SPSS非参数检验之一卡方检验资料讲解
- 格式:doc
- 大小:237.00 KB
- 文档页数:7
医学统计学之卡方检验SPSS操作卡方检验(Chi-Square Test)是一种常用的统计方法,用于比较两个或多个分类变量的分布是否存在差异。
该方法主要用于处理分类数据,例如比较男女性别和吸烟与否对癌症发生的关系。
在SPSS(Statistical Package for the Social Sciences)软件中,进行卡方检验的操作主要分为数据准备、假设设定和计算步骤。
第一步:数据准备首先,需要在SPSS中导入数据。
假设我们需要在一个样本中比较男女性别和吸烟与否的关系,我们可以将性别和吸烟状况作为两个分类变量,分别用“Male”和“Female”表示性别,“Smoker”和“Non-smoker”表示吸烟状况。
将这些数据输入到SPSS中的一个数据表中。
第二步:假设设定接下来,需要设置假设。
在卡方检验中,我们通常有一个原假设和一个备择假设:-原假设(H0):两个或多个分类变量之间没有显著差异。
-备择假设(H1):两个或多个分类变量之间存在显著差异。
在本例中,原假设可以是“性别和吸烟状况之间没有显著差异”,备择假设可以是“性别和吸烟状况之间存在显著差异”。
第三步:计算步骤进行卡方检验的计算步骤如下:1.打开SPSS软件并导入数据。
2. 选择“分析(Analyse)”菜单,然后选择“非参数检验(Nonparametric Tests)”子菜单,最后选择“卡方(Chi-Square)”选项。
3.在弹出的对话框中选择两个分类变量(性别和吸烟状况),并将它们添加到变量列表中。
4.点击“确定(OK)”按钮,开始进行卡方检验的计算。
5.SPSS将计算卡方统计量的值和相关的P值。
如果P值小于指定的显著性水平(通常为0.05),则可以拒绝原假设,接受备择假设。
这样,就完成了卡方检验的SPSS操作。
需要注意的是,卡方检验是一种只能说明变量之间是否存在关系的方法,不能用于确定因果关系。
此外,在进行卡方检验之前,需要确保样本符合一些假设,例如每个单元格的期望频数应该大于5、如果不满足这些假设,可以考虑使用其他适用的统计方法。
SPSS非参数检验之一卡方检验一、卡方检验的概念和原理卡方检验是一种常用的非参数检验方法,用于检验两个或多个分类变量之间的关联性。
它利用实际观察频数与理论频数之间的差异,来判断两个变量是否独立。
卡方检验的原理基于卡方分布,在理论上,如果两个变量是独立的,那么它们的观测频数应该等于理论频数。
卡方检验通过计算卡方值来度量观察频数与理论频数之间的差异程度,进而判断两个变量是否独立。
卡方值的计算公式为:卡方值=Σ((观察频数-理论频数)²/理论频数)其中,观察频数为实际观察到的频数,理论频数为理论上计算得到的频数。
二、卡方检验的步骤卡方检验的步骤包括以下几个方面:1.建立假设:首先需要建立原假设和备择假设。
原假设(H0)是两个变量之间独立,备择假设(H1)是两个变量之间存在关联。
2.计算理论频数:根据原假设和已知数据,计算出各组的理论频数。
3.计算卡方值:利用卡方值的计算公式,计算观察频数与理论频数之间的差异。
4.计算自由度:自由度的计算公式为自由度=(行数-1)*(列数-1)。
5.查表或计算P值:根据卡方值和自由度,在卡方分布表中查找对应的临界值,或者利用计算机软件计算P值。
6.判断结果:判断P值与显著性水平的关系,如果P值小于显著性水平,则拒绝原假设,认为两个变量存在关联;如果P值大于显著性水平,则接受原假设,认为两个变量是独立的。
三、卡方检验在SPSS中的应用在SPSS软件中,进行卡方检验的操作相对简单。
下面以一个具体的案例来说明:假设我们有一份数据,包括了男性和女性在健康习惯(吸烟和不吸烟)方面的调查结果。
我们想要检验性别与吸烟习惯之间是否存在关联。
1.打开SPSS软件,导入数据。
2.选择"分析"菜单,点击"拟合度优度检验"。
3.在弹出的对话框中,将两个变量(性别和吸烟习惯)拖入"因子"栏目中。
4.点击"统计"按钮,勾选"卡方拟合度"。
SPSS 中非参数检验之一:总体分布的卡方(Chi-square )检验在得到一批样本数据后,在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。
这可以通过绘制样本数据直方图的方法来进行粗略的判断。
略的判断。
如果需要进行比较准确的判断,如果需要进行比较准确的判断,如果需要进行比较准确的判断,则需要使用非参数检验的方法。
则需要使用非参数检验的方法。
则需要使用非参数检验的方法。
其中其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。
检验)就是一种比较好的方法。
一、定义总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。
它的零假设H0:样本来自的总体分布形态和期望分布或某一理论分布没有显著差异。
总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观察样本,这些观察样本落在X 的k 个互不相交的子集中的观察频数服从一个多项分布,这个多项分布当k 趋于无穷时,就近似服从X 的总体分布。
的总体分布。
因此,假设样本来自的总体服从某个期望分布或理论分布集的实际观察频数同时获得样本数据各子集的实际观察频数,并依据下面的公式计算统计量Q ()21ki i i iO E Q E =-=å其中,Oi 表示观察频数;Ei 表示期望频数或理论频数。
可见Q 值越大,表示观察频数和理论频数越不接近;Q 值越小,说明观察频数和理论频数越接近。
SPSS 将自动计算Q 统计量,由于Q 统计量服从K-1个自由度的X 平方分布,因此SPSS 将根据X 平方分布表给出Q 统计量所对应的相伴概率值。
统计量所对应的相伴概率值。
如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为样本来自的总体分布形态与期望分布或理论分布存在显著差异;如果相伴概率值大于显著性水平,则不能拒绝零假设HO ,认为样本来自的总体分布形态与期望分布或理论分布不存在显著差异。
学习必备欢迎下载总体分布未知,不会涉及有关总体分布的参数1.单样本非参数检验:卡方分布,二项分布,K-S检验,变量值随机性检验2.两独立样本非参数检验:两独立样本所来自的总体分布是否存在显著差异3.两配对样本非参数检验4.多独立样本非参数检验5.多配对样本非参数检验得到样本数据后,判断总体分布:直方图、P-P图、Q-Q图,或非参数检验1.1 卡方检验:根据样本数据,推断总体分布于期望分布或某一理论分布是否存在显著性差异,是一种吻合性检验,离散型数据。
原假设:样本来自总体的分布与期望分布或某一理论分布无显著性差异。
Eg:心脏病猝死人数与日期。
1.2二项分布检验:检验总体是否服从指定概率为P的二项分布,原假设:样本来自的总体与指定的二项分布无显著差异。
用于:二值型数据,性别,是否合格,是否为三好学生,硬币正反面等,用01表示。
注:检验概率值(检验比例)1.3单样本K-S检验:样本来自的总体是否与某一理论分布有显著差异,是一种拟合优度的检验方法。
用于:探索连续性变量的分布。
正态分布(normal)、均匀分布(uniform)、指数分布(ex.)、泊松分布。
原假设:样本来自的总体与指定的理论分布无显著差异。
另外,对于数据量很大的连续型变量,可以用图形直观判断。
P-P图:数据与理论分布一致时,各个数据点应落在对角线上。
Q-Q图:如果数据与理论分布无显著差异,点应分布在0横线附近。
(没找到啊?)2 Test type:Mann-Whitney: 秩:变量值排序的名次或位置K-S检验:游程检验Wald-wolfwitz Runs极端反应检验Moses Extreme Reactions:踢出极端值前后P值变化情况,是否踢出。
注:不同分析方法对同批数据的分析,结论可能不相同,要反复进行探索性分析,还要注意方法本身侧重点上的差异性。
4 中位数检验强调位置,Kruskal-Wallis检验侧重分析平均秩,Jonckheere比较同相对数。
spss卡方检验SPSS卡方检验SPSS(统计软件包 for the Social Sciences)是一种功能强大的统计软件,在社会科学、商业智能和市场调研等领域得到广泛应用。
其中,卡方检验是SPSS中常用的统计方法之一。
本文将介绍SPSS 中使用卡方检验进行数据分析的基本步骤、原理和注意事项。
一、卡方检验的基本概念卡方检验,又称为卡方拟合优度检验,用于比较观察样本与理论预期分布之间的差异。
它基于卡方统计量,可以用于分析分类数据的关联性和独立性。
卡方检验的结果可以帮助研究人员判断观察数据与理论模型之间的差异程度以及独立性。
二、SPSS中进行卡方检验的步骤1. 收集数据并导入到SPSS中。
2. 在SPSS中选择“分析”菜单,点击“描述统计”下的“交叉表”。
3. 在交叉表对话框中,选择需要比较的两个变量。
4. 点击“统计”按钮,选择“卡方”选项。
5. 点击“继续”按钮,然后点击“OK”按钮生成交叉表结果。
三、SPSS卡方检验的原理SPSS中的卡方检验基于卡方统计量,该统计量用于衡量观察值与理论期望值之间的差异。
卡方统计量的计算公式如下:\\[ X^2 = \\sum \\frac{(O-E)^2}{E} \\]其中,O表示观察值,E表示理论期望值。
卡方统计量服从自由度为(k-1) × (m-1)的卡方分布,其中k表示列数,m表示行数。
通过计算卡方统计量,可以得到卡方值和P值。
如果P值小于设定的显著性水平(通常为0.05),则认为观察值与理论期望值存在显著差异,拒绝原假设。
四、卡方检验的应用场景卡方检验通常用于以下几种情况:1. 检验分类变量之间的关联性。
例如,研究某一地区的居民性别与吸烟习惯之间的关系。
2. 检验分类变量与某一特定属性的关联性。
例如,研究某个产品的用户满意度与不同年龄段之间的关系。
3. 检验分类变量的分布是否服从某一特定的理论分布。
例如,研究某一地区的选民支持率是否符合某个政党的预期。
SPSS知识6:卡方检验(无序变量)卡方检验定义:卡方检验用作分类计数的假设检验方法:检验两个或多个样本率或构成比之间的差别是否有统计学意义→从而推断两个或多个总体率或构成比之间的差别是否有统计学意义。
一、行*列卡方检验(只需要判断最小理论频数即可)SPSS操作:第一步:建立数据文件(group:横标目,type:纵标目-无序变量,f→共3列数据);第二步:对频数f加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→横标目group调入rows,纵标目types调入columns→点击statistics…→激活Chi-square→continue→点击cells…→激活row行百分数→continue→OK);第四步:判断结果(结果有2个图表,根据最小理论频数与5的比较和总例数与40的比较,判断是选用pearson Chi-square还是其他指标,读取对应P值,若P<0.05,则有差异,需要利用行*列分割进行22比较,检验水准也需要变化,因为扩大了第一类错误)。
第五步:两两比较(对group横标目设不同的missing value值后进行行*列分割计算。
)Missing value→重复analyze操作。
二、四格表卡方检验(要根据N和T判断选用四格表卡方专用公式、校正公式、确切概率法?)SPSS操作:第一步:建立数据文件(group:横标目,effect:纵标目-无序变量,f,频数→共计3列数据);第二步:对频数加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→group调入rows,effect调入columns →点击statistics…→激活chi-square→continue→点击cells…→激活rows 百分数→continue→OK);第四步:判断结果(根据N和T判断选用公式→判断P值)。
S P S S非参数检验之一
卡方检验
SPSS 中非参数检验之一:总体分布的卡方(Chi-square )检验
在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形态是否和某种特定分布相拟合。
这可以通过绘制样本数据直方图的方法来进行粗略的判断。
如果需要进行比较准确的判断,则需要使用非参数检验的方法。
其中总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。
一、定义
总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。
它的零假设H0:样本来自的总体分布形态和期望分布或某一理论分布没有显著差异。
总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观察样本,这些观察样本落在X 的k 个互不相交的子集中的观察频数服从一个多项分布,这个多项分布当k 趋于无穷时,就近似服从X 的总体分布。
因此,假设样本来自的总体服从某个期望分布或理论分布集的实际观察频数同时获得样本数据各子集的实际观察频数,并依据下面的公式计算统计量Q
()
2
1
k
i i i i
O E Q E =-=∑
其中,Oi 表示观察频数;Ei 表示期望频数或理论频数。
可见Q 值越大,表示观察频数和理论频数越不接近;Q 值越小,说明观察频数和理论频数越接近。
SPSS 将自动计算Q 统计量,由于Q 统计量服从K-1个自由度的X 平方分布,因此SPSS 将根据X 平方分布表给出Q 统计量所对应的相伴概率值。
如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为样本来自的总体分布形态与期望分布或理论分布存在显著差异;如果相伴概率值
大于显著性水平,则不能拒绝零假设HO,认为样本来自的总体分布形态与期望分布或理论分布不存在显著差异。
因此,总体分布的卡方检验是一种吻合性检验,比较适用于一个因素的多项分类数据分析。
总体分布的卡方检验的数据是实际收集到的样本数据,而非频数数据。
二、实例
某地一周内各日患忧郁症的人数分布如下表所示,请检验一周内各日人们忧郁数是否满足1:1:2:2:1:1:1。
周日患者数
1 31
2 38
3 70
4 80
5 29
6 24
7 31
实施步骤:
1、打开SPSS 20.0,导入数据。
2、数据--加权个案,如下图所示。
3、分析--非参数检验--旧对话框--卡方检验
将要检验的一周内各日人们忧郁数比例1:1:2:2:1:1:1输入到SPSS中。
由结果可知P=0.331>0.05,不能拒绝原假设,因此可以得出结论:一周内各日人们忧郁数比例为1:1:2:2:1:1:1。