光模块误码仪工作原理
- 格式:docx
- 大小:100.03 KB
- 文档页数:3
SDH光纤传输中的误码问题作者:刘金权来源:《科技传播》 2018年第3期摘要本文首先对SDH光纤传输中存在的误码问题做出简要的介绍,然后在此基础上提出了影响误码问题产生的诸多因素以及解决误码问题的思路和方法,以此希望能够有效地提高光纤通信技术人员在SDH光纤传输误码维护方面的质量和效率。
关键词 SDH;光纤传输;系统误码中图分类号 TP3文献标识码 A文章编号 1674-6708(2018)204-0130-02误码产生于信号传输过程中,是因为在此过程中衰变会影响信号的电压,进而导致信号在传输过程中被严重破坏,进而才会产生误码。
然而很明显,光网络通信设备的不同,因其误码问题的原因迥异,所以最终产生的误码问题也会各不相同。
而且,众所周知的光纤通信系统是十分复杂的,其中包括大量的仪表设备、光电器件以及光纤光缆等,各个组成部分之间相互联系、相辅相成,只要其中任何一个部分出现一些问题或故障,就可能导致整个光纤通信传输出现错误或者整个结构的崩塌,所以,光纤通信系统中的传输设备存在的各种误码问题必须得到及时的解决,从而才能有效地保证SDH光纤传输的质量和效率。
1 SDH光纤传输中的误码问题概述所谓误码,指的是经过接收判决之后再生成数字码流中某些比特出现了错误,导致传输的信息质量被不同程度的破坏。
误码是传输系统中存在的一个影响极大的危害,较小的误码问题可能只会在一定程度上影响传输系统的稳定性,但较大的误码问题就会导致整个传输系统的中断和崩塌。
根据网络性能,可以将传输系统中存在的误码问题分为以下两个类型:其一是内部机理产生的误码,它包含有各种噪声源产生的误码、定位抖动产生的误码、复用器交叉连接设备和交换机产生的误码以及由光纤色散产生的码间干扰引起的误码等,这种类型的误码是由传输系统长时间的误码性能逐渐反应出来的。
其二是脉冲干扰产生的误码,这种类型的误码是由于突发脉冲,比如受到电磁干涉设备或故障电源瞬态干扰等一系列的原因产生的。
光模块误码仪原理嘿,朋友!你有没有想过,在那看不见摸不着的光通信世界里,如果数据出错了可咋整呢?这时候啊,光模块误码仪就闪亮登场啦。
我有个朋友叫小李,他就在一家通信公司上班。
有一次我去他公司玩,看到那些复杂的设备,真是眼花缭乱。
我指着一个小巧的仪器问他:“这是啥呀?”他就开始给我讲起了光模块误码仪的事儿。
咱先得知道光模块是干啥的。
光模块啊,就像是光通信里的小邮差,负责把各种数据通过光信号的形式在光纤里传来传去。
可是呢,这一路上可能会出岔子,就像小邮差在送信的路上可能会遇到坏天气或者道路塌方一样。
这时候数据就可能会出错,也就是产生误码。
那光模块误码仪怎么发现这些错误呢?这就像是一个超级侦探。
它会给光模块发送一些已知的测试数据,这些数据就像是精心准备的小包裹。
光模块呢,就按照正常的流程把这些“包裹”发送出去。
误码仪在接收端等着,就像在终点等着包裹的人。
如果接收到的数据和它当初发出去的不完全一样,那就说明有问题啦。
这就好比你寄出去的是一个红色的包裹,结果收到的却是蓝色的,那肯定是中间出了差错。
误码仪检测误码的原理其实涉及到一些挺复杂的技术呢。
我又问小李:“它怎么就能知道数据不一样了呢?”小李就开始给我详细解释。
你看啊,它是根据一定的编码规则来判断的。
比如说,在光通信里有很多种编码方式,就像我们有不同的语言一样。
误码仪知道这个“语言”的语法规则,它按照这个规则把发送的数据编码成光信号发出去,接收的时候再按照同样的规则解码。
如果解码出来的结果和原来的不一样,那就判定为误码。
这就好像我们说话,如果有人把“我吃饭”说成了“我饭吃”,按照我们汉语的语法规则,这就是错误的表达。
那这个误码仪的内部构造又是啥样的呢?小李把误码仪打开给我看了看(当然是在确保安全和允许的情况下)。
里面有好多小芯片和线路,就像一个小迷宫一样。
这些小芯片就像是一个个小管家,各自负责不同的任务。
有的小芯片负责产生测试数据,就像一个数据制造工厂。
光模块的dml调制原理一、概述光模块是光纤通信系统中的重要组成部分,用于将电信号转换成光信号,以及将光信号转换成电信号。
调制是光模块中的关键技术之一,用于改变光信号的幅度、频率、相位等特性,从而实现传输信息的目的。
DML调制是其中的一种调制方式,它具有较高的传输速率和较低的误码率,被广泛应用于高速光纤通信系统中。
DML调制的基本原理是将数字信号转换成一系列幅度不同的脉冲,每个脉冲对应于一种不同的光强水平。
这些脉冲被编码成激光器的功率变化,通过控制激光器的功率来改变光的强度,从而实现数字信息的传输。
在DML调制中,数字信号被转换成一系列的光脉冲,这些光脉冲具有不同的光强水平。
这些光脉冲通过光纤传输,到达接收端时,通过光电检测器将其转换回电信号。
光电检测器将接收到的光强水平转换成不同的电信号,从而还原出原始数字信号。
为了提高DML调制的传输速率和降低误码率,通常采用啁啾光纤光栅(CFBG)来调节光的波前,使得不同光强水平的光脉冲在不同的频率下传输,从而实现更高的频域分辨率和更低的误码率。
三、调制方式比较在高速光纤通信系统中,常用的调制方式包括直接调制、外调制和内调制等。
其中,直接调制是一种常见的电调制方式,它通过改变电信号的幅度、频率、相位等特性来改变光的强度。
外调制则是将光电调制器与光波导结构结合在一起,通过改变光波导的传输特性来改变光的强度。
内调制则是将光电调制器集成到激光器芯片中,通过改变激光器的电学特性来改变光的强度。
与直接调制相比,DML调制具有更高的传输速率和较低的误码率,这是因为DML调制采用了啁啾光纤光栅来调节光的波前,使得不同光强水平的光脉冲在不同的频率下传输。
此外,DML调制还具有较低的成本和较高的集成度,因此被广泛应用于高速光纤通信系统中。
四、总结本文介绍了光模块中的DML调制原理,包括其基本原理、啁啾光纤光栅的应用以及与其他调制方式的比较。
DML调制采用了一系列幅度不同的脉冲来编码数字信息,通过控制激光器的功率来改变光的强度,从而实现数字信息的传输。
误码仪原理误码仪是一种用来检测和分析数字通信系统中误码率的仪器。
在数字通信系统中,由于种种因素的影响,信号在传输过程中很容易受到干扰和失真,从而导致误码的产生。
误码仪的作用就是通过对接收到的信号进行分析,来评估系统的性能和稳定性。
下面我们将介绍误码仪的原理及其工作过程。
首先,误码仪通过接收信号并将其转换成数字信号进行处理。
在数字通信系统中,信号经过模数转换器(ADC)转换成数字信号后,误码仪会对这些数字信号进行采样和分析。
通过对信号的采样和分析,误码仪可以获取到信号的波形、频谱等信息。
其次,误码仪会对接收到的信号进行解调和解码处理。
在数字通信系统中,信号经过调制和编码后被发送出去,而误码仪需要对接收到的信号进行解调和解码处理,以便获取到原始的数字数据。
通过解调和解码处理,误码仪可以还原出原始的数字数据,并对其进行误码分析。
接着,误码仪会对原始的数字数据进行误码分析。
误码分析是误码仪的核心功能之一,通过对原始数据进行误码分析,误码仪可以评估系统的误码率、误码分布、误码模式等参数。
通过误码分析,可以帮助工程师了解系统的性能和稳定性,及时发现和解决问题。
最后,误码仪会输出误码分析结果并进行报告。
误码仪会将误码分析结果以图表、报告等形式输出,以便工程师进行查看和分析。
通过误码分析结果,工程师可以了解系统的性能状况,及时进行调整和优化。
总的来说,误码仪是一种用来检测和分析数字通信系统中误码率的重要仪器。
它通过对接收到的信号进行采样、解调、解码和误码分析,帮助工程师了解系统的性能和稳定性,及时发现和解决问题。
希望以上内容能够帮助大家更好地理解误码仪的原理及其工作过程。
光传输设备误码问题分析[提要]误码问题是传输设备维护中经常碰到的问题。
本文首先介绍一些光传输设备误码检测原理,以及误码产生的原因等原理知识,然后结合案例讲述光传输设备误码问题的处理思路和方法。
关键词:SDH;光传输;误码检测;误码处理一、误码机理(一)误码检测。
SDH光传输系统对误码的检测,是以“块”为单位的,所谓“块”,是指一系列与通道有关的连续比特。
当同一块内的任意比特发生差错时,就称该块为误码块。
SDH光传输设备中按分段分层的思想对误码进行全面系统的检测。
具体有再生段误码B1、复用段误码B2、高阶通道误码B3、低阶通道误码V5。
它们之间的关系可以用图1表示。
(图1)图1中,RST、MST、HPT、LPT分别表示再生段终端、复用段终端、高阶通道终端和低阶通道终端;B1、B2、B3以及V5误码分别在这些终端间进行监测。
由图1可以看出,如果只是低阶通道有误码,则高阶通道、复用段和再生段将监测不到该误码;如果再生段有误码,则将导致复用段、高阶通道、低阶通道出现误码。
所以,一般来说,有高阶误码则会有低阶误码。
例如,如果有B1误码,一般就会有B2、B3和V5误码;反之,有低阶误码则不一定有高阶误码。
如有V5误码,则不一定会有B3、B2和B1误码。
由于高阶误码会导致低阶误码,因此在处理误码问题时,我们应按照先处理高阶误码后处理低阶误码的顺序来进行处理。
(二)误码相关的性能和告警事件。
光传输系统本端检测到误码时,除本端上报误码性能或告警事件外,本端还将误码检测情况通过开销字节通知对端。
根据本端和对端上报的这些性能和告警事件,可以方便地定位是哪一段通道或哪一个方向出现误码。
表1给出了与误码相关的性能和告警事件列表。
(表1)二、误码问题常见原因误码产生的原因很多,但归结起来有两大类,外部原因和设备原因。
(一)外部原因。
(1)光纤性能劣化、损耗过高。
接收光功率低于接收灵敏度;(2)传输距离过短、未加衰减器,导致接受光功率过载;(3)光纤接头不清洁或连接不正确;(4)设备附近有强烈干扰源;(5)设备接地不好;(6)设备散热不良、工作温度过高。
光模块误码仪工作原理光通信因其传输损耗低、信息容量大、传输速率快等优点正成为通信技术的核心力量,光模块的应用也越来越广泛。
传输速率的加快,高速光通信系统中由于衰减、色散等问题会产生误码现象,准确有效的测量光模块的误码率至关重要。
那么,误码仪的工作原理是怎样的呢?误码测试原理误码测试的对象一般是指数字传输系统,可以理解为数字信息传输的信道,将码型发生器与被测对象的输入端相连,被测对象的输出端与误码检测器相连,就构成了误码测试结构的基本框图数字传输系统误码测试原理图图中的实际测试中,码型发生器和误码检测器经常集成在一起,组成了误码测试仪的重要部分。
误码发生器生成一段连续测试码元序列,编码以后送到被测试系统的输入端,信号在通过被测系统信道以后被误码测试仪的误码检测器接收并解码,得到含有误码的测试码元序列。
把接收端的测试码元序列与发送端的测试信号逐码进行对比,如果某一位码元不一致,则误码计数加一。
统计一段时间内的误码个数,记录存储,计算这段时间内的误码率,分析并显示测试误码的结果,这就是误码测试仪的工作原理。
误码率(BER)=在平均间隔内计读的出错位数/在平均间隔内被传输的总位数误码测试仪的工作原理框图为了对数字系统进行误码率测量,通常采用测试码型激励输入端。
一般测试码型采用伪随机二进制序列(PRBS),主要有PRBS7、PRBS9、PRBS21、PRBS23和PRBS31。
伪随机序列伪随机序列(PRBS)是误码测试系统中最常用的测试码,之所以叫伪随机序列,是因为这种二进制序列具有近似于随机信号的特征,和噪声有着相似的性能。
但它又不是真正的随机序列,实际上它是确定的,一段PRBS码是具有最大码长且周期重复的。
PRBS信号是由PRBS码型发生器生成的。
PRBS发生器通常是由线性反馈移位寄存器和异或电路组成。
如下图是PRBS7的码型发生器,其初始值是0000001,本原多项式是X6+X7+1。
即将寄存器的第6位和第7位做异或运算后,输入到寄存器的第1位,寄存器的第7位同时也是PRBS7发生器的输出。
100g光模块产生误码误码是指在数据传输过程中,接收端所接收到的信号与发送端所发送出的信号不一致,从而导致数据错误的现象。
在光纤通信中,100G光模块是一种高带宽、高速率的传输设备,但在实际应用中,由于各种因素的影响,光模块也会产生误码。
产生误码的原因主要有以下几个方面:1.光纤质量问题:光纤通信中光信号通过光纤进行传输,而光纤的质量对传输效果有着重要影响。
如果光纤受到损坏、弯曲或接头处存在问题等,都有可能导致光信号的失真,从而产生误码。
2.光模块本身问题:光模块是实现光信号发送与接收的核心设备,其稳定性和工作性能对误码率有着重要影响。
如果光模块的光发射功率、接收灵敏度等参数不符合规范要求,或者光模块内部元件出现老化或损坏等问题,都可能导致误码的产生。
3.环境干扰问题:光纤通信系统一般处于复杂的环境中,可能存在电磁干扰、温度变化、湿度变化等问题,这些因素都可能导致光模块的性能受到影响,进而产生误码。
4.光纤连接问题:光纤通信系统中光纤的连接十分关键,不良的连接状态也会导致信号的失真,从而产生误码。
比如连接过紧、连接松动、接口不匹配等问题都可能导致误码的产生。
针对误码问题,可以采取以下几个方面的措施:1.加强光纤维护:定期对光纤进行检查、清洁和维护,确保光纤线路的质量良好,避免光纤损伤或弯曲等问题。
2.定期检测光模块:定期对光模块进行检测,包括光发射功率、接收灵敏度等参数的测试,确保光模块工作正常。
如果发现问题,及时更换或维修故障的光模块。
3.加强环境控制:在光纤通信系统中,应控制好环境条件,避免电磁干扰、温湿度变化等问题对系统的影响。
可以通过合理设计机房、安装屏蔽设备等方式来减少环境干扰。
4.加强连接管理:对光纤线路的连接进行严格管理,确保连接的可靠性和稳定性,避免连接过紧或过松、接口不匹配等问题对信号质量的影响。
总之,100G光模块产生误码的原因有多方面的因素,需要对光纤、光模块、环境以及连接等方面进行全面的管理和维护,才能确保光纤通信系统的稳定运行,减少误码的产生。
光模块误码仪工作原理
光通信因其传输损耗低、信息容量大、传输速率快等优点正成为通信技术的核心力量,光模块的应用也越来越广泛。
传输速率的加快,高速光通信系统中由于衰减、色散等问题会产生误码现象,准确有效的测量光模块的误码率至关重要。
那么,误码仪的工作原理是怎样的呢?
误码测试原理
误码测试的对象一般是指数字传输系统,可以理解为数字信息传输的信道,将码型发生器与被测对象的输入端相连,被测对象的输出端与误码检测器相连,就构成了误码测试结构的基本框图
数字传输系统误码测试原理图
图中的实际测试中,码型发生器和误码检测器经常集成在一起,组成了误码测试仪的重要部分。
误码发生器生成一段连续测试码元序列,编码以后送到被测试系统的输入端,信号在通过被测系统信道以后被误码测试仪的误码检测器接收并解码,得到含有误码的测试码元序列。
把接收端的测试码元序列与发送端的测试信号逐码进行对比,如果某一位码元不一致,则误码计数加一。
统计一段时间内的误码个数,记录存储,计算这段时间内的误码率,分析并显示测试误码的结果,这就是误码测试仪的工作原理。
误码率(BER)=在平均间隔内计读的出错位数/在平均间隔内被传输的总位数
误码测试仪的工作原理框图
为了对数字系统进行误码率测量,通常采用测试码型激励输入端。
一般测试码型采用伪随机二进制序列(PRBS),主要有PRBS7、PRBS9、PRBS21、PRBS23和PRBS31。
伪随机序列
伪随机序列(PRBS)是误码测试系统中最常用的测试码,之所以叫伪随机序列,是因为这种二进制序列具有近似于随机信号的特征,和噪声有着相似的性能。
但它又不是真正的随机
序列,实际上它是确定的,一段PRBS码是具有最大码长且周期重复的。
PRBS信号是由PRBS码型发生器生成的。
PRBS发生器通常是由线性反馈移位寄存器和异或电路组成。
如下图是PRBS7的码型发生器,其初始值是0000001,本原多项式是X6+X7+1。
即将寄存器的第6位和第7位做异或运算后,输入到寄存器的第1位,寄存器的第7位同时也是PRBS7发生器的输出。
在图中可以看到,PRBS7最长是127bit(27-1),理论上来说,7bit的2进制码,一共会有27个不同组合。
但是如果码流全部为‘0’的时候,经过异或运算,输入到寄存器第一位的值还是0,这样移位寄存器将会一直输出为零,移位寄存器被死锁。
所以PRBS码流不能全部为零。
另外,PRBS7 码流中最长的连续‘1’个数为7个,最长的连续‘0’个数为6个。
127bit的连续码流中,一共有64个‘1’,63个‘0’。
同理,PRBSn的码长为2n-1bits,其中包括2n-1个‘1’和2n-1-1个‘0’。
一些常用的PRBS码的本原多项式如下:
PRBS7 = X6+X7+1
PRBS9 = X9+X5+1
PRBS21= X21+X19+1
PRBS23 = X23+X18+1
PRBS31 = X31+X28+1
针对PAM4误码测试中,还会采用到PRBSQ码型测试,PRBSQ码型是由对应的连续的PRBS 的NRZ码型序列每相邻2个bit编码组成。
资料来源《一款PAM4误码测试仪的设计与实现》
易飞扬为满足用户对200G和400G高速光模块产品功能测试的需求,推出了可对200G和400G光模块进行云端编程的两款便携式误码仪。
两款产品均可支持50G PAM4和25G NRZ 两种调制模式。
其中包括支持25G NRZ调制模式BERT码型(PRBS7、PRBS9、PRBS21、PRBS23和PRBS31),以及支持50G PAM4调制模式的BERT码型(PRBSQ7、PRBSQ9、PRBSQ21、PRBSQ23和PRBSQ31)
200G版支持200G QSFP56和200G QSFP-DD光模块,向下兼容100G QSFP28;400G版支持400G QSFP-DD,向下兼容200G QSFP56、200G QSFP-DD和100G QSFP28光模块。