植物天然次级代谢产物的微生物发酵工艺
- 格式:docx
- 大小:11.22 KB
- 文档页数:1
发酵工程第一章发酵工程:是现代生物学的重要组成部分、由早期的酿造工艺演化至今,已经进入高科技领域,是生物科学的重要领域。
发酵:指厌氧发酵产生co2气体的现象。
生理意义:微生物在无氧环境下的一种呼吸,是微生物获取能量的一种方式。
发酵工程的发展阶段:第一阶段:天然发酵阶段19世纪中叶之前列文虎克—显微镜、巴斯德—巴氏消毒第二阶段:纯培养技术(19世纪末至20世纪30年代)乳酸的发酵科赫—细菌培养技术第三阶段:通气搅拌发酵技术的建立亚历山大·弗莱明—青霉素第四阶段:代谢控制发酵和现代发酵工程技术发展发酵工业特点:优点:1、产物结构的特异性和复杂性2、产物过程的安全性3、主要原料的可再生性4、原料的可替换性5、反应的自控性6、副产物的可综合利用性7、生产能力的可提高性8、设备的可通用性9、产物类型的可塑性缺点:1、副产物多、分离精制困难2、反应速度慢3、原料转化率低4、反映浓度低5、生产稳定性差6、设备庞大、辅助设备多7、废水废渣多8、生产过程中容易污染9、通气搅拌冷却,耗能大生产流程1.繁殖种子和发酵生产所用的培养基组分确定2.培养基加发酵罐及其他设备的灭菌3.接种4.在最适环境下经行发酵培养5.产物萃取和精制由实验室研制到产业化的过程菌种筛选—摇瓶实验—发酵罐中试—发酵生产思考题发酵的定义:微生物在无氧环境下的呼吸,是微生物获取能量的一种方式发酵工程的定义:使用现代技术手段,利用微生物某些特定功能为人类生产产品,或是直接把微生物利用于工业生产中的一项技术。
发酵的流程:1.繁殖种子和发酵生产所用的培养基组分确定2.培养基加发酵罐及其他设备的灭菌3.接种4.在最适环境下经行发酵培养5.产物萃取和精制发酵的分类:按照能量获取:好氧发酵、厌氧发酵产物类型:初级代谢产物发酵、次级代谢产物发酵、食品发酵、有机酸发酵、氨基酸发酵、维生素发酵、抗生素发酵操作类型:自然发酵、纯种发酵、混种发酵、分批发酵、半连续式发酵、连续发酵、固态发酵、液态发酵。
《发酵工程与工艺学》1 绪论一、发酵的定义1、传统发酵最初发酵是用来描述酵母菌作用于果汁或麦芽汁产生气泡的现象,或者是指酒的生产过程。
2、生化和生理学意义的发酵指微生物在无氧条件下,分解各种有机物质产生能量的一种方式,或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。
3、工业上的发酵泛指利用微生物制造或生产某些产品的过程,包括:1.厌氧培养的生产过程,如酒精,乳酸等。
2.通气(有氧)培养的生产过程,如抗生素、氨基酸、酶制剂等。
产品有细胞代谢产物,也包括菌体细胞、酶等二、发酵的原理:利用微生物的特点:(1)对周围环境的温度、压强、渗透压、酸碱度等条件有极大的适应能力。
(2)有极强的消化能力。
(3)有极强的繁殖能力。
三、发酵工程的组成上游工程:(1)对菌种加以改造,提高生产能力或者导入外源基因等以获得工程菌;(2)发酵或生物转化,是通过优化发酵条件如温度、营养、供气量等。
利用工程菌的生物合成,加工和修饰等以获得目的产物;发酵工程下游工程:是运用生物化学、物理学方法分离、纯化产品,最终将产品推向市场并获得社会或经济效益。
五、发酵工程研究内容主要指在最适发酵条件下,发酵罐中大量培养细胞和生产代谢产物的工艺技术。
(1) 有严格的无菌生长环境:包括发酵开始前采用高温高压对发酵原料和发酵罐以及各种连接管道进行灭菌的技术;在发酵过程中不断向发酵罐中通入干燥无菌空气的空气过滤技术;(2)在发酵过程中根据细胞生长要求控制加料速度的计算机控制技术;(3)种子培养和生产培养的不同的工艺技术。
(4)在进行任何大规模工业发酵前,必须在实验室规模的小发酵罐进行大量的实验,得到产物形成的动力学模型,并根据这个模型设计中试的发酵要求,最后从中试数据再设计更大规模生产的动力学模型。
(5)由于生物反应的复杂性,在从实验室到中试,从中试到大规模生产过程中会出现许多问题,这就是发酵工程工艺放大问题。
发酵工程的发展历史发酵现象→酿造食品工业→非食品工业→青霉素→抗菌素发酵工业→氨基酸,核酸发酵(代谢控制发酵)→基因工程菌→动物细胞大规模培养→植物细胞大规模培养→藻类细胞大规模培养→转基因动物生物技术的发展基因工程、细胞工程、酶工程和发酵工程四大工程第二章菌种选育第一节微生物的特性及工业微生物的要求一、微生物的特性:1、有些微生物能在厌氧的条件下生长;2、有些微生物能够利用简单的有机物和无机物满足自身的生长;3、有些微生物能进行复杂的代谢;4、有些微生物能利用较复杂的化合物;5、有些微生物能在极端的环境下生长。
微生物发酵制药-----总体工艺过程流程工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。
工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。
欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。
微生物制药技术是工业微生物技术的最主要组成部分。
微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。
(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。
)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。
但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。
微生物药物的生产技术就是微生物制药技术。
可以认为包括五个方面的内容:第一方面菌种的获得根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。
1.分离思路:新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。
实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。
具体分离操作从以下几个方面展开。
2.定方案:首先要查阅资料,了解所需菌种的生长培养特性。
微生物发酵工艺及其控制简述罗宗学(云南大学生命科学学院云南昆明 650091)摘要:根据操作方式不同,发酵工艺分为间歇发酵,连续发酵和流加发酵三种类型,其中流加发酵在生产和科研上应用最为广泛。
在发酵工艺中反映发酵过程变化的参数分为物理参数、化学参数和生物学参数三大类,这些参数的变化直接影响到发酵工业的生产率和产物品质。
本文从对发酵工艺过程影响较大的发酵温度、pH值、溶解氧、泡沫、菌体浓度和基质、发酵时间等6个方面阐述如何进行发酵工艺的控制,为实现发酵产业的经济效益最大化提供必要的理论依据。
关键字:发酵工艺变化参数影响和控制发酵是指通过微生物(或动植物细胞)的生长培养和化学变化,大量产生和积累专门的代谢产物的过程。
早在2000多年前,我国就有了酿酒、制醋的发酵技术,那时候发酵完全属于天然发酵。
20 世纪40年代中期,美国抗菌素工业兴起,大规模生产青霉素,建立了深层通气发酵技术。
1957年,日本微生物生产谷氨酸盐(味精)发酵成功,大大推动了发酵工程的发展。
70年代开始,随着基因工程、细胞工程等生物过程技术的开发,以石油为原料生产单细胞蛋白,使发酵工程从单一依靠碳水化合物(淀粉)向非碳水化合物过渡,从单纯依靠农产品发展到利用矿产资源,如天然气、烷烃等原料的开发。
80年代,随着学科之间的不断交叉和渗透,微生物学家开始用数学、动力学、化工工程原理、计算机技术对发酵过程进行综合研究,人们能按需要设计和培育各种工程菌,在大大提高发酵工程的产品质量的同时,节约能源,降低成本,使发酵技术实现新的革命。
发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。
影响发酵过程发的因素很多,包括物理的(如温度、搅拌转速、空气压力、空气流量、表观粘度、浊度、料液流量等),化学的(如质浓度、pH、产物浓度、溶解氧浓度、氧化还原电位、废气中氧及二氧化碳浓度、核酸量等)和生物的(如菌丝形态、菌浓度、菌体比生长速率、基质消耗速率、关键酶活力等)三大类。
发酵⼯艺原理知识点归纳所学内容:1、菌种:选育、培养、保藏;2、发酵的概念、原理、参数控制;3、介绍⼀些产品的发酵过程第⼀章绪论⼀、发酵1、发酵的定义:培养⽣物细胞(包括动物细胞、植物细胞和微⽣物)来制得产物的过程。
2、发酵⼯业:根据有⽆风味要求分为酿造⼯业和发酵⼯业。
3、实现发酵需具备的条件:①适宜的微⽣物;②保证微⽣物进⾏代谢的条件(pH、营养、温度等);③进⾏发酵的设备;④有提取精制产品的⽅法和设备⼆、发酵⼯业的沿⾰①天然发酵阶段:嫌⽓发酵、⾮纯种培养(靠的是经验),质量不稳定。
②纯种培养技术的建⽴:巴斯德认识到发酵是由微⽣物所进⾏的化学反应;柯赫建⽴了单种微⽣物的分离和纯培养技术。
——表⾯培养、产量少③通⽓搅拌发酵技术的建⽴:青霉素④代谢控制发酵技术:运⽤动态⽣物化学、遗传学知识,控制⽣物合理代谢。
⑤开拓发酵原料时期;⑥基因⼯程阶段三、发酵⼯业的范围1、微⽣物菌体发酵:酵母、微⽣物菌体蛋⽩(scp单细胞蛋⽩)、藻类、活性乳酸菌制剂、真菌、⽣物杀⾍剂。
2、微⽣物酶发酵:⼯业应⽤的酶⼤都来⾃微⽣物发酵。
3、微⽣物代谢产物发酵初级代谢产物:对数⽣长期所产⽣的产物,是菌体⽣长繁殖所必需的,如氨基酸、核苷酸、蛋⽩质、核酸、类脂、糖类等次级代谢产物:菌体⽣长静⽌期中,某些菌体能合成在⽣长期中不能合成的、具有⼀些特性的产物,如抗⽣素、⽣物碱、细菌毒素、植物⽣长因⼦等4、微⽣物转化发酵:利⽤微⽣物细胞的⼀种或多种酶把⼀种化合物转变成结构相关的更有经济价值的产物的⽣化反应,特点是特异性强,包括反应特异性、结构位置特异性和⽴体特异性。
最古⽼的⽣物转化就是利⽤菌体将⼄醇转化成⼄酸的醋酸发酵。
5、利⽤⽣物技术所得的⽣物细胞发酵①消除环境污染;②保持⽣态平衡;③湿法冶⾦;④利⽤⽣物技术所得的⽣物细胞发酵四、发酵⼯业的特征1、发酵原料的选择和预处理2、微⽣物菌种的选育及扩⼤培养3、发酵设备选择及⼯艺条件控制4、发酵产物的分离纯化5、发酵废弃物的回收利⽤五、发展趋势第⼆章⼯业微⽣物的⽣长与产物的⽣物合成微⽣物的特点:体积⼩、繁殖快、吸收转化快、适应性强、容易变异、分布⼴、种类多、代谢类型多。
发酵工程复习要点绪论1.传统发酵:发酵(Fermentation),是拉丁语“沸腾”(fervere)的派生词,它描述酵母菌作用于果汁或麦芽汁产生气泡的现象,或者是指酒的产生过程。
2.生物化学或生理学意义上的发酵:发酵:在无外在电子受体时,微生物氧化一些有机物。
有机物仅发生部分氧化,以它的中间代谢产物(即分子内的低分子有机物)为最终电子受体。
3.工业意义上的发酵它泛指利用微生物的某种特定功能,通过现代工程技术手段生产有用物质的过程。
或者说,发酵是利用特定的微生物,控制适宜的工艺条件,生产人们所需的产品或达到某些特定目的的过程。
它包括厌氧培养的生产过程,如酒精、乳酸、丙酮丁醇等,以及通气(有氧)培养的生产过程,如抗生素、氨基酸、酶制剂等的生产。
产品既有微生物细胞代谢产物,也包括菌体细胞(如单细胞蛋白)、酶等。
4.发酵工业发展史分为几个阶段?1)、自然(天然)发酵时期从史前到19世纪末,在微生物的性质尚未被人们所认识时,人类已经利用自然接种方法进行发酵制品的生产。
2)、纯培养技术的建立时期1900-1940年间,由巴斯德(Pasteur)和科赫(Koch)建立了微生物分离纯化和纯培养技术,可以认为纯培养技术的建立是发酵技术发展的第一个转折时期。
3)、通气搅拌(好气性)发酵(工程)技术的建立时期20世纪40年代初,随着青霉素的发现(1928年弗莱明(Fleming)发现青霉素,1965年获诺贝尔医学生理学奖。
),抗生素发酵工业逐渐兴起。
通气搅拌发酵技术的建立是发酵工业发展史上的第二个转折点。
4)、人工诱变育种与代谢控制发酵工程技术的建立时期20世纪60年代,随着生物化学、微生物生理学和遗传学的深入发展,科学家在深入研究微生物代谢途径和氨基酸生物合成的基础上,通过对微生物进行人工诱变,得到适合于生产某种产品的突变类型,再在人工控制的条件下培养,即利用调控代谢的手段进行微生物菌种选育和控制发酵条件,从而大量生产出人们所需要的产品。
第三章发酵生物化学基础第一节糖的微生物代谢(自学)第二节脂类和脂肪酸的微生物代谢(自学)第三节氨基酸和核酸的微生物代谢(自学)第四节微生物的次级代谢从前面的章节中,我们了解了微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,产生出维持生命活动的物质和能量的初级代谢过程。
此外,微生物还能进行次级代谢。
本节将概述次级代谢的概念及其类型。
介绍几个有代表性的次级代谢产物的生物合成途了解次级代谢的特点。
简要介绍当前流行的有关次级代谢的生理功能的学说。
一、次级代谢的概念及类型(一)次级代谢的概念次级代谢的概念是1958年由植物学家Rohland首先提出来的。
他把值物产生的与植物生长发育无关的某些特有的物质称为次级代谢物质,合成和利用它们的途径即为次级代谢。
1960年微生物学家Bu’Lock把这一概念引入微生物学领域。
次级代谢并没有一个十分严格的定义,它是相对于初级代谢而提出的—个概念,主要是指次级代谢产物的合成。
它具有许多特点,根据这些特点可以认为次级代谢是指:微生物在一定的生长时期(一般是稳定生长期),以初级代谢产物为前体,合成一些对微生物的生命活动没有明确功能的物质的过程。
这一过程的产物即为次级代谢产物。
另外,也有把初级代谢产物的非生理量的积累,看成是次级代谢产物,例如微生物发酵产生的维生素、柠檬酸、谷氨酸等。
(二)次级代谢产物的类型次级代谢产物种类繁多,如何区分类型尚无统一标准。
有的研究者按照次级代谢产物的产生菌不同来区分;有的根据次级代谢产物的结构或作用来区分;有的则根据次级代谢产物合成途径来区分。
现简介如下:1,根据产物合成途径区分类型根据产物合成途径可以分为五种类型。
(1)与糖代谢有关的类型以糖或糖代谢产物为前体合成次级代谢产物有三种情况:(A )直接由葡萄糖合成次级代谢产物。
例如,曲霉属(Aspergillus)产生的曲酸、蛤蟆菌(Amanitamuscarina)产生的蕈毒碱,放线菌产生的链霉素以及大环内酯抗生素中的糖苷等。
第一章绪论思考题1、发酵▪是利用微生物或其他生物细胞(动物、植物)的培养,产生和积累人们所需产品的过程。
2、微生物转化发酵▪是利用生物细胞对一些化合物的某一特定部位(基团)修饰作用,使它转变成结构相关但更有经济价值的化合物的过程。
3、深层通气培养法▪指在纯种条件下,强制通入无菌空气到密闭发酵罐中进行培养的方式。
4、初级代谢产物▪指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质。
5、次级代谢产物▪指微生物生长到一定阶段才产生的化学结构十分复杂、对该生物无明显生理功能,或并非是微生物生长和繁殖所必需的物质。
6、分批发酵▪指在发酵过程中,除了不断进行通气(好氧发酵)和为调节发酵液的 pH 而加入酸碱溶液外,与外界没有其它物料交换的一种发酵方式。
培养基的量一次性加入,产品一次性收获的一种发酵方式。
7、连续发酵▪是指以一定的速度向发酵罐内添加新鲜培养基,同时以相同速度流出培养液,从而使发酵罐内的液量维持恒定的发酵过程。
8、发酵工业经历了哪几个阶段,每个阶段的主要特点是什么?1.天然发酵阶段:特点1).手工作坊或家庭式生产2)非纯种培养3).产品质量不稳定4).凭经验传授技术5).一般为嫌气发酵2.纯培养阶段:1)表面培养2)生产过程简单,对设备要求不高3)生产规模不大4)嫌气或好气发酵3.深层发酵阶段:特点:机械搅拌发酵罐的容积已经从第三阶段时的80M3 扩大到150M3。
以烃为碳源生产微生物细胞作为饲料蛋白质的来源。
4.开拓发酵原料阶段5.基因工程阶段:1)发酵产品增多,应用范围广泛;2)生产效率高;3)自动控制技术应用更普遍9、发酵工业的研究范畴包括哪几方面1.微生物菌体细胞2.微生物代谢产物3.酶制剂4.微生物转化发酵5.微生物废水处理10、请绘出发酵工业的工艺流程示意图第二章工业微生物的菌种选育一、思考题1、自然选育:在生产过程中,不经过人工诱变处理,根据菌种的自发突变而进行菌种筛选的过程。
次级代谢产物菌种改良的策略和手段1策略次级代谢产物是微生物在特定条件下合成的具有生物活性的化合物,被广泛应用于医药、农业、食品等领域。
为了获得更多的有效次级代谢产物,需要改良微生物菌株。
以下是几种常见的策略:2突变育种突变育种的原理是利用物理、化学、生物等方法诱导微生物发生自然突变,从而改变微生物中次级代谢产物的合成和积累能力。
该策略简单快速,但产率和稳定性较低。
3分子改造分子改造的原理是通过基因工程技术修改微生物次级代谢产物合成途径中的关键酶,从而增强次级代谢产物的产量和质量。
该策略可针对性地提高次级代谢产物的产量,但技术难度高,涉及的法律法规较多。
4合成生物学方法合成生物学方法的原理是利用标准化的生物部件来构建新的细胞代谢通路,从而实现微生物的次级代谢产物合成工程化。
该策略生产效率高,但需要大量的前期研发和复杂的合成方法。
5手段以上策略实现的手段有很多,以下是几种常用的手段:6菌种筛选对大量的微生物菌株进行筛选,找到具有产生目标次级代谢产物能力的菌株。
7基因克隆将目标微生物中的次级代谢产物基因克隆到高产生菌株中。
8基因组学分析应用基因组学技术解析微生物菌株的基因组信息,找到次级代谢产物合成的相关酶。
9發酵条件优化对微生物发酵过程中的环境参数进行优化,如温度、pH值、营养物质等,从而提高次级代谢产物的产量和质量。
10表观遗传改造通过对微生物表观遗传学特征的调控,达到调整基因表达和代谢通路的目的。
这种方法与传统基因改造技术相比,更加温和,不会留下外源性基因。
综上所述,通过合理运用上述策略和手段,可以使微生物菌株产生更多、更有效的次级代谢产物。
这对于推动医药、农业、食品等领域的发展具有重要意义。
第一章绪论名词解释1、发酵:利用微生物在无氧或者有氧条件下的生命活动来制备菌体本身,或其代谢产物的过程。
2、发酵工程:将微生物学、生物化学和化学工程结合起来,利用微生物的某种特性,生产人们所需的产品,或者直接将微生物用于工业生产的技术。
3、初级代谢产物:微生物自身代谢产生的,是微生物生长和繁殖所必需的物质,具有保守性。
如氨基酸、核苷酸、维生素和脂类。
4、次级代谢产物:是微生物生长发育稳定期产生的物质,来源于初级代谢产物,具有特异性。
如抗生素、色素、生物碱、细胞毒素。
5、生物转化:利用微生物的一种或多种酶,作用于一些化合物的特定部位,使之转化为化学结构相似,但具有更大经济价值的化合物的生化反应。
反应最显著的特点是特异性强。
最终产物不是微生物利用营养物质经过代谢产生的,而是微生物的酶作用于底物的特定部位,催化特定部位化学反应产生的。
填空问答1、发酵生产的条件:合适的微生物、保证或者控制微生物进行代谢生产的合适条件(适当的培养基、温度、pH、溶解氧)、用于进行微生物发酵的设备、用于分离纯化精制产品的设备2、重要发酵技术的建立:纯培养技术、通气搅拌发酵技术、代谢调控发酵技术、发酵放大技术、基因工程等多种技术引入发酵3、发酵工程的三大部分:上游工程、发酵工程、下游工程4、发酵工程的特点:1)安全简单,发酵条件简单温和,在常温常压下进行2)原料广泛,以淀粉质、糖蜜和其他农副产品为主,也可以用废水、石油、矿产资源进行发酵3)容易染菌,由于发酵培养基营养丰富,适合于许多微生物生长4)投资小,见效快、效益高5、发酵的分类:1)发酵原料分:糖类发酵、废水发酵、石油发酵 2)发酵液形态:固体发酵(浅层发酵、深层发酵)、液体发酵(表面培养法、深层培养法)3)发酵产物分类 4)发酵工艺流程:连续发酵、分批发酵、半连续发酵 5)发酵需氧:好氧发酵、厌氧发酵6、发酵工程四部分:菌种的选育与扩大培养,原料的预处理与培养基的配制,发酵设备及发酵条件的选择,产物的分离与纯化第二章微生物的代谢调控名词解释1、酶活性调节:通过改变代谢途径中一个或者几个关键酶的活性来调节代谢反应速率的调节方式,调节迅速、及时、有效和经济,是蛋白质水平上的调节。
1.初级代谢产物(primary metabolites)是指微生物通过代谢活动产生的,自身生长和繁殖的必需的物质2.次级代谢产物(second,metabolites)是指微生物生长到一定阶段才产生的化学结构十分复杂,对微生物无明显生理功能,或并非是微生物生长和繁殖所必必需的物质。
3.自然选育(selection of spontaneous mutation)是利用微生物在一定条件下产生自发突变的原理,是通过分离,筛选排除衰退型菌株,从中选出维持或高于原有生产水平菌株的过程。
4.诱变育种(mutation breeding)是利用物理化学生物诱变剂处理均匀分散的微生物细胞群体,促进其突变率大幅度提高,然后采用简便高效的筛选方法,从中选出少数具有优良性状的高产菌株。
5.原生质体(Protoplast)是指微生物在酶的作用下,脱去细胞壁,剩下的原生质膜,包围着的原生质部分。
6.菌种保藏(culture collectio n)是指将微生物菌种用各种适宜的方法妥善保存,避免死亡污染,保持其原有性状基本稳定。
7.培养基(medium)是人工配置的供微生物生长繁殖和生物合成各种代谢产物所需多种营养物质的混合物8.生长因子(growth facto r)是指微生物生长代谢必不可少,但不能用简单的碳源或者氮源合成的一类特殊的营养物质。
9.前体(precursor)在微生物药物的生物合成中,有些化合物能直接被微生物利用构成产物分子结构的一部分,而化合物本身的结构没有太大的变化。
10.灭菌(sterilization)是指采用物理或化学的方法杀灭或除去物料及容器中所有活的微生物及孢子的过程t。
11.乳化过程(emulsification)液体已细小液滴的形式存在在另一个不相容的液体中微滤(MF)超滤(UF)反渗透(RO)透析(DL)电渗透(ED)12.溶剂萃取法(solvent extraction)是指经典的液-液萃取,即用有机溶剂对非极性或弱极性的物质,物质进行萃取,这是一种利用物质在两种互不相容的液相中分配特性不同而进行的分离过程。
植物天然次级代谢产物的微生物发酵工艺
植物天然次级代谢产物是自然界中一类重要的化合物,它们由植物产生,具有特殊的生物活性。
然而,从植物中提取这些化合物的方法通常效率较低,且对环境的影响较大。
因此,微生物发酵工程成为获取植物天然次级代谢产物的有效替代方法。
在微生物发酵工程中,可以采用多种方法来生产植物天然次级代谢产物。
这些方法包括分批发酵、半分批发酵、反复分批发酵和反复半分批发酵等。
这些方法的选用取决于目标产物的性质、产量以及生产成本等因素。
分批发酵是一种常用的微生物发酵方法,它是指将底物一次装入发酵罐中,在适宜的条件下接种进行反应。
经过一定时间后,将全部反应物取出。
这种方法适用于大规模生产,但需要大量的原材料和能源。
半分批发酵也称流加式操作,是指先将一定量底物装入罐内,在适宜条件下接种使反应开始。
反应过程中,将特定的限制性底物送入反应器,以控制罐内限制性底物浓度在一定范围,反应终止将全部反应物取出。
这种方法适用于产物浓度较低或产物易被降解的发酵过程。
反复分批发酵和反复半分批发酵分别是在分批发酵和半分批发酵的基础上发展起来的。
这两种方法可以在一定程度上提高产物的产量和纯度,但同时也增加了操作的复杂性和成本。
在实际应用中,可以根据目标产物的性质和生产规模选择合适的微生物发酵方法。
同时,还需要注意控制发酵条件、优化发酵配方以及解决发酵过程中的技术问题等,以提高产物的产量和纯度,降低生产成本,实现大规模生产的可行性。