已学的知识,通过观察、操作、猜想、验证等方法,探究等腰三角形的性质。
(2)教师引导学生进行总结,得出等腰三角形的性质。
《等腰三角形》各位评委老师:大家好!我是应聘初中数学01号考生,今天我抽到的说课题目是等腰三角形。
下面我将从说教材、说学情、说教法、说学法、说教学程序和板书设计这六个方面展开。
接下来开始我的说课。
一、说教材等腰三角形是人教版八年级上册第十二章第三节《等腰三角形》第一课时。
本节内容学习是在理解了轴对称以及了解了全等三角形的判定的基础上实行的所以具有一定的知识积累,。
通过对本节内容等腰三角形的“等边对等角”和“等腰三角形的三线合一”的性质等知识的学习。
为今后学习等边三角形和等腰梯形等知识打下基础,所以本节课无论是在本章教学中,还是初中数学教学中都占有非常重要的位置。
基于以上对教材地位和作用的分析,依照《新课程标准》的教学要求,结合教材和学生的年龄特点,确定本节课的三维教学目标如下:知识技能:能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质。
过程与方法:通过实践,观察,证明等腰三角形的性质,发展学生合情推理水平和演绎推理水平。
通过观察等腰三角形的对称性,培养学生观察,分析,归纳问题的水平。
情感、态度与价值观:引导学生对图像的观察,发现,激发学生的好奇心和求知欲,并在使用数学知识解答问题的活动中获取成功的喜悦,建立学习的自信心。
通过对数学课程标准理解及对教材分析的基础上,在新课改理念的指导下,我确立了如下教学重点、难点重点:掌握等腰三角形的性质并能使用该性质解决一些实际问题。
难点:理解等腰三角形性质的证明的过程。
二、说学情现代教育理论强调:“任何教学活动都必须以满足学习者的需要为出发点和落脚点。
”新课程标准也强调“数学教育要面向全体学生”,接下来我对学情实行分析。
这是八年级的课程,处在该年级的学生在生理上的特点是,学生的思维逐步由具体形象思维向抽象逻辑思维转变,观察水平,抽象水平和想象水平也随着迅速度完成长。
通过前面的学习,学生已具备一些分析问题、解决问题的水平,这些都是我在教学中较为注意的地方。