第五讲固体力学-线弹性问题有限元分析
- 格式:ppt
- 大小:1.27 MB
- 文档页数:22
百度文库- 让每个人平等地提升自我第1章有限元分析方法及NX Nastran的由来有限元分析方法介绍计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。
数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。
有限单元法的形成近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。
这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。
许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。
CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性:❑CAE仿真可有效缩短新产品的开发研究周期。
❑虚拟样机的引入减少了实物样机的试验次数。
❑大幅度地降低产品研发成本。
❑在精确的分析结果指导下制造出高质量的产品。
❑能够快速对设计变更作出反应。
❑能充分和CAD模型相结合并对不同类型的问题进行分析。
❑能够精确预测出产品的性能。
❑增加产品和工程的可靠性。
❑采用优化设计,降低材料的消耗或成本。
❑在产品制造或工程施工前预先发现潜在的问题。
❑模拟各种试验方案,减少试验时间和经费。
❑进行机械事故分析,查找事故原因。
当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。
其中最为著名的是由美国国1百度文库 - 让每个人平等地提升自我2家宇航局(NASA )在1965年委托美国计算科学公司和贝尔航空系统公司开发的Nastran 有限元分析系统。
有限元分析基础第⼀讲第⼀章有限元的基本根念Basic Concepts of the Finite Element Method1.1引⾔(introduction)有限元(FEM 或FEA)是⼀种获取近似边值问题的计算⽅法。
边值问题(boundary valueproblems, 场问题field problem )是⼀种数学问题(mathematical problems)(在所研究的区域,⼀些相关变量满⾜微分⽅程如物理⽅程、位移协调⽅程等且满⾜特定的区域边界)。
边值问题也称为场问题,场是指我们研究的区域,并代表⼀种物理模型。
场变量是满⾜微分⽅程的相关变量,边界条件代表场变量在场边界上特定的值(物理边界转化为数学边界)。
根据所分析物理问题的不同,场变量包括位移、温度、热量等。
1.2有限元法的基本思路 (how does the finite element methods work)有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出⼀个近似解,再将所有单元按标准⽅法组合成⼀个与原有系统近似的系统。
下⾯⽤在⾃重作⽤下的等截⾯直杆来说明有限元法的思路。
等截⾯直杆在⾃重作⽤下的材料⼒学解答图1.1 受⾃重作⽤的等截⾯直杆图1.2 离散后的直杆受⾃重作⽤的等截⾯直杆如图所⽰,杆的长度为L ,截⾯积为A ,弹性模量为E ,单位长度的重量为q ,杆的内⼒为N 。
试求:杆的位移分布,杆的应变和应⼒。
)()(x L q x N -=EAdxx L q EA dx x N x dL )()()(-==-==x x Lx EA q EA dx x N x u 02)2()()((1))(x L EAq dx du x -==ε )(x L AqE x x -==εσ等截⾯直杆在⾃重作⽤下的有限元法解答 (1) 离散化如图1.2所⽰,将直杆划分成n 个有限段,有限段之间通过⼀个铰接点连接。
问题描述:(1)计算出两种工况下的解析解; (2)用有限元软件解决以下问题:探究单元数量对计算结果的影响; 探究边界条件的影响。
工况(a ),令u (L )=0改变到u (L )=±0.02m 工况(b ),令σ(L )=P 改变到σ(L )=P ±0.1P (1)两种工况下的解析解推导过程及结果如下看成是平面应力问题来解决,只有板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化,板很薄,外力又不沿厚度变化应力沿着板的厚度又是连续分布的,所以,可以认为在整个薄板的所有各点都有z 0,0,0zx zy σττ=== (1) 同时,根据剪应力互等定理0,0xz yz ττ== (2)由平衡微分方程,可以知道0;0yxx y xyX x yY y xτσστ∂∂++=∂∂∂∂++=∂∂ (3)几何方程,,x y xy u v v ux y x yεεγ∂∂∂∂===+∂∂∂∂ (4) 物理方程如下:1()1()2(1)x x y y y x xy xyE EEεσμσεσμσμγτ=-=-+= (5)由此可以得到22()1()1()2(1)x y xy E u vx y E v uy x E v ux yσμμσμμτμ∂∂=+-∂∂∂∂=+-∂∂∂∂=+-∂∂ (6)代入平衡微分方程 得到22222222222211()012211()0122E u u vX x y x y E v v uY y x x yμμμμμμ∂-∂+∂+++=-∂∂∂∂∂-∂+∂+++=-∂∂∂∂ (7)0;X Y g ρ==因此根据以上式子可以得到 22200()()01E d v y g dy ρμ=+=- (8)对(8)式积分,得到22()0(1)()2u x g v y y Ay BE μρ=-=++ (9)第1种情况:物体在全部边界上的位移分量是已知的,因此边界条件为位移边界条件在边界上,我们有0;()s y u u v v v y ==== (10)(0)0,()0v v L == (11)得到参数:2(1)0;2gLB A E μρ-==(12)22()(1)()()2()2y g v y Ly y E L g y ρμσρ-=-=- (13)将数据代入式(13)得到22274()(1)()()=(y-y ) 1.691021()()7.6441022y g v y Ly y mE L g y y Paρμσρ--=-⨯⨯=-=-⨯⨯ (14)第2种情况:物体在全部边界上的部分位移分量和应力分量是已知的,因此边界条件为混合边界条件(0)0;()y v L p σ== (15)210;()B A p gL Eμρ-==+⨯ (16)所以有221()[()]2()()y v y p gL y E y p g L y μρσρ-=+-=+- (17)将数据代入(17)可以得到22772541()[()]=8.5110 2.06102()()107.64410(1)y v y p gL y g y y E y p g L y y μρρσρ---=+-⨯-⨯=+-=+⨯- (18)(2)计算中采用Abaqus有限元商业计算软件来模拟题目中的工况材料参数见下表名称数量材料密度ρ7800kg/m3物体长度L 1m物体宽度W 0.1m弹性模量E 2.1*1011重力加速度g 9.8泊松比0.3载荷P 0.1MPa计算单元类型为S4R,单元数量为250工况(a)计算参数设置及结果如下由计算结果可知,最大应力在固定端处取得,最大值为3.798*104Pa由解析解22274()(1)()()=(y-y) 1.691021()()7.6441022ygv y Ly y mELg y y Paρμσρ--=-⨯⨯=-=-⨯⨯得到的固定端点处最大应力为3.822*104Pa;在中间位置位移最大为4.533*10-8m 应力误差为4443.82210-3.79810=100%=0.62%3.82210η⨯⨯⨯⨯位移误差为8884.53310-4.22510=100%=7.28%4.22510η---⨯⨯⨯⨯工况(b )计算参数设置及结果如下由计算结果可知,最大应力在固定端处取得,最大值为1.791*105Pa 由解析解22772541()[()]=8.51102.06102()()107.64410(1)y v y p gL y g y y E y p g L y y μρρσρ---=+-⨯-⨯=+-=+⨯- 得到的固定端点处最大应力为1.7644*105Pa ;自由端最大位移为6.45*10-7m应力误差为5551.79110-1.764410=100%=1.5%1.764410η⨯⨯⨯⨯ 位移误差为7776.57210-6.4510=100%=1.89%6.4510η---⨯⨯⨯⨯通过有限元计算,可以得到和解析解很接近的结果,通过误差分析表明,有限元计算此类平面应力问题可以很好地满足计算精度的要求。
有限元法在工程领域的发展现状和应用有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。
有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。
对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。
近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面:(1)增加产品和工程的可靠性(2)在产品的设计阶段发现潜在的问题(3)经过分析计算,采用优化设计方案,降低原材料成本(4)模拟试验方案,减少试验次数,从而减少试验经费一、有限元法的基本思想有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。
由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;然后对单元(小区域)进行力学分析,最后再整体分析。
这种化整为零,集零为整的方法就是有限元的基本思路。
有限元法分析计算的思路和做法可归纳如下:1物体离散化将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。
离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。
所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。
弹性力学及有限元分析1、 设试件两定点之间的长度为L 0,其截面积为F 0,加上拉力P 后,L 0 伸长了△L 。
我们把P/ F 0 称为拉伸应力(σ),△L/ L 0 称为拉伸应变(ε),于是有σ=P/ F 0 ,ε= △L/ L 0某种材料的拉伸应力和拉伸应变的比,称为该材料的杨氏模量或弹性模量(E),即 LF PL E ∆==00εσ,弹性模量E 表征了材料的物理性质。
2、 根据力学特性,固体通常分为韧性固体和脆性固体。
首先分析韧性材料,材料在受力变形过程中,明显地有四个特性点划分三各阶段。
a. 弹性阶段,这一阶段的明显特征是,当外力逐渐去掉时,变形也逐渐消失,物体能够恢复到原来的形状,物体的这种性质称为弹性,存在一个应力极限称为弹性极限。
随着外力的消失而消失的变形称为弹性变形;去掉外力后仍然保留的变形称为残余变形或永久变形。
弹性阶段另一个明显特征是,应力与应变保持线性关系。
设受力方向为x 方向,x xE εσ=,这就是简单拉伸时的虎克定律,弹性模量E 为常数,表示应力与应变成正比例。
通常把弹性极限和比例极限规定为一个值。
b. 塑性阶段,超过弹性极限后,材料开始失去弹性,进入塑性阶段,这时产生较大的永久变形,应力应变关系不再是线性的。
当曲线超过s 点(屈服极限)后,材料开始屈服,即在应力几乎不增加的情况下,应变会不断的增加,称s 点为屈服极限;当变形大到一定程度后,材料开始强化,要继续增加变形必须再增加外力,到达b 点后产生颈缩。
从弹性极限到b 的变形范围统称为塑性阶段,属于塑性力学的研究范畴。
c. 断裂阶段,试件产生颈缩后,开始失去抵抗外力的能力,最后发生断裂,相对于b点的应力称为强度极限。
脆性材料:它的拉伸曲线图没有明显的三个阶段之分,也没有明显的屈服应力点,材料亦不再满足虎克定律。
为了分析上的需要,往往以切线斜率作为弹性模量,即εσd d E =。
如果对脆性固体材料加载,应力应变曲线将沿着OA 上升,若到A 点后即行卸载,应力应变曲线并不沿着原来的途径回复到原点,而是沿着直线AB 下降,当全部载荷卸去之后,试件中尚残存一部分永久变形''ε。