数学文化创新题型(高三数学高考中的数学文化)
- 格式:docx
- 大小:1.08 MB
- 文档页数:21
数学文化创新题型(高三数学高考中的数学文化)数学文化创新题型(高三数学高考中的数学文化)随着科技的进步和社会的发展,数学作为一门基础科学对人类文明起着举足轻重的作用。
在高考中,数学作为一门主科,占据着重要的地位。
高三数学高考中的数学文化创新题型成为了近些年来备受关注的话题。
本文将从数学文化创新题型的定义、特点以及对学生的影响等角度进行探讨。
首先,什么是数学文化创新题型?数学文化创新题型是指在传统数学题型基础上融入了数学文化元素和创新思维的题型。
这些题型既与日常生活紧密相关,又能够培养学生的数学思维和创新能力,进一步提高他们的数学素养。
数学文化创新题型的特点可以概括为以下几点。
首先,题目具有一定的开放性。
与传统题型相比,数学文化创新题目不局限于固定的解题思路,更注重学生的创造性思维和多元化解题方法。
其次,题目与实际生活密切相关。
这种题型常常通过引入日常生活中的实际问题,让学生能够将数学知识应用到实际生活中,培养他们的应用能力。
此外,数学文化创新题型还追求美感。
它强调解题过程中的审美和艺术创造,鼓励学生通过数学的方式去发现美、传达美,使数学更富有艺术性和人文关怀。
对于高三学生来说,数学文化创新题型有着重要的意义和影响。
首先,从知识与技能的角度来看,数学文化创新题型能够帮助学生理解和应用数学知识。
通过将数学知识与实际问题相结合,学生能够更好地理解数学的实质和内涵,培养他们的数学思维和应用能力。
其次,从态度与价值观的角度来看,数学文化创新题型能够培养学生对数学的兴趣和热爱。
通过引入数学文化元素,学生能够感受到数学的魅力和美妙之处,从而增强他们对数学的兴趣和学习动力。
最后,从能力与素养的角度来看,数学文化创新题型能够提高学生的综合素质和解决问题的能力。
这些题型要求学生发散思维,解决复杂的问题,培养他们的创新精神和团队合作能力。
然而,数学文化创新题型的推广和实施也面临一定的挑战。
首先,有些学校和教师对于数学文化创新题型的理解和掌握程度不同,导致其在教学过程中的运用不够广泛和深入。
专题14 集合,复数,逻辑语言专题(数学文化)一、单选题1.(2022·高一课时练习)数系的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker ,1823﹣1891)说“上帝创造了整数,其它一切都是人造的”设为虚数单位,复数Z 满足()202012Z i i =+,则Z 的共轭复数是( ) A .2i + B .2i − C .12i − D .12i +【答案】C【分析】利用虚数单位的幂的运算规律化简即得12Z i =+,然后利用共轭复数的概念判定. 【详解】解:()505202041,12,12i i Z i Z i ==∴=+∴=−,故选:C.2.(2022秋·浙江温州·高一乐清市知临中学校考期中)某国近日开展了大规模COVID -19核酸检测,并将数据整理如图所示,其中集合S 表示( )A .无症状感染者B .发病者C .未感染者D .轻症感染者【答案】A【分析】由S A B =I 即可判断S 的含义.【详解】解:由图可知,集合S 是集合A 与集合B 的交集, 所以集合S 表示:感染未发病者,即无症状感染者, 故选:A.3.(2021秋·湖北十堰·高一校联考期中)必修一课本有一段话:当命题“若p ,则q ”为真命题,则“由p 可以推出q ”,即一旦p 成立,q 就成立,p 是q 成立的充分条件.也可以这样说,若q 不成立,那么p 一定不成立,q 对p 成立也是很必要的.王安石在《游褒禅山记》中也说过一段话:“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”.从数学逻辑角度分析,“有志”是“能至”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【分析】本题可根据充分条件与必要条件的定义得出结果.【详解】因为“非有志者不能至也”即“有志”不成立时“能至”一定不成立, 所以“能至”是“有志”的充分条件,“有志”是“能至”的必要条件, 故选:B.4.(2022秋·云南曲靖·高一校考期中)杜甫在《奉赠韦左丞丈二十二韵》中有诗句:“读书破万卷,下笔如有神.”对此诗句的理解是读书只有读透书,博览群书,这样落实到笔下,运用起来才有可能得心应手,如有神助一般,由此可得,“读书破万卷”是“下笔如有神”的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【分析】根据充分条件和必要条件的定义分析判断.【详解】杜甫的诗句表明书读得越多,文章未必就写得越好,但不可否认的是,一般写作较好的人,他的阅读量一定不会少,而且所涉猎的文章范畴也会比一般读书人广泛. 因此“读书破万卷”是“下笔如有神”的必要不充分条件. 故选:C5.(2020·陕西榆林·z a bi =+(a ,b ∈R )对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z r r i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)4z i =,则z =( )A .B .4C .D .16【答案】D【解析】根据复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,直接求解即可.【详解】)4441216cos sin 266z ii i ππ⎡⎤⎫⎛⎫===+⎢⎥⎪ ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦16cos 4sin 4866i ππ⎡⎤⎛⎫⎛⎫=⨯+⨯=−+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,16z .故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.6.(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)在代数史上,代数基本定理是数学中最重要的定理之一,它说的是:任何一元n 次复系数多项式()f x 在复数集中有n 个复数根(重根按重数计)那么()31f x x =−在复平面内使()0f x =除了1和12−这两个根外,还有一个复数根为( )A .12B .12−C .12D .12−【答案】B【分析】利用方程根的意义,把12−代入方程,经化简变形即可得解.【详解】因12−是方程()0f x =的根,即32111))22(1(2−−−=⇒==221111)())222(2(−=−−−+⇒=3111)())1222222((−−=−+−⇒=,所以12−是方程()0f x =的根.故选:B7.(2021春·安徽宣城·高一校联考期中)瑞士著名数学家欧拉发现了公式i cos isin x x x e =+(i 为虚数单位),它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.根据欧拉公式可知,3i 4e π表示的复数在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【分析】根据欧拉公式代入求解即可. 【详解】解:根据欧拉公式i e cos isin x x x=+,得3πi 43π3πecosisin 44=+=+,即它在复平面内对应的点为22⎛ ⎝⎭, 故位于第二象限. 故选:B.8.(2022·全国·高三专题练习)“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔()ReneDescartes 创制的,直到19世纪虚数才真正闻人数的领域,虚数不能像实数一样比较大小.已知复数z ,1z =且(1i)0z ⋅+>(其中i 是虚数单位),则复数z =( )ABC D 【答案】C【分析】根据条件,设i z a b =+,再列式求,a b ,即可得到复数. 【详解】设i z a b =+,221a b +=,①()()()()i 1i i>0a b a b a b ++=−++,得0a b +=,且0a b −> ②,由①②解得:a =b =所以22z =−. 故选:C9.(2022·全国·高三专题练习)2022年1月,中科大潘建伟团队和南科大范靖云团队发表学术报告,分别独立通过实验,验证了虚数i 在量子力学中的必要性,再次说明了虚数i 的重要性.对于方程310x +=,它的两个虚数根分别为( )A .12B .12−C D 【答案】A【分析】根据方程根的定义进行验证.【详解】首先实系数多项式方程的虚数根成对出现,它们互为共轭复数,因此排除CD ,A 选项,31110+=+==, 因此选项A 正确,则选项B 错误(因为3次方程只有3个根(包括重根)).故选:A .10.(2022·全国·高三专题练习)人们对数学研究的发展一直推动着数域的扩展,从正数到负数、从整数到分数、从有理数到实数等等.16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了2i 1=−,17世纪法因数学家笛卡儿把i 称为“虚数”,用i(R)a b a b +∈、表示复数,并在直角坐标系上建立了“复平面”.若复数z 满足方程2250z z ++=,则z =( ) A .12i −+ B .2i −−C .12i −±D .2i −±【答案】C【分析】设出复数z 的代数形式,再利用复数为0列出方程组求解作答. 【详解】设i(,R)z a b a b =+∈,因2250z z ++=,则2(i)2(i)50a b a b ++++=,即22(25)2(1)i 0a b a b a −++++=,而,R a b ∈,则222502(1)0a b a b a ⎧−++=⎨+=⎩,解得12a b =−⎧⎨=±⎩,所以12i z =−±. 故选:C11.(2022·高一单元测试)中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知{}32,A x x n n N *==+∈,{}53,B x x n n N *==+∈,{}72,C x x n n N *==+∈,若x A B C ∈⋂⋂,则下列选项中符合题意的整数x 为 A .8 B .127C .37D .23【答案】D【解析】将选项中的数字逐一代入集合A 、B 、C 的表达式,检验是否为A 、B 、C 的元素,即可选出正确选项.【详解】因为8711=⨯+,则8C ∉,选项A 错误;1273421=⨯+,则127A ∉,选项B 错误; 373121=⨯+,则37A ∉,选项C 错误;23372=⨯+,故23A ∈;23543=⨯+,故x B ∈;23732=⨯+,故x C ∈,则23A B C ∈⋂⋂,选项D 正确. 故选:D .12.(2022秋·浙江温州·高一校考阶段练习)在数学漫长的发展过程中,数学家发现在数学中存在着神秘的“黑洞”现象.数学黑洞:无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去,就像宇宙中的黑洞一样.目前已经发现的数字黑洞有“123黑洞”、“卡普雷卡尔黑洞”、“自恋性数字黑洞”等.定义:若一个n 位正整数的所有数位上数字的n 次方和等于这个数本身,则称这个数是自恋数.已知所有一位正整数的自恋数组成集合A ,集合{}34,|B x x x =−<<∈Z ,则A B ⋂的子集个数为( ) A .3 B .4C .7D .8【答案】D【分析】根据自恋数的定义可得集合A ,再根据交集的定义求出A B ⋂,从而可得答案. 【详解】解:依题意,{}1,2,3,4,5,6,7,8,9A =,{}2,1,0,1,2,3B =−−, 故{}1,2,3A B =,故A B ⋂的子集个数为8. 故选:D .13.(2019·江西·高三校联考阶段练习)我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为ba 和d c (,,,abcd N +∈),则b da c ++是x 的更为精确的不足近似值或过剩近似值.我们知道 2.71828e =⋯,若令2714105e <<,则第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<,若每次都取最简分数,那么第三次用“调日法”后可得e 的近似分数为 A .10940B .6825C .197D .8732【答案】C【解析】利用“调日法”进行计算到第三次,即可得到本题答案. 【详解】第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<;第二次用“调日法”后得6825是e 的更为精确的过剩近似值,即27681025<<e ;第三次用“调日法”后得197是e 的更为精确的不足近似值,即1968725<<e ,所以答案为197. 故选:C【点睛】本题考查“调日法”,主要考查学生的计算能力,属于基础题.14.(2022·上海·高一专题练习)古希腊科学家阿基米德在《论平面图形的平衡》一书中提出了杠杆原理,它是使用天平秤物品的理论基础,当天平平衡时,左臂长与左盘物品质量的乘积等于右臀长与右盘物品质量的乘积,某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( ) A .大于10g B .小于10gC .大于等于10gD .小于等于10g【答案】A【分析】设天平左臂长为a ,右臂长为b (不妨设a b >),先称得的黄金的实际质量为1m ,后称得的黄金的实际质量为2m .根据天平平衡,列出等式,可得12,m m 表达式,利用作差法比较12m m +与10的大小,即可得答案.【详解】解:由于天平的两臂不相等,故可设天平左臂长为a ,右臂长为b (不妨设a b >), 先称得的黄金的实际质量为1m ,后称得的黄金的实际质量为2m . 由杠杆的平衡原理:15bm a =⨯,25am b =⨯.解得15a m b =,25bm a=, 则1255b am m a b+=+. 下面比较12m m +与10的大小:(作差比较法)因为()()2125551010b a b a m m a b ab−+−=+−=, 因为a b ¹,所以()250b a ab−>,即1210m m +>. 所以这样可知称出的黄金质量大于10g . 故选:A15.(2022·图所示,我们教材中利用该图作为几何解释的是( )A .如果,a b b c >>,那么a c >B .如果0a b >>,那么22a b >C .如果,0a b c >>,那么ac bc >D .对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时,等号成立 【答案】D【分析】直角三角形的两直角边长分别为,a b ,斜边长为c ,则222c a b =+,利用大正方形的面积与四个直角三角形面积和的不等关系得结论.【详解】直角三角形的两直角边长分别为,a b ,斜边长为c ,则222c a b =+,在正方形的面积为2c ,四个直角三角形的面积和为2ab ,因此有22c ab ≥,即222a b ab +≥,当且仅当a b =时,中间没有小正方形,等号成立. 故选:D .16.(2022秋·北京丰台·高一统考期末)《几何原本》卷Ⅱ的几何代数法成了后世西方数学家处理数学问题的重要依据.通过这一原理,很多代数的定理都能够通过图形实现证明,也称之为无字证明现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,可以直接通过比较线段OF 与线段CF 的长度完成的无字证明为( )A .a 2+b 2≥2ab (a >0,b >0)B .0,0)2a ba b +>>>C .2a b +≤a >0,b >0) D .2aba b≤+a >0,b >0) 【答案】C【分析】由图形可知()1122OF AB a b ==+,()12OC a b =−,在Rt △OCF 中,由勾股定理可求CF ,结合CF ≥OF 即可得出.【详解】解:由图形可知,()1122OF AB a b ==+,()()1122OC a b b a b =+−=−, 在Rt △OCF 中,由勾股定理可得,CF ∵CF ≥OF ,()12a b ≥+,故选:C.17.(2022·全国·高三专题练习)18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z −−的最大值为( ) A .3 B .5 C .7 D .9【答案】C【分析】由复数几何意义可得(),Z x y 的轨迹为圆224x y +=,从而将问题转化为点(),Z x y 到点()3,4的距离,则所求最大值为圆心到()3,4的距离加上半径. 【详解】2z =,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z −−的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴−−==.故选:C.18.(2022·全国·高三专题练习)数学家欧拉发现了复指数函数和三角函数的关系,并给出以下公式i e cos isin x x x =+,(其中i 是虚数单位,e 是自然对数的底数,x ∈R ),这个公式在复变论中有非常重要的地位,被称为“数学中的天桥”,根据此公式,有下列四个结论,其中正确的是( )A .i πe 10−=B .i i 2cos e e x x x −=+C .i i 2sin e e x x x −=−D .2022i 122⎛⎫+=− ⎪ ⎪⎝⎭【答案】B【分析】根据已知条件的公式及诱导公式,结合复数运算法则逐项计算后即可求解. 【详解】对于A ,πi e πcos i πsin 1=+=−,所以i πe 1112−=−−=−,故A 不正确; 对于B ,i e cos isin x x x =+,()()i ecos isin cos isin xx x x x −=−+−=−,所以i i e e 2cos x x x −+=,故B 正确; 对于C ,i e cos isin x x x =+,()()i ecos isin cos isin xx x x x −=−+−=−,所以i i e e 2isin x x x −=−,故C 不正确;对于D ,202220222022πi 4ππ2022π2022πcos isin e cosisin 4444⎫⎛⎫⎛⎫=+==+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ππcosisin i 22=−−=−,故D 不正确. 故选:B.19.(2020·天津·南开中学校考模拟预测)由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M N ⋃=Q ,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴金德分割.试判断,对于任一戴金德分割(),M N ,下列选项中一定不成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 【答案】C【分析】本题目考察对新概念的理解,举具体的实例证明成立即可,A,B,D 都能举出特定的例子,排除法则说明C 选项错误【详解】若{},0M x Q x =∈<,{},0N x Q x =∈≥;则M 没有最大元素,N 有一个最小元素0;故A 正确;若{,M x Q x =∈,{,N x Q x =∈≥;则M 没有最大元素,N 也没有最小元素;故B 正确; 若{},0M x Q x =∈≤,{},0N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确; M 有一个最大元素,N 有一个最小元素不可能,故C 不正确.故选:C20.(2021春·安徽·高三校联考阶段练习)不定方程的整数解问题是数论中一个古老的分支,其内容极为丰富,西方最早研究不定方程的人是希腊数学家丢番图.请研究下面一道不定方程整数解的问题:已知()202022,x y y x Z y Z +=∈∈,则该方程的整数解有( )组.A .1B .2C .3D .4【答案】D【分析】原方程可化为20202(1)1x y +−=,所以2||1,(1)1,x y ≤−≤即11,02x y −≤≤≤≤,(),x y Z ∈再列举每种情况即可.【详解】设此方程的解为有序数对(,)x y , 因为202022,(,)x y y x y Z +=∈ 所以20202(1)1x y +−=当20201x >或2(1)1y −>时,等号是不能成立的, 所以2||1,(1)1,x y ≤−≤即11,02x y −≤≤≤≤,(),x y Z ∈ (1)当=1x −时,2(1)0y −=即1y = (2)当0x =时,2(1)1y −=即0y =或2y = (3)当1x =时,2(1)0y −=即1y =综上所述,共有四组解()()()()1,1,0,0,0,2,1,1−− 故选:D21.(2022秋·四川成都·高一成都七中校考期中)对于直角三角形的研究,中国早在商朝时期,就有商高提出了“勾三股四弦五”这样的勾股定理特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理.如果一个直角三角形的斜边长等于5,则这个直角三角形周长的最大值等于( ). A.B .10 C .5+D .252【答案】C【分析】先由勾股定理得2225a b +=,再利用基本不等式易得()250a b +≤,由此得到5a b c ++≤+问题得解.【详解】不妨设该直角三角形的斜边为5c =,直角边为,a b ,则22225a b c +==,因为222ab a b ≤+,所以()222222a b ab a b ++≤+,即()250a b +≤,当且仅当a b =且2225a b +=,即a b ==因为0,0a b >>,所以a b +≤所以该直角三角形周长5a b c c ++≤=+5+. 故选:C.22.(2017·湖北·校联考一模)我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是 1:P 对于任意一个圆其对应的太极函数不唯一;2:P 如果一个函数是两个圆的太极函数,那么这两个圆为同心圆;3:P 圆22(1)(1)4x y −+−=的一个太极函数为32()33f x x x x =−+; 4:P 圆的太极函数均是中心对称图形;5:P 奇函数都是太极函数;6:P 偶函数不可能是太极函数.A .2B .3C .4D .5【答案】B【详解】由定义可知过圆O 的任一直线都是圆O 的太极函数,故1P 正确;当两圆的圆心在同一条直线上时,那么该直线表示的函数为太极函数,故2P 错误;∵()()3323311f x x x x x =−+=−+,∴()f x 的图象关于点()1,1成中心对称,又∵圆()()22114x y −+−=关于点()1,1成中心对称,故()3233f x x x x =−+可以为圆()()22114x y −+−=的一个太极函数,故3P 正确;太极函数的图象一定过圆心,但不一定是中心对称图形,例如:故4P 函数可以为太极函数,故5P 正确;如图所示偶函数可以是太极函数,故6P 错误;则错误的命题有3个,故选B.二、多选题23.(2021春·广东梅州·高二统考期末)欧拉公式i cos isin x e x x =+(其中i 为虚数单位,x R ∈)是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里而占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项正确的是( )A .复数i e 对应的点位于第一象限B .i e π为纯虚数C ix 的模长等于12D .i 6e π的共轭复数为12【答案】AC【分析】根据欧拉公式计算出各复数,再根据复数的几何意义,纯虚数的概念,复数模的计算公式,共轭复数的概念即可判断各选项的真假. 【详解】对A ,i cos1isin1e =+,因为012π<<,所以cos10,sin10>>,即复数i e 对应的点()cos1,sin1位于第一象限,A 正确;对B ,i cos isin 1e πππ=+=−,i e π为实数,B 错误;对C ()i cos isin ix x x +,ix12,C 正确;对D ,πi 6ππ1cos isin i 662e =++1i 2−,D 错误. 故选:AC .24.(2022春·广东梅州·高一统考期末)欧拉公式i e cos isin x x x =+(本题中e 为自然对数的底数,i 为虚数单位)是由瑞士若名数学家欧拉创立,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”,依据欧拉公式,则下列结论中正确的是( ) A .i πe 10+=B .复数2i e 在复平面内对应的点位于第二象限C .复数πi 3e 1i 2D .复数i e )(R θθ∈在复平面内对应的点的轨迹是圆 【答案】ABD【分析】由欧拉公式和特殊角的三角函数值可判断A ;由欧拉公式和三角函数在各个象限的符号可判断B ;由欧拉公式和共轭复数的概念可判断C ;由欧拉公式和复数的几何意义可判断D. 【详解】对于A ,i πcos πisin π1101e 10=++=−+++=,A 正确; 对于B ,2i e cos2isin 2=+,cos 20,sin 20<>,∴复数2i e 在复平面内对应的点位于第二象限,B 正确;对于C ,πi 3cosis ππ1e 33n i 2==+,共轭复数为12,C 错误; 对于D ,i e cos isin (R)θθθθ+∈=,在复平面内对应的点为()cos ,sin θθ, 又()()22cos 0sin 01θθ−+−=,∴在复平面内对应的点的轨迹是圆.故选:ABD.25.(2022·高一课时练习)群论是代数学的分支学科,在抽象代数中具有重要地位,且群论的研究方法也对抽象代数的其他分支有重要影响,例如一元五次及以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基本的概念之一,其定义如下:设G 是一个非空集合,“· ”是G 上的一个代数运算,即对所有的a 、b ∈G ,有a ·b ∈G ,如果G 的运算还满足:①∀a 、b 、c ∈G ,有(a ·b )·c =a ·(b ·c );②e G ∃∈,使得a G ∀∈,有e a a e a ⋅=⋅=,③a G ∀∈,b G ∃∈,使a ·b =b ·a =e ,则称G 关于“·”构成一个群.则下列说法正确的有( )A .{1,0,1}G =−关于数的乘法构成群B .G ={x |x =1k,k ∈Z ,k ≠0}∪{x |x =m ,m ∈Z ,m ≠0}关于数的乘法构成群C .实数集关于数的加法构成群D .{|,Z}G m m n =∈关于数的加法构成群 【答案】CD【分析】根据群的定义需满足的三个条件逐一判断即可.【详解】对于A :若{1,0,1}G =−,对所有的a 、b G ∈,有{1,0,1}a b G ⋅∈−=, 满足乘法结合律,即①成立,满足②的e 为1,但当0a =时,不存在b G ∈,使得··1a b b a e ===,即③不成立, 即选项A 错误; 对于B :因为12a G =∈,且3b G =∈,但13322a b G ⋅=⨯=∉,所以选项B 错误;对于C :若R G =,对所有的a 、R b ∈,有R a b +∈, 满足加法结合律,即①成立,满足②的e 为0,R a ∀∈,R b a ∃=−∈,使0a b b a +=+=,即③成立;即选项C 正确;对于D:若{|,Z}G m m n =∈,所有的11a m =、22b m G =∈,有1212(+)a b m m n n G +=+∈,,,,a b c G ∀∈()()++=++a b c a b c 成立, 即①成立;当0a b ==时,0a =,满足的0e =,即②成立;a m G ∀=∈,b m G ∃=−∈,使0a b b a +=+=,即③成立;即选项D 正确. 故选:CD.26.(2020秋·江苏盐城·高二江苏省东台中学校考期中)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a b +,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF BC ⊥于点F ,则下列推理正确的是( )①由图1和图2面积相等得abd a b=+; ②由AE AF ≥2a b+≥; ③由AD AE ≥211a b ≥+; ④由AD AF ≥可得222a b ab +≥. A .①B .②C .③D .④【答案】ABCD【解析】根据图1,图2面积相等,可求得d 的表达式,可判断A 选项正误,由题意可求得图3中,,AD AEAF的表达式,逐一分析B 、C 、D 选项,即可得答案.【详解】对于①:由图1和图2面积相等得()S ab a b d ==+⨯,所以abd a b=+,故①正确; 对于②:因为AF BC ⊥,所以12a b AF ⨯⨯,所以AF =,设图3中内接正方形边长为t ,根据三角形相似可得a t t a b−=,解得abt a b =+,所以AE ==因为AE AF ≥,所以a b ≥+2a b +≥,故②正确; 对于③:因为D 为斜边BC的中点,所以AD =因为AD AE ≥≥211a b≥+,故③正确; 对于④:因为AD AF ≥≥,整理得:222a b ab +≥,故④正确; 故选:ABCD【点睛】解题的关键是根据题意及三角形的性质,利用几何法证明基本不等式,求得,,AD AE AF 的表达式,根据图形及题意,得到,,AD AE AF 的大小关系,即可求得答案,考查分析理解,计算化简的能力. 27.(2022秋·黑龙江佳木斯·高一桦南县第一中学校考期中)《几何原本》卷Ⅱ的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称为无字证明.现有如图所示图形,点D 在半圆O 上,点C 在直径AB 上,且CD AB ⊥.设AC a =,CB b =,CE OD ⊥,垂足为E ,则该图形可以完成的无字证明为( )A2aba b+B.2a b +≤C.2a b+≥ D.22a b +≥【答案】AC【解析】直接利用射影定理和基本不等式的应用求出结果.【详解】解:根据图形,利用射影定理得:2CD DE OD =,由于:OD CD …,所以:0,0)2a ba b +>>. 由于2·CD AC CB ab ==,所以22CD abDE a b OD ==+所以由于CD DE …,2aba b+. 故选:AC .【点睛】关键点点睛:射影定理的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.28.(2022秋·辽宁大连·高一大连八中校考阶段练习)古希腊时期,人们认为最美人体的头顶至肚脐的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此..若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( ) A .168cm B .172cmC .176cmD .180cm【答案】BC【分析】设身高为cm x ,运用黄金分割比例,结合图形得到对应成比例的线段,计算可估计身高. 【详解】设头顶、咽喉、肚脐、足底分别为点A B C D 、、、,假设身高为cm x ,即cm =AD x ,,ACCD∴=AC∴=.AC CD x+=,且AC=,=CD x+,=x,12CD x∴==,ABBC∴=,AB∴=,AB BC CD x++=,且AB,CD=,BC x+=,)2BC x∴=,)2AB x∴===,由题意可得26105AB xCD⎧=<⎪⎪⎨⎪=>⎪⎩,xx⎧<⎪⎪∴⎨⎪>⎪⎩178.21169.89xx<⎧∴⎨>⎩,169.89178.21x∴<<,故BC正确.故选:BC29.(2021秋·全国·高一期末)早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称2a b+为正数,a b,a b的几何平均数,并把这两者()0,02a ba b+≤>>叫做基本不等式.下列与基本不等式有关的命题中正确的是()A.若4ab=,则4a b+≥B.若0a>,0b>,则()112a ba b⎛⎫++⎪⎝⎭最小值为C.若(),0,a b∈+∞,21a b+=,1142a b+≥D .若实数,a b 满足0a >,0b >,4a b +=,则2211a b a b +++的最小值是83 【答案】CD【分析】通过反例可知A 错误;根据基本不等式“1”的应用可求得BC 正误;令11a m +=>,11b n +=>,将所求式子化为62mn+,利用基本不等式可知D 正确. 【详解】对于A ,若2a =−,2b =−,则44a b +=−<,A 错误;对于B ,0a >,0b >,0a b∴>,0ba >,()1122333a b a b a b b a ⎛⎫∴++=++≥++ ⎪⎝⎭2a b b a =,即a =时取等号),即()112a ba b ⎛⎫++ ⎪⎝⎭的最小值为3+B 错误;对于C ,(),0,a b ∈+∞,0a b∴>,0ba >,又21ab +=,()111122224222b a a b a b a b a b ⎛⎫∴+=++=++≥+ ⎪⎝⎭(当且仅当22b a a b =,即122b a ==时取等号),C 正确;对于D ,令11a m +=>,11b n +=>,则6m n +=,()()22221111116422211m n a bm n a b m n m n m n mn−−+=+=+++−=++=+∴≥+++26832m n =+⎛⎫ ⎪⎝⎭(当且仅当3m n ==时取等号),即2211a ab ++的最小值是83,D 正确. 故选:CD.30.(2022秋·辽宁大连·高一统考期末)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,不等号的引入对不等式的发展影响深远.若a ,b ,R c ∈,则下列命题正确的是( ) A .若0ab ≠且a b <,则11a b> B .若a b >,01c <<,则a b c c < C .若1a b >>,1c >,则log log a b c c < D .若1a b <<−,0c >,则cca b b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】BCD【分析】利用不等式性质结合可判断A ,根据指数函数的性质可判断B ,根据不等式性质结合对数函数的性质可判断C ,根据幂函数的性质可判断D.【详解】A 中,0a b <<时,则11a b<,错误;B 中,因为a b >,01c <<,所以a b c c <成立,正确;C 中,因为1a b >>,1c >,所以log log 0c c a b >>,10log log c c a b>⋅,所以11log log c c a b<,即log log a b c c <,正确; D 中,由1a b <<−,可得10a b b a >>>,又0c >,所以cca b b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,正确.故选:BCD.三、填空题31.(2022·全国·高三专题练习)中国古代数学著作《九章算术》中记载了平方差公式,平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差.若复数53i,43i a b =+=+(i 为虚数单位),则22a b −=__________. 【答案】96i +【分析】先要平方差公式,再按照复数的四则运算规则计算即可.【详解】()()()()2253i 43i 53i 43i 96i a b a b a b −=+−=++++−−=+ ;故答案为:96i + .32.(2022·全国·高三专题练习)毛泽东同志在《清平乐●六盘山》中的两句诗为“不到长城非好汉,屈指行程二万”“到长城”是“好汉”的__________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 【答案】必要不充分【分析】根据充分、必要条件的知识确定正确选项. 【详解】“好汉”⇒“到长城”, “到长城”⇒“好汉”, 所以“到长城”是“好汉”的必要不充分条件. 故答案为:必要不充分33.(2022·高一课时练习)中国古代数学专著《孙子算经》中有一问题“今有三女,长女五日一归,中女四日一归,少女三日一归,问:三女几何日相会?”,则此三女前三次相会经过的天数组成的集合用列举法可表示为______,此三女相会经过的天数组成的集合用描述法可表示为______.【答案】 {}60,120,180 {}*60,N x x n n =∈【分析】根据题设集合元素为5,4,3的公倍数,进而应用列举法、描述法分别写出集合即可.。
创新题型近年数学高考试题中,出现一些立意新、情境新、设问新的试题。
此类试题新颖、灵活又不过难,广泛而又有科学尺度考查了数学创新意识和创新能力,把此类试题统称为创新试题。
创新试题主要考查学生的探索能力、发散思维能力、直觉思维能力、数学应用意识和应用能力。
创新试题打破了固定的模式和解题套路,而是通过设计新问题、新背景来考查学生运用现有知识解决问题的能力,具体表现有如下几种方式:一.设计非常规的数学问题,考查学生的探索能力,培养学生的探索精神。
在数学问题中,有一些问题没有现成的方法或解题模式套用;有一些问题的条件、结论、解题策略是不唯一的或需要探索的(见开放性试题),因此解决这些问题的过程中能有效地展示考生的思维水平。
例1.设函数c bx ax x f ++=2)()0(≠a ,对任意实数t 都有)2()2(t f t f -=+成立,在函数值、)1(-f 、)1(f 、)2(f )5(f 中最小的一个不可能是_____________________ 答案:、)1(f例2.作出函数])2,2[(cos ππ-∈-=x x x y 的图象。
例3.一圆柱体被平面截成如图所示的几何体,则它的侧面展开图是标准答案应为:D (但是图不标准,看推导(最后))二.拓展常规题,考查发散思维能力发散性思维虽然也遵循已有的规律和事实,但它的思维过程无固定方向或范围,体现为探索途径及结果的新颖性、多样性和独创性。
(知识网络交汇点、新形式) 例4.无盖圆柱形容器的底面半径为3,母线长为9,现将盛满水的该容器缓慢倾斜,当圆柱的母线与水平面所成的角为︒60,则剩下的水的体积为 A.21π B.18π C.27π D.24π 答案:D例5.无盖的圆柱形容器的底面半径为2。
母线长为3,现将盛满水的该容器缓慢地倾斜,当水剩下原来的32时,圆柱的母线与水平面所成的角∈α() A .)6,0(πB .)4,6(ππC .)3,4(ππD .)2,3(ππ答案C例6.设函数1)(+=x x f ,在)(x f 的定义域内任取21x x <,则在(1))]()()[(2121<--x f x f x x ;(2))()(2121>--x x x f x f ;(3)2)()()2(2121x f x f x x f +>+中结论正确的是________ 答案(2)(3)例7.函数)(lim N n xx x x y n nnn n ∈+-=--∞→的大致图象为例8.一广告气球被一束平行光线投射到水平面上,其投影为椭圆,离心率为23,则这束光线对于水平面的入射角是________ 答案3π例9.有一系列中心在原点,以坐标轴为对称轴的椭圆,它们的离心率分别为:,)21(,)21(,2132...n )21(,,...(n 为正整数),且都以1=x 为准线,则所有这些椭圆的长轴长之和为___________ 答案2例10.64个正数排成8行8列,如下所示:181211...a a a 282221...a a a............ 888281...a a a在符号)8181(≤≤≤≤j i a ij ,中,i 表示该数所在的行数,j 表示该数所在的列数,已知每一行都成等差数列,而每一列都成等比数列(每列的公比q 都相等),2111=a ,124=a ,4132=a ,(1)求ij a 的通项公式;(2)记第k 行各项和为k A ,求1A 的值及k A 通项公式;(3)若1<k A ,求k 的值。
2020年4月22日高中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km /h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km /h 的频率分别为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.35【答案】B 【解析】 【分析】由频率分布直方图求出在此路段上汽车行驶速度在区间)[8590,的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过90/km h 的频率. 【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间)[8590,的频率为0.0650.3⨯=, ∴在此路段上汽车行驶速度在区间)[8590,的车辆数为:0.31000300⨯=, 行驶速度超过90/km h 的频率为:()0.050.0250.35+⨯=. 故选:B . 【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.2.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小儿多少岁,各儿岁数要谁推,这位公公年龄最小的儿子年龄为()A.8岁B.11岁C.20岁D.35岁【答案】B【解析】【分析】九个儿子的年龄成等差数列,公差为3.【详解】由题意九个儿子的年龄成等差数列,公差为3.记最小的儿子年龄为a1,则S9=9a1+9×8×3=207,解得a1=11.2故选B.【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.3.《九章算术》是我国古代内容极为丰富的数学名著,在《九章算术》中,将四个面都是直角三角形的四面体称之为鳖臑,在鳖臑A﹣BCD中,AB⊥平面BCD,且有BD⊥CD,AB=BD=1,CD=2,若该鳖臑的顶点都在一个球面上,则该球的体积为()A B C.D.24π【答案】B【解析】【分析】由题意易得鳖臑外接一个长方体,且外接球与长方体外接球为同一个球,根据长方体体对角线等于外接球直径,利用公式计算即可.【详解】易得鳖臑外接一个长方体,且外接球与长方体外接球为同一个球,故画出如图所示鳖臑.设长方体体对角线即外接球直径为D 则22221126D =++= ,故外接球体积31166V D π===.故选:B 【点睛】本题主要考查了长方体中三棱锥的外接球问题,注意体对角线等于外接球直径即可.属于基础题型.4.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( )A .1B .1+C .2+D .2+【答案】C 【解析】 【分析】由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形结合图形求出它的表面积。
热点02 数学传统文化和实际民生为载体的创新题【命题形式】1、考查题型主要是选择题和填空题,计算题和证明题比较少,涉及到的知识点主要集中在函数、数列、立体几何证明与计算、复数、组合、三角函数、概率、推理、圆锥曲线。
2、数学文化考查背景总结如下:①以数学名著为考查背景,以中国数学典籍史料中优秀成果为背景。
②以数学猜想和定理为命题背景。
③以数学名家的故事为命题背景,以数学家的故事,为考查背景,正是对创新精神数学精神的一种传承。
④以数学的应用为命题背景。
⑤历史名人。
⑥历史发展。
3、文化背景的考查在突出所要考查的数学知识的同时,培养学生的数学素养,不仅可以让学生理解数学文化形成数学素养,同时也让学生感受我们古代数学的伟大成就,增强爱国情怀,引导学生了解数学文化体现数学文化以数化人的本质内涵。
这是新高考考察的目的,从而这类问题也是新高考必考题型。
4、数学高考题渗透了大量的数学文化,尤其是渗透到中国古代独特的数学题目。
但这些题目考查的知识点有限,很多内容并未涉及到。
我们现在的社会在飞速发展,无论是科技还是人的思想都不断地变化。
为了让学生能够更好地适应未来社会的发展,我们的教育需要及时更新,不仅仅要反映在教材,考试也应该与时俱进,而不再是摸小球,投骰子,算水费这些老古董的模型背景,更应该与时俱进。
比如以科技为背景文化材料都可以作为激发学生学习兴趣的新材料。
像2020年12月2日嫦娥五号成功降落在月球上,它里面所涉及的轨道、运动都能成为很好的考查背景材料,而这些发射卫星的基地名称也可以作为命题背景的一大亮眼之处。
除次以外,同样可以结合其他学科知识和实际民生,比如新冠肺炎这些热点问题也可以成为出题的背景,进入数学高考题。
【满分技巧】1、多掌握数学文化知识通过对数学文化知识了解使学生对文化素养的提升,做题时能够做到有的放矢,减少对这类问题的恐惧心理。
2、注意数学文化的译文很多数学文化的题型都是选用的是中国传统数学文化,题目前面都是以文言文的形式出现,而后面都会对给出译文,译文才是本题的关键题意,所以这类题的关键地方是在译文上理解。
哈尔滨师范大学附属中学刘冰2017年,高考考试大纲修订内容中增加了对数学文化的要求,但是高考数学试题中早就出现过以数学文化为背景的新颖命题,经过持续发展,在2018年高考中呈现出了求新、求变的效果.把历史和文化内容引入高考数学,为高考数学题打上了文化的烙印.教师应在平时的教学中弘扬中国传统文化,吸收世界文化的精华,引导学生胸怀祖国,放眼世界.例1(2018年全国新课标I,理10)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,A C.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自I,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3解析:设AB=a,A C=b,BC=a2+b2,√设整个图形的面积为S则p1=ab2S,p2=1S{π(a2)22+π(b2)22-[π(a2+b2√2)22-1 2ab]}=ab2S=p1故选A.【数学文化】古希腊数学家希波克拉底发现的一条平面几何里应用广泛的优美定理———月牙定理,指以直角三角形两条直角边为直径向外做两个半圆,以斜边为直径向内做半圆,则三个半圆所围成的两个月牙型面积之和等于该直角三角形的面积.本题依据这一定理考查几何概型问题.例2(2017年全国卷II,理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏解析:设顶层灯数为a1,q=2,s7=a1(1-27)1-2=381,解得a1=3.故选B.【数学文化】《算法统宗》,又名《直指算法统宗》《新编直指算法统宗》,明代数学家程大位撰,共17卷.1592年编成《算法统宗》共列算题595道,以珠算为主要的计算工具,卷一介绍数学常识,卷二介绍珠算,卷三以后分别为方田、粟布、衰分、少广、分田截积、商功、均输、盈亏、方程、勾等,第十七卷附以难题杂法,又列有14个纵横图.本题以数学史中《算法统宗》的一个问题为包装,考查数列问题.例3(2016年全国新课标II,理8)中国古代有计算多项式值的秦九韶算法,实现该算法的程序框图见下页.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=.(A)7(B)12(C)17(D)34解析:第一次运算:s=0×2+2=2,第二次运算:s=2×2+2=6,第三次运算:s=6×2+5=17,故选C.【数学文化】秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法.在著作《数书九章》中提出了这一先进的多项式简化算法.一般一元n次多项式的求值需要经过n(n+1)2次乘. All Rights Reserved.a ,ba ≠ba >ba =a -bb =b-aa法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法.在人工计算时,大大简化了运算过程.本题以数学史中《秦九韶算法》的问题为背景,考查程序框图问题.例4(2015年全国卷II,理8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =.(A )0(B )2(C )4(D )14解析:逐次运行程序,直至程序结束得出a .a=14,b =18.第一次循环:14≠18且14<18,b =18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a=b =2,跳出循环,输出a=2,故选B.【数学文化】更相减损术出自《九章算术》中的求最大公约数的算法,原本是为约分而设计的,但它适用于任何需要求最大公约数的场合.本题将更相减损术与程序框图相结合,加大了该问题的考查难度.考生若能看出此程序框图的功能,便很容易解决.例5(2015年湖北卷,理2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓有人送来米1534石,验得米内夹谷,254粒内夹谷28粒,则这批米内夹谷约为(A )134石(B)169石(C)338石解析:254粒和1534致相同的,设1534解得x =169,故这批米内夹谷约为169石.【数学文化】中的“米谷粒分”问题,体.本题以《数书九章》为载体,例6(2018年全国新课标II,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118解析:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有n =C 210=45种不同的情况,其中和等于30的有7+23=30,11+19=30,13+17=30,共m =3种不同的情况,则所求的概率p =m n =345=115,故选C.【数学文化】在1742年给欧拉的信中,哥德巴赫提出了如下猜想:任一大于2的偶数都可写成两个素数之和.但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明.1966年,陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”.本题依据这一定理,考查古典概型问题.“数学文化”题是经典与创新的完美结合,也是近几年全国及各省份高考数学题中的一大亮点.我们在教学中应引导学生多多了解中国数学史及世界数学史,以便学生在高考中更好地发挥.编辑/王一鸣E-mail:***************考试KAOSHI. All Rights Reserved.。
高考数学文化题目的命制背景-数列中的数学文化背景:高考数学文化题目常以等差数列、等比数列为背景,考查读题、分析问题能力和逻辑推理能力。
预测:本文将以等差数列为题材,考查数列中的文化。
回顾:以2017年高考数学文化题目为例,考查了古代数学名著《算法统宗》中的问题,要求求解一座7层塔顶层的灯数,利用等比数列的知识进行计算。
典例分析:以2017江西红色七校联考为例,考查了《张丘建算经》中的问题,要求求解一个女子每天织布的数量,利用等差数列的知识进行计算。
另一道题目则考查了《算法统宗》中的问题,要求求解一个人走378里路后第二天走了多少里程,利用等比数列的知识进行计算。
规律总结:我国古代数学注重算理算法,很多问题可转化为等差数列、等比数列问题。
数学文化题目考查的是将古代实际问题转化为现代数学问题,建立数列模型,进行数列的基本计算,利用方程思想求解。
1.XXX是明代的一位著名音乐家、数学家和天文历算家。
他在著作《律学新说》中制定了十二平均律,这是目前世界上通用的将一组音分成十二个半音音程的律制。
这些音程之间的频率比完全相等,因此也被称为十二等程律。
具体来说,一个八度包含13个音,相邻两个音之间的频率比相等,而最后一个音的频率是最初那个音的2倍。
如果设第三个音的频率为f1,第七个音的频率为f2,则f2/f1=2^(2/12)=1.1228.2.《孙子算经》是我国古代的一部数学名著。
其中有一个问题是:“今有五个诸侯,共分60个橘子,每人加三个。
问:五人各得几何?”这个问题的意思是:五个人要分60个橘子,他们分得的橘子数构成一个公差为3的等差数列。
得到橘子最少的人所得的橘子个数是6.3.《九章算术》是我国古代一部重要的数学著作。
其中有一个问题是:“现在有良马和驽马同时从长安出发到齐去。
已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里;驽马第一天行97里,之后每天比前一天少行0.5里。
专题09 解析几何专题(数学文化)一、单选题1.(2022·全国·高三专题练习)古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆雉,得到的截面是圆;把平面再渐渐倾斜得到的截面是椭圆.若用面积为128的矩形ABCD 截某圆锥得到椭圆τ,且τ与矩形ABCD 的四边相切.设椭圆τ在平面直角坐标系中的方程为()222210x y a b a b +=>>,下列选项中满足题意的方程为( ) A .2216416x y +=B .2211664x y +=C .22125616x y +=D .2216432x y +=【答案】A【分析】由题得32ab =,再判断选项得解.【详解】解:矩形ABCD 的四边与椭圆相切,则矩形的面积为22128a b ⋅=,所以32ab =. 只有选项A 符合. 故选:A2.(2023·全国·高三专题练习)第24届冬季奥林匹克运动会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为12345,,,,O O O O O ,若双曲线C 以13,O O 为焦点、以直线24O O 为一条渐近线,则C 的离心率为( )A B C .1311D .125【答案】B【分析】根据给定条件,建立平面直角坐标系,求出双曲线渐近线的方程,结合离心率的意义计算作答.【详解】依题意,以点2O 为原点,直线13O O 为x 轴建立平面直角坐标系,如图,点4(13,11)O −−,设双曲线C 的方程为22221(0,0)x y a b a b −=>>,其渐近线为b y x a=±,因直线24O O 为一条渐近线,则有1113b a =,双曲线C 的离心率为e ===故选:B3.(2022春·云南曲靖·高二校考开学考试)加斯帕尔·蒙日(如图甲)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图乙),则椭圆22:1169x y C +=的蒙日圆的半径为( )A .3B .4C .5D .6【答案】C【分析】由蒙日圆的定义,确定出圆上的一点即可求出圆的半径.【详解】解:由蒙日圆的定义,可知椭圆22:1169x y C +=的两条切线4x =、3y =的交点()4,3在圆上,所以蒙日圆的半径5R ==. 故选:C .4.(2022·全国·的椭圆称为“最美椭圆”.已知椭圆C 为“最美椭圆”,且以椭圆C 上一点P 和椭圆两焦点为顶点的三角形的面积最大值为4,则椭圆C 的方程为( ).A .2212x y +=B .22142x y +=C .22163x y +=D .22184x y +=【答案】D【分析】先由e =2c a =与2b a =,再由12PF F S 的最大值得4bc =,进而求得28a =,24b =,故可得到椭圆C 的方程.【详解】解:由已知c e a ==c =,故b ,∵121211222PF F P P S F F y c y bc ==⨯≤,即()12max4PF F S bc ==,∴422a a ⨯=,得28a =,故22142b a ==,所以椭圆C 的方程为22184x y +=.故选:D .5.(2022秋·江苏南京·高二南京市第一中学校考阶段练习)德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点A 、B 是MON ∠的ON 边上的两个定点,C 是OM 边上的一个动点,当C 在何处时,ACB ∠最大问题的答案是:当且仅当ABC 的外接圆与边OM 相切于点C 时,ACB ∠最大.人们称这一命题为米勒定理.已知点P ,Q 的坐标分别是(2,0),(6,0),R 是y 轴正半轴上的一动点,当PRQ ∠最大时,点R 的纵坐标为( )AB .2C .D .4【答案】C【分析】由米勒定理确定PRQ △的外接圆与y 轴的位置关系,再应用垂径定理、直线与圆关系确定圆心和半径,进而写出PRQ △的外接圆的方程,即可求R 的纵坐标.【详解】因为P ,Q 分别是(2,0),R 是y 轴正半轴上的一动点, 根据米勒定理知,当PRQ △的外接圆与y 轴相切时,PRQ ∠最大, 由垂径定理知,弦PQ 的垂直平分线必过PRQ △的外接圆圆心, 所以弦PQ 中点G 的坐标为(4,0),故弦PQ 中点的横坐标即为PRQ △的外接圆半径的大小,即4r =,由垂径定理得圆心为,所以PRQ △的外接圆的方程为22(4)(16x y −+−=,令0x =,得R 的纵坐标为 故选:C6.(2022秋·新疆乌鲁木齐·高二乌市八中校考期中)德国天文学家开普勒发现天体运行轨道是椭圆,已知地球运行的轨道是一个椭圆,太阳在它的一个焦点上,若轨道近日点到太阳中心的距离和远日点到太阳中心的距离之比为28:29,那么地球运行轨道所在椭圆的离心率是( )A .159B .12C .2956D .157【答案】D【分析】根据题意可得2829a c a c −=+,进而即得. 【详解】设椭圆的长半轴长为a ,半焦距为c , 由题意可得2829a c a c −=+, 所以57a c =,即157c a =, 因此地球运行轨道所在椭圆的离心率是157. 故选:D.7.(2022秋·福建·高二校联考期中)几何学史上有一个著名的米勒问题:“设点,M N 是锐角AQB ∠的一边QA 上的两点,试在QB 边上找一点P ,使得MPN ∠最大.”如图,其结论是:点P 为过M ,N 两点且和射线QB 相切的圆与射线QB 的切点.根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点()()1,2,1,4M N −,点P 在x 轴上移动,当MPN ∠取最大值时,点P 的横坐标是( )A .1B .7−C .1或1−D .1或7−【答案】A【分析】利用米勒问题的结论,将问题转化为点P 为过M ,N 两点且和x 轴相切的圆与x 轴的切点,求出切点的横坐标即可.【详解】由题意知,点P 为过M ,N 两点且和x 轴相切的圆与x 轴的切点,线段MN 的中点坐标为()03,,线段MN 的垂直平分线方程为3y x −=−, 所以以线段MN 为弦的圆的圆心在线段MN 的垂直平分线3y x −=−上, 所以可设圆心坐标为(),3C a a −,又因为圆与x 轴相切,所以圆C 的半径3r a =−,又因为CN r =,所以()()()2221343a a a −+−−=−,解得1a =或7a =−,即切点分别为()1,0P 和()7,0P '−,由于圆上以线段MN (定长)为弦所对的圆周角会随着半径增大而圆周角角度减小,,且过点,,M N P '的圆的半径比过,,M N P 的圆的半径大,所以MP N MPN '∠<∠,故点()1,0P 为所求,所以当MPN ∠取最大值时,点P 的横坐标是1. 故选:A.8.(2022秋·北京·高二北大附中校考期末)公元前 4 世纪, 古希腊数学家梅内克缪斯利用垂直于母线的平面去截顶角分别为锐角、钝角和直角的圆锥,发现了三种圆锥曲线.之后,数学家亚理士塔欧、欧几里得、阿波罗尼斯等都对圆锥曲线进行了深 入的研究.直到 3 世纪末,帕普斯才在其《数学汇编》中首次证明:与定点和定直线的距离成定比的点的轨迹是圆锥曲线, 定比小于、大于和等于 1 分别对应椭圆、双曲线和抛物线.已知,A B 是平面内两个定点, 且 |AB | = 4,则下列关于轨迹的说法中错误的是( ) A .到,A B 两点距离相等的点的轨迹是直线 B .到,A B 两点距离之比等于 2 的点的轨迹是圆 C .到,A B 两点距离之和等于 5 的点的轨迹是椭圆 D .到,A B 两点距离之差等于 3 的点的轨迹是双曲线 【答案】D【分析】判断到,A B 两点距离相等的点的轨迹是,A B 连线的垂直平分线,判断A;建立平面直角坐标系,求出动点的轨迹方程,可判断B;C,D .【详解】对于A ,到,A B 两点距离相等的点的轨迹是,A B 连线的垂直平分线,正确; 对于B ,以AB 为x 轴,AB 的中垂线为y 轴建立平面直角坐标系,则()()2,0,2,0A B −,设动点(,)P x y ,由题意知||2||PA PB =,2= ,化简为221064()39x y −+=, 即此时点的轨迹为圆,B 正确;对于C ,不妨设动点P 到,A B 两点距离之和等于5 ,即5PA PB +=,由于54>, 故到,A B 两点距离之和等于 5 的点的轨迹是以,A B 为焦点的椭圆,C 正确; 对于D ,设动点P 到,A B 两点距离之差等于3 ,即||||3−=PA PB ,由于34<, 故到,A B 两点距离之差等于3 的点的轨迹是双曲线靠近B 侧的一支,D 错误, 故选:D9.(2021秋·辽宁沈阳·高三沈阳二十中校联考期中)古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数e 的点的轨迹叫做圆锥曲线;当01e <<时,轨迹为椭圆;当1e =时,轨迹为抛物线;当1e >时,轨迹为双曲线.现有方程()()22221223m x y y x y +++=−+表示的曲线是双曲线,则m 的取值范围为( )A .()0,8B .()8,+∞C .()0,5D .()5,+∞【答案】A【分析】将原方程两边同时开平方,结合两点得距离公式和点到直线的距离公式,以及圆锥曲线的统一定义,可得关于m 的不等式,从而可得出答案.【详解】解:由方程()()22221223m x y y x y +++=−+,0m >,得()()2221223m x y x y ⎡⎤++=−+⎣⎦,223x y =−+,=可得动点(),x y 到定点()0,1−和定直线2230xy −+=, 1>,解得08m <<. 故选:A.10.(2022·全国·高三专题练习)如图①,用一个平面去截圆锥得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家Germinaldandelin (17941847−)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面、截面相切,两个球分别与截面相切于,E F ,在截口曲线上任取一点A ,过A 作圆锥的母线,分别与两个球相切于,C B ,由球和圆的几何性质,可以知道,AE AC =,AF AB =,于是AE AF AB AC BC +=+=.由,B C 的产生方法可知,它们之间的距离BC 是定值,由椭圆定义可知,截口曲线是以,E F 为焦点的椭圆.如图②,一个半径为2的球放在桌面上,桌面上方有一个点光源P ,则球在桌面上的投影是椭圆,已知12A A 是椭圆的长轴,1PA 垂直于桌面且与球相切,15PA =,则椭圆的焦距为( ) A .4 B .6C .8D .12【答案】C【分析】设球O 与1PA 相切与点E ,可得2tan 3OPE ∠=,利用二倍角正切公式可得12tan A PA ∠,由此可得a ,由1A F a c =−可求得焦距.【详解】设球O 与1PA 相切与点E ,作出轴截面如下图所示,由题意知:2OE OF ==,523PE =−=,2tan 3OE OPE PE ∴∠==, ()12242tan 123tan tan 241tan 519OPE A PA OPE OPE ∠∴∠=∠===−∠−, 又15PA =,1212A A ∴=,6a ∴=,又12A F a c =−=,4c ∴=,∴椭圆的焦距为28c =.故选:C.11.(2022·全国·高三专题练习)阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积.当我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率π与椭圆的长半轴长与短半轴长的乘积,已知椭圆2222:1(0)x y C a b a b+=>>的面积为,两个焦点分别为12,F F ,点P 为椭圆C 的上顶点.直线y kx =与椭圆C 交于A ,B 两点,若,PA PB 的斜率之积为89−,则椭圆C 的长轴长为( )A .3B .6C .D .【答案】B【分析】由题意得到方程组ab =①和2289b a =②,即可解出a 、b ,求出长轴长.【详解】椭圆的面积S ab π==,即ab =. 因为点P 为椭圆C 的上项点,所以()0,P b .因为直线y kx =与椭圆C 交于A ,B 两点,不妨设(),A m n ,则(),B m n −−且22221m n a b +=,所以22222a n m a b=−. 因为,PA PB 的斜率之积为89−,所以89n b n b m m −−−⋅=−−,把22222a n m a b=−代入整理化简得:2289b a =②①②联立解得:3,a b == 所以椭圆C 的长轴长为2a =6. 故选:B12.(2022秋·北京·高二北京工业大学附属中学校考期中)著名数学家华罗庚曾说过:“数无形时少直觉,形少数时难入微.”事实上,有很多代数问题可以转化为几何问题加以解决,平面上点(),M x y 与点(),N a b 的距离.结合上述观点,可得()f x =( )A .5BCD .2【答案】C【分析】记点(),0P x 、()5,1A −、()3,2B −−,可得出()f x PA PB =+,数形结合可求得()f x 的最小值.【详解】因为()f x =记点(),0P x 、()5,1A −、()3,2B −−,则()f x PA PB AB =+≥==f x当且仅当点P为线段AB与x轴的交点时,等号成立,即()故选:C.13.(2022秋·福建福州·高二福建省福州延安中学校考阶段练习)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0°B.1°C.2°D.3°【答案】C【分析】根据5颗星的位置情况知∠BAO3=18°,过O3作x轴的平行线O3E并确定∠OO3E的大小,即可知AB所在直线的倾斜角.【详解】∵O,O3都为五角星的中心点,∴OO3平分第三颗小星的一个角,又五角星的内角为36°知:∠BAO3=18°,过O3作x轴的平行线O3E,如下图,则∠OO3E=α≈16°,∴直线AB 的倾斜角为18°-16°=2°. 故选:C14.(2022秋·湖北·高二宜城市第一中学校联考期中)在唐诗“白日登山望烽火,黄昏饮马傍交河”中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为()()22111x y ++−≤,若将军从点(1,0)处出发,河岸线所在直线方程为50x y +−=,并假定将军只要到达军营所在区域即认为回到军营,则“将军饮马”的最短总路程为( )A.B .C .1D .1【答案】C【分析】先求出将军出发点M 关于河岸所在直线的对称点N ,再连接CN 交河岸所在直线于点P ,则由对称性可知1NC −为最短距离,求解即可. 【详解】解:如图,设()1,0M 关于河岸线所在直线:50l x y +−=的对称点N 为(,)a b ,根据题意,设军营所在区域为以圆心为C ,半径1r =的圆上和圆内所有点,1NC −为最短距离,先求出N 的坐标,MN 的中点为1(2a +,)2b,直线MN 的斜率为1,则(1)1115022ba ab ⎧⋅−=−⎪⎪−⎨+⎪+−=⎪⎩,解得54a b =⎧⎨=⎩,(5N ∴,4),又(1,1)C −,所以111NC −==, 故选:C .15.(2022秋·安徽合肥·高二合肥市第七中学校联考期中)国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于13−,则椭圆的离心率为( )A .13B .23CD【答案】D【分析】设内层椭圆方程为2221x y a b+,则外层椭圆方程为()()22221x y ma mb +=(1m >),分别列出过,A C 和,B D 的切线方程,联立切线和内层椭圆,由Δ0=分别转化出2212,k k 的表达式,结合221219k k ⋅=可求a 与b 关系式,齐次化可求离心率.【详解】设内层椭圆方程为22221x y a b +=(0a b >>),因为内、外层椭圆离心率相同,所以外层椭圆方程可设成()()22221x y ma mb +=(1m >),设切线AC 方程为()1y k x ma =+,与22221x y a b+=联立得,()2222224222113120ba k x ma k x m a k ab +++−=,由()()()23222224222111Δ240ma k b a k m a k a b =−+⋅−=,化简得:()2212211b k a m =⋅−,设切线BD 方程为2y k x mb =+,同理可求得()222221b k m a=−,所以()22242221222241113191b b b k k m a m a a ⎛⎫=⋅⋅⋅−==− −⎭=⎪⎝,2222222113b ac c a a a −==−=,所以2223c a =,因此3c e a ==. 故选:D二、多选题16.(2020秋·重庆巴南·高二重庆市实验中学校考阶段练习)2020年11月24日,我国在中国文昌航天发射场,用长征五号遥五运载火箭成功发射探月工程嫦娥五号探测器,它将首次带月壤返回地球,我们离月球的“距离”又近一步了.已知点()10M ,,直线:2l x =−,若某直线上存在点P ,使得点P 到点M 的距离比到直线l 的距离小1,则称该直线为“最远距离直线”,则下列结论正确的是( ) A .点P 的轨迹曲线是一条线段 B .26y x =+不是“最远距离直线” C .112y x =+是“最远距离直线” D .点P 的轨迹与直线'l :=1x −是没有交会的轨迹(即两个轨迹没有交点) 【答案】BCD【分析】由题意结合抛物线的定义可得点P 的轨迹,可以判断选项A ,根据抛物线的曲线性质可判断选项D ,对于选项B 和C ,结合题意可知,判断直线是否是“最远距离直线”,只需要联立抛物线与直线方程,通过判断方程是否有解即可.【详解】由题意可得:点P 到点M 的距离比等于点P 到直线l 的距离,由抛物线的定义可知,点P 的轨迹是以()10M ,为焦点的抛物线,即:24y x =, 故A 选项错误;对于选项B 和C :判断直线是不是“最远距离直线”, 只需要判断直线与抛物线24y x =是否有交点,所以联立直线26y x =+与抛物线24y x =可得方程2590x x ++=, 易得方程2590x x ++=无实根,故选项B 正确; 同理,通过联立直线112y x =+与抛物线24y x =可得方程21240x x −+=, 易得方程2590x x ++=有实根,故选项C 正确;由于抛物线24y x =与其准线=1x −没有交点,所以选项D 正确; 故选:BCD.【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.而抛物线的定义是我们解题的关键,牢记这些对解题非常有益.17.(2022·广东·统考模拟预测)数学家华罗庚曾说:“数缺形时少直观,形少数时难入微.”事实上,很多代数问题可以转化为几何问题加以解决.(),A x y与点(),B a b 之间的距离的几何问题.结合上述观点,对于函数()f x =下列结论正确的是( )A .()6f x =无解B .()6f x =的解为x =C .()f x 的最小值为D .()f x 的最大值为【答案】BC【分析】根据两点间距离公式,结合椭圆的定义和性质分别进行判断即可.【详解】解:()f x =,设(),1P x ,()2,0A −,()2,0B , 则()f x PA PB =+,若()6f x =,则64PA PB AB +=>=, 则P 的轨迹是以A ,B 为焦点的椭圆, 此时26a =,2c =,即3a =,2945b =−=,即椭圆方程为22195x y +=,当1y =时,得2141955x =−=,得2365x =,得5x =±,故A 错误,B 正确, B 关于1y =对称点为()2,2C ,则PA PB PA PC AC +=+≥,当,,A P C 三点共线时,()f x 最小,此时()f x AC =====,()f x 无最大值,故C 正确,D 错误, 故选:BC .18.(2022秋·广东茂名·高二统考期末)(多选)如图所示,“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ )A .1122a c a c +=+B .1122a c a c −=−C .11c a <22c a D .1212c a a c >【答案】BD【分析】根据题意得1122a c a c PF −=−=,再结合不等式的性质即可得答案.【详解】观察图形可知1122a c a c +>+,即A 不正确;1122a c a cPF −=−=,即B 正确;由11220a c a c =−>−,120c c >> 知,112212a c a c c c −−<,即1212a a c c <,从而1212c a a c >,即:1212c c a a > ,即D 正确,C 不正确. 故选:BD【点睛】本题考查知识的迁移与应用,考查分析问题与处理问题的能力,是中档题.本题解题的关键在于由图知1122a c a c PF −=−=,进而根据不等式性质讨论求解. 19.(2022·全国·为黄金比,记为ω.定义:若椭圆的短轴与长轴之比为黄金比ω,则称该椭圆为“黄金椭圆”.以椭圆中心为圆心,半焦距长为半径的圆称为焦点圆.若黄金椭圆”:22221(0)x y a b a b +=>>与它的焦点圆在第一象限的交点为Q ,则下列结论正确的有( ) A .21ωω+=B .黄金椭圆离心率e ω=C .设直线OQ 的倾斜角为θ,则sin θω=D .交点Q 坐标为(b ,ωb )【答案】AC【分析】A :由方程210ωω+−=的根可判断正误;B :由题设b aω=,根据椭圆参数关系及离心率c e a =即可判断正误;C :由圆的性质有12QF QF ⊥且122QF F θ∠=,122QF QF a +=,结合同角平方关系、倍角正弦公式可判断正误;D :由C 易得Q 点纵坐标为c ω且b c ≠,即可判断正误. 【详解】A :方程210ωω+−=的一个根为ω=B:由题意知,b a ω==,则c e a ω====≠,错误; C :易知12QF QF ⊥,且122QF F θ∠=,则212sin ,2cos 22QF c QF c θθ=⋅=⋅,所以122sin cos 222QF QF c a θθ⎛⎫+=⋅+= ⎪⎝⎭,即sin cos 22a c θθ+==1sin 1θω+===即sin 1θω==,正确;D :由OQ c =,结合sin θω=知:Q 点纵坐标为sin c c θω=,而b c ≠,错误. 故选:AC【点睛】关键点点睛:根据黄金椭圆、焦点圆定义及椭圆参数关系,计算离心率、夹角正弦值以及判断交点坐标.20.(2022·全国·高二假期作业)1765年,数学家欧拉在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,这条直线就是后人所说的“欧拉线”.已知ABC 的顶点()()1,0,0,2B C −,重心12,63G ⎛⎫⎪⎝⎭,则下列说法正确的是( )A .点A 的坐标为3,02⎛⎫⎪⎝⎭B .ABC 为等边三角形 C .欧拉线方程为2430x y +−=D .ABC 外接圆的方程为22151254864x y ⎛⎫⎛⎫−+−= ⎪ ⎪⎝⎭⎝⎭【答案】ACD【分析】根据重心公式计算得到A 正确;计算5,2AB AC BC ===B 错误;计算线段BC 垂直平分线的方程得到C 正确;计算外接圆圆心为15,48M ⎛⎫⎪⎝⎭,得到圆方程,D 正确,得到答案.【详解】12,63G ⎛⎫ ⎪⎝⎭为ABC 的重心,设(),A x y ,由重心坐标公式()1016320233x y ⎧+−+=⎪⎪⎨++⎪=⎪⎩,解得320x y ⎧=⎪⎨⎪=⎩,3,02A ⎛⎫⎪⎝⎭,选项A 正确;5,2AB AC BC ===ABC 不是等边三角形,故选项B 错误;AB AC =,ABC 的外心、重心、垂心都位于线段BC 的垂直平分线上,ABC 的顶点()()1,0,0,2B C −,线段BC 的中点的坐标为1,12⎛⎫− ⎪⎝⎭,线段BC 所在直线的斜率()20201BC k −==−−,线段BC 垂直平分线的方程为11122y x ⎛⎫−=−+ ⎪⎝⎭,即2430x y +−=,ABC 的欧拉线方程为2430x y +−=,故选项C 正确;因为线段AB 的垂直平分线方程为14x =,ABC 的外心M 为线段BC 的垂直平分线与线段AB 的垂直平分线的交点,所以交点M 的坐标满足243014x y x +−=⎧⎪⎨=⎪⎩,解得15,48M ⎛⎫⎪⎝⎭,外接圆半径r MB ==ABC 外接圆方程为22151254864x y ⎛⎫⎛⎫−+−= ⎪ ⎪⎝⎭⎝⎭,故选项D 正确. 故选:ACD.21.(2023秋·江苏南京·高二校考期末)古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值()1λλ≠的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知()4,3A −,()2,3B ,动点P 满足2PAPB=,记点P 的轨迹为圆C ,又已知动圆D :()()22cos sin 1x y θθ−+−=.则下列说法正确的是( )A .圆C 的方程是()()224316x y −+−=B .当θ变化时,动点D 的轨迹方程为221x y +=C .当32πθ=时,过直线AD 上一点Q 引圆C 的两条切线,切点为E ,F ,则EQF ∠的最大值为2π D .存在θ使得圆C 与圆D 内切 【答案】ABC【分析】对于A 根据“阿波罗尼斯圆”的定义列式化简即可;对于B ,设圆心(),D x y ,而cos sin x y θθ=⎧⎨=⎩,消去θ即可得到圆心D 的估计方程;对于C ,因为CQE △是直角三角形,根据三角函数找出CQE ∠的最大值,再得出EQF ∠的最大值;对于D ,根据两点间的距离公式计算出CD 范围,再根据两圆内切条件判断即可. 【详解】.解:设(),P x y ,由2PAPB=2=化简整理得:()()224316x y −+−=.故A 正确;设(),D x y ,则cos sin x y θθ=⎧⎨=⎩消去θ得221x y +=.故B 正确;当32πθ=时,()0,1D −,直线AD 的方程为:10x y ++=. 因为4sin CE CQE CQCQ∠==,要使EQF ∠最大,只需CQ 最小.所以min CQ ==()max sin CQE ∠=()max 4EQC π∠=.所以EQF ∠的最大值为2π,故C 正确;因为[]4,6CD =,若两圆内切有413CD =−=,故不存在θ使得3CD =,故D 错误. 故选: ABC22.(2022秋·江苏无锡·高二江苏省天一中学校考期末)双纽线最早于1694年被瑞士数学家雅各布﹒伯努利用来描述他所发现的曲线.在平面直角坐标系xOy 中,把到定点()1,0F a −,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线C .已知点()00,P x y 是双纽线C 上一点,下列说法中正确的有( ) A .双纽线C 关于x 轴对称B .022a a y −≤≤ C.双纽线C 上满足12PF PF =的点P 有两个 D .PO 【答案】ABD【解析】对A ,设动点(),C x y ,则对称点(),x y −代入轨迹方程,显然成立;对B ,根据12PF F △的面积范围证明;对C ,若12PF PF =,则()00,P x y 在y 轴上,代入轨迹方程求解;对D ,根据余弦定理分析12PF F △中的边长关系,进而利用三角形的关系证明即可.【详解】对A ,设动点(),C x y ,由题意可得C 2a =把(),x y 关于x 轴对称的点(),x y −代入轨迹方程,显然成立,故A 正确; 对B ,因为()00,P x y ,故12121212011sin 22PF F SPF PF F PF F F y =⋅⋅∠=⋅. 又212PF PF a ⋅=,所以2120sin 2a F PF a y ∠=⋅,即012sin 22a ay F PF =∠≤,故022a a y −≤≤.故B 正确;对C ,若12PF PF =,则()00,P x y 在12F F 的中垂线即y 轴上.故此时00x =2a =,可得00y =,即()0,0P ,仅有一个,故C 错误; 对D ,因为12POF POF π∠+∠=, 故12cos cos 0POF POF ∠+∠=,222222112212022OP OF PF OP OF PF OP OF OP OF +−+−+=⋅⋅,因为12OF OF a ==,212PF PF a ⋅=,故22221222OP a PF PF +=+. 即()2221212222OP a PF PF PF PF +=−+⋅,所以()22122OP PF PF =−.又12122PF PF F F a −≤=,当且仅当P ,1F ,2F 共线时取等号. 故()222122(2)OP PF PF a =−≤,即222OP a ≤,解得OP ≤,故D 正确. 故选:ABD.【点睛】关键点睛:本题考查了动点轨迹方程的性质判定,因为轨迹方程比较复杂,故在作不出图像时,需要根据题意求出动点的方程进行对称性分析,同时结合解三角形的方法对所给信息进行辨析.三、填空题23.(2022秋·内蒙古赤峰·高二校考期末)油纸伞是中国传统工艺品,至今已有1000多年的历史.为宣传和推广这一传统工艺,某活动中将一把油纸伞撑开后摆放在户外展览场地上,如图所示.该伞沿是一个半径为260︒时,在地面形成了一个椭圆形影子,且伞柄底端正好位于该椭圆的长轴上,该椭圆的离心率e =_____________.【答案】12##0.5【分析】由伞沿半径及圆心到伞柄底端的距离,得伞柄与地面夹角为60︒,阳光光线与伞柄平行,易得椭圆长半轴,短半轴的长,可求出离心率.【详解】因为伞沿是半径为2设伞柄与地面的夹角为θ,则tan θ==60θ=︒,即阳光光线与伞柄平行,所以椭圆长半轴2sin 60a ==︒,短半轴2b =,离心率12e ==.故答案为:12.24.(2022秋·河南·高二校联考期末)台球赛的一种得分战术手段叫做“斯诺克”:在白色本球与目标球之间,设置障碍,使得本球不能直接击打目标球.如图,某场比赛中,某选手被对手做成了一个“斯诺克”,本球需经过边BC ,CD 两次反弹后击打目标球N ,点M 到,CD BC 的距离分别为200cm,60cm ,点N 到,CD BC 的距离分别为80cm,120cm ,将M ,N 看成质点,本球在M 点处,若击打成功,则tan θ=___________.【答案】914【分析】以C 为原点,,DC BC 边分别为x 轴,y 轴建立如图所示的平面直角坐标系,写出,M N 的坐标,求出N 关于x 轴的对称点N '的坐标,N '关于y 轴的对称点N ''的坐标,则直线MN ''方向为本球射出方向,利用斜率公式和诱导公式可求出结果.【详解】以C 为原点,,DC BC 边分别为x 轴,y 轴建立平面直角坐标系,如图,则(120,80),(60,200)N M −−−−,N 关于x 轴的对称点为(120,80),N N '−'关于y 轴的对称点为(120,80)N '', 直线MN ''方向为本球射出方向,故π8020014tan()=2120609θ+−=+,9tan 14θ=. 故答案为:914. 25.(2022秋·云南·高三校联考阶段练习)大约在2000多年前,我国的墨子给出了圆的概念“一中同长也”,意思是说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下定义要早100多年.已知直角坐标平面内有一点(2,0)C 和一动点P 满足||2CP =,若过点M 的直线l 将动点P 的轨迹分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =__________.2【分析】过定点M 的直线l 将动点P 的轨迹分成两段弧,当劣弧所对的圆心角最小时,圆心到直线l 的距离最远,即为圆心到M 的距离.此时,直线l 与CM 垂直,由1l CM k k =−可得答案. 【详解】依题意可知,动点P 的轨迹是以C 为圆心,2r =为半径的圆, 即22:(2)4C x y −+=e .因为22(12)34−+=<,故点M 在C 内. 当劣弧所对的圆心角最小时,CM l ⊥.因为直线CM的斜率CM k == 所以所求直线l的斜率k =故答案为:2. 26.(2022秋·湖南·高二校联考期中)古希腊数学家阿基米德早在2200多年前利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆221287x y +=,则该椭圆的面积为________.【答案】14π【分析】根据椭圆方程求出a 、b ,依题意椭圆的面积S ab π=,从而计算可得.【详解】解:对于椭圆221287x y +=,则a =b =,所以椭圆的面积14S ab ππ==; 故答案为:14π27.(2022·广东韶关·统考一模)我们知道距离是衡量两点之间的远近程度的一个概念.数学中根据不同定义有好多种距离.平面上,欧几里得距离是()11,A x y 与()22,B x y 两点间的直线距离,即AB d =切比雪夫距离是()11,A x y 与()22,B x y 两点中横坐标差的绝对值和纵坐标差的绝对值中的最大值,即{}1212max ,AB d x x y y '=−−.已知P 是直线:2150l x y +−=上的动点,当P 与O (O 为坐标原点)两点之间的欧几里得距离最小时,其切比雪夫距离为___________. 【答案】6【分析】由条件确定P 与O 两点之间的欧几里得距离的最小值及对应的点P 的位置,再根据切比雪夫距离的定义求解即可.【详解】因为点P 是直线l :2150x y +−=上的动点,要使OP 最小,则OP l ⊥,此时2l k =−,所以12POk =,由方程组215012x y y x +−=⎧⎪⎨=⎪⎩,解得6x =,3y =, 所以,P ,O 两点之间的切比雪夫距离为6. 故答案为:6.28.(2022·全国·高二假期作业)中国景德镇陶瓷世界闻名,其中青花瓷最受大家的喜爱,如图1这个精美的青花瓷它的颈部(图2转所形成的曲面,若该颈部中最细处直径为16厘米,瓶口直径为20厘米,则颈部高为______厘米.。
㊀㊀㊀数学文化巧融合㊀数列求和妙应用以一道高考数学题为例◉安徽省太和县第二中学㊀谭续续1引言数学文化问题作为新课标高考中比较常见的一类创新应用问题,在试卷中以各种方式出现,不仅能够反映古今中外劳动人民的聪明才智和数学家探索数学科学的精神与品质,而且能够让学生体验数学产生与发展的过程,体会数学的本质特征.特别是,结合中华优秀传统文化情境,展现我国古代劳动人民的智慧与创造,形成民族自豪感和远大理想,在高考数学试卷中倍受关注.2真题呈现高考真题㊀(2021年高考数学新高考Ⅰ卷第16题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20d mˑ12d m的长方形纸,对折1次共可以得到10d mˑ12d m,20d mˑ6d m两种规格的图形,它们的面积之和S1=240d m2,对折2次共可以得到5d mˑ12d m,10d mˑ6d m,20d mˑ3d m三种规格的图形,它们的面积之和S2=180d m2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n次,那么ðn k=1S k=d m2.3真题剖析此题以我国传统文化剪纸艺术为背景,通过两小问的设置,借助穷举法解决第一小问,再进一步归纳整理并计算得到第二小问的结果,让考生体验从特殊到一般探索数学问题的过程,体现了数学中的归纳思想方法,带领学生从有穷走向无穷,是思维上的一个飞跃与拓展,重点考查考生灵活运用数学知识分析与解决问题的能力.此题依次呈现高中数学核心素养中的直观想象㊁数学建模㊁逻辑推理以及数学运算等四个方面,对学生的能力与素养进行了全方位的考查.4真题破解解法1:(穷举法+错位相减法)由条件可知:对折1次得到2种规格:10d mˑ12d m,20d mˑ6d m;对折2次得到3种规格:5d mˑ12d m,10d mˑ6d m,20d mˑ3d m;对折3次得到4种规格:5d mˑ6d m,52d mˑ12d m,10d mˑ3d m,20d mˑ32d m;对折4次得到5种规格:20d mˑ34d m,10d mˑ32d m,5d mˑ3d m,52d mˑ6d m,54d mˑ12d m;猜想对折n次得到n+1种不同规格的图形,且这n+1个长方形的面积相等,等于240ˑ12æèçöø÷n,故面积和S n=(n+1)ˑ240ˑ12æèçöø÷n,所以S=ðn k=1S k=S1+S2+ +S n=2ˑ240ˑ12æèçöø÷1+3ˑ240ˑ12æèçöø÷2+ +nˑ240ˑ12æèçöø÷n-1+(n+1)ˑ240ˑ12æèçöø÷n,则有S=ðn k=1S k=240ðn k=1k+12k.记T n=ðn k=1k+12k,则12T n=ðn k=1k+12k+1,故12T n=ðn k=1k+12k-ðn k=1k+12k+1=1+ðn-1k=1k+22k+1-ðn k=1k+22k+1æèçöø÷-n+12n+1=1+141-12n-1æèçöø÷1-12-n+12n+1=32-n+32n+1,则T n=3-n+32n.故S=ðnk=1S k=2403-n+32næèçöø÷.48教育纵横数学文化㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年6月上半月Copyright©博看网. All Rights Reserved.㊀㊀㊀故填答案:(1)5;(2)2403-n +32n æèçöø÷.点评:此解法是绝大多数考生在考场上采用的基本破解方案,第一问难度不大,学生多会用穷举法;在第二问中,错位相减法是平时解决数学问题时练习比较多的解决数列求和问题的基本方案.解法2:(穷举法+裂项相消法)以上部分同解法1.猜想对折n 次得到n +1种不同规格的图形,且这n +1个长方形的面积相等,都等于240ˑ12æèçöø÷n,故面积之和为S n =(n +1)ˑ240ˑ12æèçöø÷n.因为n +12n =n +22n -1-n +32n,所以S =ðnk =1S k =S 1+S 2+ +S n =240320-421æèçöø÷+240421-522æèçöø÷+ +240n +22n -1æèç-n +32nöø÷=2403-n +32n æèçöø÷.故填答案:(1)5;(2)2403-n +32n æèçöø÷.点评:此解法对数列求和的能力要求比较高,在第二问中,利用数列中通项关系式的变形与转化,合理通过待定系数法来进行裂项相消的工作,进而达到数列求和的目的,此方法对数列通项的推理与代数变形的技巧与要求比较高,在平时的教学中可以视学生情况进行选讲㊁拓展.解法3:(归纳推理法+数列求和法)显然对折n 次后,得到矩形的规格为:长20ˑ12æèçöø÷m,宽12ˑ12æèçöø÷n -m,0ɤm ɤn ,m ,n ɪN ,当m 取遍从0到n 的整数时,长20ˑ12æèçöø÷m的数值呈现严格单调递减的变化趋势,宽12ˑ12æèçöø÷n -m的数值呈现严格单调递增的变化趋势,但面积保持不变,每个小矩形的面积为20ˑ12æèçöø÷mˑ12ˑ12æèçöø÷n -m=240ˑ12æèçöø÷n,假设当m 取遍从0到n 的整数时,即长20ˑ12æèçöø÷m单调递减,宽12ˑ12æèçöø÷n -m单调递增的变化过程中,存在出现相同小矩形的特殊情况,即存在整数i ,且i ʂm ,使得20ˑ12æèçöø÷m=12ˑ12æèçöø÷n -i,可得m +i -n =l og 35,又m ,i ,n ɪN ,则m +i -n ɪN ,这与l og35∉N 矛盾,舍去.故不存在出现相同小矩形,即每个小矩形的规格必须互不相同,于是当k 取遍从0到n 的整数时,长20ˑ12æèçöø÷m会出现n +1种不同的数值,必须会出现n +1种不同的小矩形.以下具体计算可以通过解法1或解法2中的数列求和加以处理.故填答案:(1)5;(2)2403-n +32n æèçöø÷.点评:对于解决第一小问,往往直接穷举法就可以达到列举与应用的目的,此归纳推理法有些牛刀宰鸡的感觉,一般学生不会从这个推理角度来分析与应用,但从对学生严密逻辑思维能力的训练角度来看,学优生还是需要这样严密的推理过程的,助其养成良好的严谨的数学思维品质.解法4:(穷举法+高观点下的数学求和法)以上部分同解法1.对折n 次后各图形的面积之和为S n =(n +1)ˑ240ˑ12æèçöø÷n=240ˑ(n +1)ˑ12æèçöø÷n,构造函数f (x )=(n +1)x n ,则F (x )=ʏf (x )d x =x n +1,g (x )=ðnk =1f (x )=d d x ðnk =1F (x )()=d d x(x 2+x 3+ +x n +1)=d d x x 2-x n +21-x æèçöø÷=(n +1)x n +2-(n +2)x n +1-x 2+2x (1-x )2,所以S n =240ˑf 12æèçöø÷,ðn k =1S k =240ˑðnk =1f 12æèçöø÷=240ˑg 12æèçöø÷=2403-n +32n æèçöø÷.故填答案:(1)5;(2)2403-n +32n æèçöø÷.点评:此法只供教师参考,从高观点视角来剖析数学求和问题,供有一定高等数学基础的学生观摩,不作要求.从高等数学的角度,降维打击数列求和中的大量繁杂运算,开拓学生的视野,对少部分有兴趣㊁有能力的学生展示了高等数学的强大,激发学生探求新知的热情与欲望.5解后反思作为填空题的最后一题,有一点压轴的味道,其中数学文化情境的合理设置,很好地考查考生的阅读理解能力,并在充分理解题目情境与背景的条件下,融合相应的数学知识㊁数学思想方法和数学能力等,同时需要解题者有较好的数学核心素养,直观想象㊁数学建模㊁逻辑推理㊁数学运算等核心素养,一个都不能少.582022年6月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀数学文化教育纵横Copyright ©博看网. All Rights Reserved.。
2020年4月22日高中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km /h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km /h 的频率分别为( )A .300,0.25B .300,0.35C .60,0.25D .60,0.35【答案】B【解析】【分析】 由频率分布直方图求出在此路段上汽车行驶速度在区间)[8590,的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过90/km h 的频率.【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间)[8590,的频率为0.0650.3⨯=, ∴在此路段上汽车行驶速度在区间)[8590,的车辆数为:0.31000300⨯=, 行驶速度超过90/km h 的频率为:()0.050.0250.35+⨯=.故选:B .【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.2.《算法统宗》是中国古代数学名着,由明代数学家程大位编着,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名着,在这部着作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小儿多少岁,各儿岁数要谁推,这位公公年龄最小的儿子年龄为()A.8岁B.11岁C.20岁D.35岁【答案】B【解析】【分析】九个儿子的年龄成等差数列,公差为3.【详解】由题意九个儿子的年龄成等差数列,公差为3.记最小的儿子年龄为a1,则a9=9a1+9×8×3=207,解得a1=11.2故选B.【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.3.《九章算术》是我国古代内容极为丰富的数学名着,在《九章算术》中,将四个面都是直角三角形的四面体称之为鳖臑,在鳖臑A﹣BCD中,AB⊥平面BCD,且有BD⊥CD,AB=BD=1,CD=2,若该鳖臑的顶点都在一个球面上,则该球的体积为()A.B C.D.24π3【答案】B【解析】【分析】由题意易得鳖臑外接一个长方体,且外接球与长方体外接球为同一个球,根据长方体体对角线等于外接球直径,利用公式计算即可.易得鳖臑外接一个长方体,且外接球与长方体外接球为同一个球,故画出如图所示鳖臑.设长方体体对角线即外接球直径为D 则22221126D =++= ,故外接球体积31166V D π===. 故选:B【点睛】本题主要考查了长方体中三棱锥的外接球问题,注意体对角线等于外接球直径即可.属于基础题型.4.《九章算术》是我国古代数学名着,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( )A .1+B .1+C .2D .2+由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形结合图形求出它的表面积。
【详解】由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形,∴四棱锥的底面是正方形,且边长为1,其中一条侧棱PD ⊥底面ABCD ,且侧棱1AD =,∴四棱锥的四个侧面都为直角三角形,且PA PC ==,∴四棱锥的表面积为1122121121222SAD SAB ABCD S S SS =++=+⨯⨯⨯+⨯⨯=底面 故选C【点睛】 本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.5.《九章算术》中记载了一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),则该几何体的容积为( )立方寸.( 3.14π≈)由三视图可得,该几何体是一个圆柱和一个长方体组成的几何体,该几何体的体积为:()21 1.6 5.4 1.63112.6562V π⎛⎫=⨯⨯+-⨯⨯= ⎪⎝⎭. 6.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .4+C .4+D .6+【答案】D【解析】【分析】 根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积.【详解】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角,斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222262S =⨯+⨯⨯=+ 故选D .【点睛】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.7.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的体积为( )A .3B C . D .2【答案】D【解析】【分析】 先将三视图还原成直观图,然后利用体积公式计算即可.【详解】的等腰直角三角形,高为2的直三棱柱,如图:故体积为1222V ==. 故选:D.【点睛】 本题考查由几何体的三视图求体积的问题,解题关键是正确将三视图还原成直观图,属于常考题.8.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》是我国古代数学的重要文献.现拟把这4部着作分给甲、乙、丙3位同学阅读,每人至少1本,则甲没分到《周髀算经》的分配方法共有( )A .18种B .24种C .30种D .36种【解析】分析:先不考虑限制条件,则共有2343C A 种方法,若甲分到《周髀算经》,有两种情况:甲分到一本(只有《周髀算经》),甲分到2本(包括《周髀算经》),减去即可.详解:先不考虑限制条件,则共有234336C A =种方法,若甲分到《周髀算经》,有两种情况:甲分到一本(只有《周髀算经》),此时共有22326C A =种方法; 甲分到2本(包括《周髀算经》),此时共有326A =种方法,则分配方法共有366624--=种.点睛:本题考查了分组分配的问题,关键在于除去不符合条件的情况,属于基础题9. 中国历法推测遵循以测为辅、以算为主的原则,例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的,下表为《周髀算经》对二十四节气晷影长的记录,其中46寸表示115寸146分(1寸=10分).已知《易经》中记录的冬至晷影长为寸,夏至晷影长为寸,那么《易经》中所记录的惊蛰的晷影长应为( )A .寸B .寸C .寸D .寸【答案】C【解析】 设晷影长为等差数列{}n a ,公差为d ,1130.0a =,1314.8a =,则130.01214.8d +=,解得9.6d =-,∴6130.09.6582.0a =-⨯=,∴《易经》中所记录的惊蛰的晷影长是82.0寸,故选C.春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长度依次成等差数列,冬至、立春、春分这三个节气的日影长度之和为尺,前九个节气日影长度之和为尺,则谷雨这一天的日影长度( )A .尺B .尺C .尺D .尺 【答案】A【解析】【分析】先设等差数列{}n a ,首项为1a ,公差为d ,根据题意有14713931.5a a a a d ++=+=,9193685.5S a d =+=,然后由两式求解.【详解】设等差数列{}n a ,首项为1a ,公差为d ,根据题意得14713931.5a a a a d ++=+=,9193685.5S a d =+=,解得113.5,1a d ==-,所以918 5.5a a d =+=.故选:A【点睛】本题主要考查了等差数列的基本运算,还考查了运算求解的能力,属于基础题.11.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )种A .120B .260C .340D .420【答案】D【解析】由题意可知上下两块区域可以相同,也可以不同,则共有5431354322180240420⨯⨯⨯⨯+⨯⨯⨯⨯=+=故选D12.如图,是三世纪汉代赵爽在注解《周髀算经》时给出的弦图.它也被2002年在北京召开的国际数学家大会选定为会徽.正方形ABCD内有四个全等的直角三角形.在正方形内随机取一点,则此点取自中间小正方形(阴影部分)的概率是()A.14B.125C.34D.2425【答案】B【解析】【分析】根据题干可设小方格的边长为1,进而得到三角形的边长和正方形的边长,再根据几何概型的面积公式得到结果.【详解】根据条件可设小方格的边长为1,则三角形的边长为3和4,由勾股定理得到正方形的边长为5,最中间的小正方形的边长为1,面积为1,故根据几何概型中的面积型的公式得到概率为1=.25 SS小正方形大正方形故答案为:B.【点睛】本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.二、填空题13.“方锥”,在《九章算术》卷商功中解释为正四棱锥.现有“方锥”S ABCD -,其中4AB =,SA 与平面ABCD ,则此“方锥”的外接球表面积为________. 【答案】2899π 【解析】【分析】如图所示,连接AC ,BD 相交于O ,连接SO ,计算得到3SO =,在Rt O OA '∆中,利用勾股定理计算半径176R =,代入球的表面积公式得到答案. 【详解】如图所示:连接AC ,BD 相交于O ,连接SO ,故SO ⊥平面ABCD则tan 4SO SAO AO ∠==,解得3SO = 易知四棱锥S ABCD -的外接球球心O '在直线SO 上设外接球半径为R ,则在Rt O OA '中,222(3)R R -+=,解得176R =, 故所求外接球表面积228928944369S R πππ==⨯=. 故答案为:2899π【点睛】14.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,AB BC ⊥,且1AP=AC =,过点A 分别作AE PB ⊥于点E ,AF PC ⊥于点F ,连结EF ,当AEF ∆的面积最大时,tan BPC ∠=__________.【答案】2【解析】 【分析】利用PA ⊥平面ABC ,根据线面垂直的性质定理可得PA BC ⊥,结合已知,利用线面垂直的判定定理可以证明出BC ⊥平面PAB ,进而可以证明出BC AE ⊥,再结合已知,利用线面垂直的判定定理可以证明AE ⊥平面PBC ,因此可以证明出AE PC ⊥,最后利用线面垂直定理证明出PC ⊥平面AEF ,因此得到AE EF ⊥,PC AF ⊥,且F 为PC 中点. 解法1:设AB x =,BC y =,利用三角形面积公式可以求出AE 的长,在利用PFE PBC ∆∆∽,求出EF 的长,最后求出AEF ∆的面积表达式,利用换元法和配方法求出AEF ∆面积平方的最大值,最后求出tan BPC ∠的值; 解法2:设BPC θ∠=,求出EF 、BC 、PB 、AB 的大小,再求出AE 的大小,最后求出AEF S ∆表达式,利用同角三角函数的关系中商关系和基本不等式求出最大值,根据等号成立的条件求出tan BPC ∠的值. 【详解】因为PA ⊥平面ABC ,所以PA BC ⊥,又AB BC ⊥, 所以BC ⊥平面PAB ,所以BC AE ⊥,又PB AE ⊥, 所以AE ⊥平面PBC ,所以AE PC ⊥,又AF PC ⊥,所以PC ⊥平面AEF ,综上AE EF ⊥,PC AF ⊥,且F 为PC 中点. 解法1:设AB x =,BC y =,则221x y +=,又1AP=AC =,则AE =,又PFE PBC ∆∆∽,可得EF =,所以12AEF S EF AE ∆=⋅⋅=,所以()()()22222222218181x x x y S x x -==++,令21x t +=,则222222(1)(2)32123113118884464t t t t S t t t t t ---+-⎛⎫⎛⎫===-+-=--+ ⎪ ⎪⎝⎭⎝⎭ 所以当134t =时即213x =,223y =,()max 18AEF S ∆=,此时tan 2BC BPC PB ∠===,故填2. 解法2.设BPC θ∠=,则tan 2EF PF θ==,所以tan 2EF θ=.又BC θ=,PB θ=,所以AB =,所以PA AB AE PB ⋅==所以11tan 222AEFS EF AE θ∆=⋅⋅==221tan 1tan 1428θθ+-==≤⋅= 当且仅当22tan 1tan θθ=-即tan θ=.故答案为:2【点睛】本题考查了线面垂直的判定定理和性质定理的综合应用,考查了基本不等式的应用,考查了配方法的应用,考查了推理论证能力和数学运算能力.15.《九章算术》中,将四个面都为直角三角形的四面体称为“鳌臑”.如图,平面四边形ABCD 中,1AB CD ==,BD BD CD =⊥,将其沿对角线BD 折成一个鳌臑A BCD '-,则该鳌臑内切球的半径为__________.【答案】12【解析】 【分析】结合几何体的内切球的特点,把几何体分割为四个小几何体,小几何体的体积之和等于大几何体的体积. 【详解】因'1A D CD ==,且'A CD ∆为直角三角形,所以'CD A D ⊥,又,'CD BD BD A D D ⊥⋂=,所以CD ⊥平面'A BD ,所以'CD A B ⊥.又由''1,A B A D BD ===得''A B A D ⊥所以'A B ⊥平面'A CD ,所以''A B A C ⊥,易得'A C =r ,则()'''13A BC A CD A BD BCD S SSS+++'13A BDr CD S =⋅.即1111113222232r ⎛+++=⨯⨯⎝⎭,解得1.2r = 【点睛】本题主要考查数学文化,空间几何体与球的相切问题,考查空间想象能力.16.如图程序框图的算法思路源于我国古代数学名着《九章算术》中“更相减损术”.执行该程序框图,若输入的a ,b 分别为98、63,则输出的a =_______.【答案】 7 【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出a 的值. 【详解】由程序框图可知:9863a b =>=,359863,286335a b ∴←=-←=-, 73528,21287a b ∴←=-←=-, 14217,72114a b ←=-←=-,7147a ←=-,则7a b ==,因此输出的a 为7,故答案为7.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 17.如图程序框图的算法思路源于我国古代数学名着《九章算术》中的“更相减损术”,执行该程序框图,若输入,a b 分别为14,18,则输出的a 等于_______.【答案】2 【解析】由a =14,b =18,a <b , 则b 变为18?14=4, 由a >b ,则a 变为14?4=10, 由a >b ,则a 变为10?4=6, 由a >b ,则a 变为6?4=2, 由a <b ,则b 变为4?2=2, 由a =b =2, 则输出的a =2.18.《九章算术》中将四个面都是直角三角形的四面体称为鳖儒,在如图所示的鳖儒ABCD 中,AB ⊥平面BCD ,且1AB BD CD ===,则此鳖儒的外接球的表面积为__________.【答案】3π 【解析】【分析】利用四个面都是直角三角形,AB ⊥平面BCD ,且1AB BD CD ===,将三棱锥补成以,,AB BD CD 为棱的正方体,则此鳖儒的外接球即为边长为1的正方体的外接球,即可求解. 【详解】根据题意,将鳖儒ABCD 补成以,,AB BD CD 为棱的正方体,边长为1的正方体的外接球半径为2,其表面积为3π. 故答案为:3π 【点睛】本题考查三棱锥外接球的表面积,运用割补法转化为特殊图形的外接球的表面积,属于基础题.19.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中4115.16寸表示115寸416分(1寸=10分).已知《易经》中记录的冬至晷影长为寸,夏至晷影长为寸,那么《易经》中所记录的惊蛰的晷影长应为_________寸. 【答案】82 【解析】设《易经》中二十四节气晷影长为等差数列{a n },公差为d ,a 1=130,a 13=,则d=14.81309.6131-=--,所以惊蛰晷影长为a6=a1+5d=82.20.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案种数为_______.【答案】420【解析】【分析】分成1,2,3号区间用2种颜色和3种颜色两种情况,分别计算涂色方案种数,再根据加法原理求得结果.【详解】将区域标注数字序号如下图:当1,2,3号区间共用2种颜色,即1,3同色且与2异色时共有涂色方法:211533180A C C=种当1,2,3共用3种颜色时,共有涂色方法:311522240A C C=种则不同的涂色方案总数为:180240420+=种本题正确结果:420【点睛】本题考查排列组合问题中的涂色问题,解决涂色问题的关键是能够找到“中轴线”,根据“中轴线”的颜色数量确定剩余区域的可选颜色数量;也可以根据对称区间同异色来进行讨论.21.《周髀算经》是我国最古老的天文学与数学着作,书中讨论了测量“日高”(太阳高度)的方法.大意为:“在,A B 两处立表(古代测望用的杆子,即“髀”),设表高均为h ,测得表距为d ,两表日影长度差为()0εε>,则可测算出日高”由所学知识知,日高H =__________.(用,h d 表示)【答案】()h d εε+【解析】 【分析】如图,由题意可知AD BC h ==,AB d =,设EF H =,AE x =,1AA y =则1BB y ε=+,由题可知11A AD A EF ∆∆∽且11B BC B EF ∆∆∽,利用三角形相似得到边的比例关系,再化简即可得到. 【详解】解:如图,由题意可知AD BC h ==,AB d =, 设EF H =,AE x =,1AA y =则1BB y ε=+ 由题可知11A AD A EF ∆∆∽且11B BC B EF ∆∆∽11A E EF AD A A ∴=,11B EEF BC B B= 即H x y h y +=,H x y d h y εε+++=+ 即()Hy h x y =+①,()()()()H y h x y d h x y h d εεε+=+++=+++②, ②减①得()H h d εε=+()h d H εε+∴=故答案为:()h d εε+【点睛】本题考查解三角形的应用,题目新颖,属于难题.三、解答题22.《九章算术》中,将底面为直角三角形的直三棱柱称为堑堵.如图,在直三棱柱111ABC A B C -中,1AB =,1AC AA ==60ABC ∠=︒.(1)证明:三棱柱111ABC A B C -是堑堵; (2)求二面角1A A C B --的余弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)根据条件由正弦定理可求30ACB ︒∠=,从而可证明90BAC ︒∠=,可得证.(2)建立空间坐标系,用向量法求解二面角的余弦值即可. 【详解】(1)在ABC ∆中,1AB =,AC =60ABC ︒∠=,由正弦定理得sin sin AC ABABC ACB=∠∠ ,即1sin 2ACB ∠== , 因为在ABC 中,AB AC <则ABC ACB ∠>∠,30ACB ︒∠=,所以90BAC ︒∠=,即BA AC ⊥.又三棱柱111ABC A B C -为直三棱柱. 所以三棱柱111ABC A B C -是堑堵.(2)以点A 为坐标原点,以AB ,AC ,1AA 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则(0,0,0)A ,(1,0,0)B,C,1A .于是(1,0,0)AB =,1(0,AC =,(BC =-. 设平面1A BC 的一个法向量是(,,)n x y z =,则由10,0,n AC n BC ⎧⋅=⎨⋅=⎩得0,0.x =-+=⎪⎩ 所以可取(3,1,1)n =.又可取(1,0,0)m AB ==为平面1AA C 的一个法向量, 所以15cos ,||||n m n m n m ⋅〈〉==. 所以二面角1A A C B --的余弦值为5.【点睛】本题主要考查二面角的求法,同时考查数学文化.本题还可以由二面角的平面角的定义作出平面角直接求解,属于中档题.。