Reinforced Concrete Structures翻译
- 格式:docx
- 大小:477.69 KB
- 文档页数:5
混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete 预应力钢筋:prestressed reinforcement 预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio偏心受拉:eccentric tension偏心受压:eccentric compression偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load跨度:span跨高比:span-to-depth ratio跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load分布荷载:distribution load分布钢筋:distribution steel挠度:deflection设计荷载:design load设计强度:design strength构造:construction简支梁:simple beam截面面积:area of section钢筋搭接:bar splicing刚架:rigid frame脆性:brittleness脆性破坏:brittle failure。
Reinforced ConcreteConcrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts’ underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope.Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In a plain concrete beam, the moments aboutthe neutral axis due to applied loads are resisted by an internal tension-compression couple involving tension in the concrete. Such a beam fails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars are embedded in the concrete in such a way that the tension forces needed for moment equilibrium after the concrete cracks can be developed in the bars.The construction of a reinforced concrete member involves building a form of mold in the shape of the member being built. The form must be strong enough to support both the weight and hydrostatic pressure of the wet concrete, and any forces applied to it by workers, concrete buggies, wind, and so on. The reinforcement is placed in this form and held in place during the concreting operation. After the concrete has hardened, the forms are removed. As the forms are removed, props of shores are installed to support the weight of the concrete until it has reached sufficient strength to support the loads by it.The designer must proportion a concrete member for adequate strength to resist the loads and adequate stiffness to prevent excessive deflections. In beam must be proportioned so that it can be constructed. For example, the reinforcement must be detailed so that it can be assembled in the field, and since the concrete is placed in the form after the reinforcement is in place, the concrete must be able toflow around, between, and past the reinforcement to fill all parts of the form completely.The choice of whether a structure should be built of concrete, steel, masonry, or timber depends on the availability of materials and on a number of value decisions. The choice of structural system is made by the architect of engineer early in the design, based on the following considerations:Economy .Frequently, the foremost consideration is the overall const of the structure. This is, of course, a function of the costs of the materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall construction time since the contractor and owner must borrow or otherwise allocate money to carry out the construction and will not receive a return on this investment until the building is ready for occupancy. In a typical large apartment of commercial project, the cost of construction financing will be a significant fraction of the total cost. As a result, financial savings due to rapid construction may more than offset increased material costs. For this reason, any measures the designer can take to standardize the design and forming will generally pay off in reduced overall costs.1.In many cases the long-term economy of the structuremay be more important than the first cost. As a result,maintenance and durability are important consideration.2. Suitability of material for architectural and structural function.A reinforced concrete system frequently allows the designer tocombine the architectural and structural functions. Concrete has the advantage that it is placed in a plastic condition and is given the desired shape and texture by means of the forms and the finishing techniques. This allows such elements ad flat plates or other types of slabs to serve as load-bearing elements while providing the finished floor and / or ceiling surfaces. Similarly, reinforced concrete walls can provide architecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Finally, the choice of size of shape is governed by the designer and not by the availability of standard manufactured members.3. Fire resistance. The structure in a building must withstand the effects of a fire and remain standing while the building is evacuated and the fire is extinguished. A concrete building inherently has a 1- to 3-hour fire rating without special fireproofing or other details. Structural steel or timber buildings must be fireproofed to attain similar fire ratings.4. Low maintenance. Concrete members inherently require lessmaintenance than does structural steel or timber members. This is particularly true if dense, air-entrained concrete has been used for surfaces exposed to the atmosphere, and if care has been taken in thedesign to provide adequate drainage off and away from the structure.Special precautions must be taken for concrete exposed to salts such as deicing chemicals.5. Availability of materials. Sand, gravel, cement, and concrete mixing facilities are very widely available, and reinforcing steel can be transported to most job sites more easily than can structural steel. As a result, reinforced concrete is frequently used in remote areas.On the other hand, there are a number of factors that may cause one to select a material other than reinforced concrete.These include:1. Low tensile strength. The tensile strength concrete is muchlower than its compressive strength (about 1/10), and hence concrete is subject to cracking. In structural uses this is overcome by using reinforcement to carry tensile forces and limit crack widths to within acceptable values. Unless care is taken in design and construction, however, these cracks may be unsightly or may allow penetration of water. When this occurs, water or chemicals such as road deicing salts may cause deterioration or staining of the concrete. Special design details are required in such cases. In the case of water-retaining structures, special details and /of prestressing are required to prevent leakage.2. Forms and shoring. The construction of a cast-in-placestructure involves three steps not encountered in the construction of steel or timber structures. These are (a) the construction of the forms, (b) the removal of these forms, and (c) propping or shoring the new concrete to support its weight until its strength is adequate. Each of these steps involves labor and / or materials, which are not necessary with other forms of construction.3. Relatively low strength per unit of weight for volume. The compressive strength of concrete is roughly 5 to 10% that of steel, while its unit density is roughly 30% that of steel. As a result, a concrete structure requires a larger volume and a greater weight of material than does a comparable steel structure. As a result, long-span structures are often built from steel.2. 4. Time-dependent volume the same changes. Both of concrete and steel and undergo-approximately thermal expansion and contraction. Because there is less mass of steel to be heated or cooled, and because steel is a better concrete, a steel structure is generally affected by temperature changes to a greater extent than is a concrete structure. On the other hand, concrete undergoes frying shrinkage, which, if restrained, may cause deflections or cracking. Furthermore, deflections will tend to increase with time, possibly doubling, due to creep of the concrete under sustained loads.3.In almost every branch of civil engineering and architecture extensive use is made of reinforced concrete for structures and foundations. Engineers and architects require basic knowledge of reinforced concrete design throughout their professional careers. Much of this text is directly concerned with the behavior and proportioning of components that make up typical reinforced concrete structures-beams, columns, and slabs. Once the behavior of these individual elements is understood, the designer will have the background to analyze and design a wide range of complex structures, such as foundations, buildings, and bridges, composed of these elements.4.Since reinforced concrete is a no homogeneous material that creeps, shrinks, and cracks, its stresses cannot be accurately predicted by the traditional equations derived in a course in strength of materials for homogeneous elastic materials. Much of reinforced concrete design in therefore empirical, i.e. design equations and design methods are based on experimental and time-proved results instead of being derived exclusively from theoretical formulations.5. A thorough understanding of the behavior of reinforced concrete will allow the designer to convert an otherwise brittle material into tough ductile structural elements and thereby takeadvantage of concrete’s desirable characteristics, its high compressive strength, its fire resistance, and its durability.6.Concrete, a stone like material, is made by mixing cement, water, fine aggregate (often sand), coarse aggregate, and frequently other additives (that modify properties) into a workable mixture. In its unhardened or plastic state, concrete can be placed in forms to produce a large variety of structural elements. Although the hardened concrete by itself, i.e., without any reinforcement, is strong in compression, it lacks tensile strength and therefore cracks easily. Because unreinforced concrete is brittle, it cannot undergo large deformations under load and fails suddenly-without warning. The addition for steel reinforcement to the concrete reduces the negative effects of its two principal inherent weaknesses, its susceptibility to cracking and its brittleness. When the reinforcement is strongly bonded to the concrete, a strong, stiff, and ductile construction material is produced. This material, called reinforced concrete, is used extensively to construct foundations, structural frames, storage takes, shell roofs, highways, walls, dams, canals, and innumerable other structures and building products. Two other characteristics of concrete that are present even when concrete is reinforced are shrinkage and creep, but the negative effects of these propertiescan be mitigated by careful design.7. A code is a set technical specifications and standards that control important details of design and construction. The purpose of codes it produce structures so that the public will be protected from poor of inadequate and construction.8.Two type’s coeds exist. One type, called a structural code, is originated and controlled by specialists who are concerned with the proper use of a specific material or who are involved with the safe design of a particular class of structures.9.The second type of code, called a building code, is established to cover construction in a given region, often a city or a state. The objective of a building code is also to protect the public by accounting for the influence of the local environmental conditions on construction. For example, local authorities may specify additional provisions to account for such regional conditions as earthquake, heavy snow, or tornados. National structural codes generally are incorporated into local building codes.10.The American Concrete Institute (ACI) Building Code covering the design of reinforced concrete buildings. It contains provisions covering all aspects of reinforced concrete manufacture, design, and construction. It includes specifications on quality ofmaterials, details on mixing and placing concrete, design assumptions for the analysis of continuous structures, and equations for proportioning members for design forces.11.A ll structures must be proportioned so they will not fail or deform excessively under any possible condition of service. Therefore it is important that an engineer use great care in anticipating all the probable loads to which a structure will be subjected during its lifetime.12.A lthough the design of most members is controlled typically by dead and live load acting simultaneously, consideration must also be given to the forces produced by wind, impact, shrinkage, temperature change, creep and support settlements, earthquake, and so forth.13.T he load associated with the weight of the structure itself and its permanent components is called the dead load. The dead load of concrete members, which is substantial, should never be neglected in design computations. The exact magnitude of the dead load is not known accurately until members have been sized. Since some figure for the dead load must be used in computations to size the members, its magnitude must be estimated at first. After a structure has been analyzed, the members sized, and architectural details completed, the dead load can be computedmore accurately. If the computed dead load is approximately equal to the initial estimate of its value (or slightly less), the design is complete, but if a significant difference exists between the computed and estimated values of dead weight, the computations should be revised using an improved value of dead load. An accurate estimate of dead load is particularly important when spans are long; say over 75 ft (22.9 m), because dead load constitutes a major portion of the design load.14.L ive loads associated with building use are specific items of equipment and occupants in a certain area of a building, building codes specify values of uniform live for which members are to be designed.15.A fter the structure has been sized for vertical load, it is checked for wind in combination with dead and live load as specified in the code. Wind loads do not usually control the size of members in building less than 16 to 18 stories, but for tall buildings wind loads become significant and cause large forces to develop in the structures. Under these conditions economy can be achieved only by selecting a structural system that is able to transfer horizontal loads into the ground efficiently.钢筋混凝土在每一个国家,混凝土及钢筋混凝土都被用来作为建筑材料。
结构工程常用词汇英汉对照混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete 双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete 无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression 偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load跨度:span跨高比:span-to-depth ratio跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load分布荷载:distribution load分布钢筋:distribution steel挠度:deflection设计荷载:design load设计强度:design strength构造:construction简支梁:simple beam截面面积:area of section浇注:pouring浇注混凝土:concreting钢筋搭接:bar splicing刚架:rigid frame脆性:brittleness脆性破坏:brittle failure。
建筑专业笔记整理大全-结构工程常用词汇-土木工程常用英语术语结构工程常用词汇混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress—strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast—in—place reinforced concrete 双向配筋:two—way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load跨度:span跨高比:span—to-depth ratio跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load分布荷载:distribution load分布钢筋:distribution steel挠度:deflection设计荷载:design load设计强度:design strength构造:construction简支梁:simple beam截面面积:area of section浇注:pouring浇注混凝土:concreting钢筋搭接:bar splicing刚架:rigid frame脆性:brittleness脆性破坏:brittle failure土木工程常用英语术语第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。
结构工程常用英语词汇混凝土:concrete 钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs 刚度:rigidity徐变:creep 水泥:cement钢筋保护层:cover to reinforcement 梁:beam柱:column 板:slab 剪力墙:shear wall 基础:foundation剪力:shear 剪切变形:shear deformation 剪切模量:shear modulus拉力:tension 压力:pressure 延伸率:percentage of elongation位移:displacement 应力:stress 应变:strain应力集中:concentration of stresses 应力松弛:stress relaxation 应力图:stress diagram 应力应变曲线:stress-strain curve 应力状态:state of stress 钢丝:steel wire 箍筋:hoop reinforcement 箍筋间距:stirrup spacing 加载:loading抗压强度:compressive strength 抗弯强度:bending strength抗扭强度:torsional strength 抗拉强度:tensile strength裂缝:crack 屈服:yield 屈服点:yield point 屈服荷载:yield load屈服极限:limit of yielding 屈服强度:yield strength屈服强度下限:lower limit of yield 荷载:load 横截面:cross section 承载力:bearing capacity 承重结构:bearing structure弹性模量:elastic modulus 预应力钢筋混凝土:prestressed reinforced concrete 预应力钢筋:prestressed reinforcement 预应力损失:loss of prestress 预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete双向配筋:two-way reinforcement 主梁:main beam次梁:secondary beam 弯矩:moment 悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending 受拉区:tensile region 受压区:compressive region 塑性:plasticity轴向压力:axial pressure 轴向拉力:axial tension吊车梁:crane beam 可靠性:reliability 粘结力:cohesive force外力:external force 弯起钢筋:bent-up bar 弯曲破坏:bending failure 屋架:roof truss 素混凝土:non-reinforced concrete无梁楼盖:flat slab 配筋率:reinforcement ratio配箍率:stirrup ratio 泊松比:Poisson’s ratio偏心受拉:eccentric tension 偏心受压:eccentric compression偏心距:eccentric distance 疲劳强度:fatigue strength偏心荷载:eccentric load 跨度:span 跨高比:span-to-depth ratio跨中荷载:midspan load 框架结构:frame structure集中荷载:concentrated load 分布荷载:distribution load分布钢筋:distribution steel 挠度:deflection设计荷载:design load 设计强度:design strength构造:construction 简支梁:simple beam 截面面积:area of section 浇注:pouring 浇注混凝土:concreting钢筋搭接:bar splicing 刚架:rigid frame脆性:brittleness 脆性破坏:brittle failure。
建筑结构常用词汇:钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure 板式楼梯:cranked slab stairs刚度:rigidity ,stiffness徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab ,plate剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement ,stirrup箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete 双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam ,joist beam弯矩:moment悬臂梁:cantilever beam延性:ductility受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete, plain concrete无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression偏心距:eccentric distance偏心荷载:eccentric load疲劳强度:fatigue strength跨度:span跨高比:span-to-depth ratio跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load分布荷载:distribution load 分布钢筋:distribution steel 挠度:deflection设计荷载:design load设计强度:design strength构造:construction简支梁:simple beam截面面积:area of section浇注:pouring浇注混凝土:concreting钢筋搭接:bar splicing刚架:rigid frame脆性:brittleness脆性破坏:brittle failure。
(1)Concrete and reinforced concrete are used as building materials in every country. In many, including Canada and the United States, reinforced concrete is a dominant structural material in engineered construction.(1)混凝土和钢筋混凝土在每个国家都被用作建筑材料。
在许多国家,包括加拿大和美国,钢筋混凝土是一种主要的工程结构材料。
(2)The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction.(2) 钢筋混凝土建筑的广泛存在是由于钢筋和制造混凝土的材料,包括石子,沙,水泥等,可以通过多种途径方便的得到,同时兴建混凝土建筑时所需要的技术也相对简单。
(3)Concrete and reinforced concrete are used in bridges, building of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.(3)混凝土和钢筋混凝土被应用于桥梁,各种形式的建筑,地下结构,蓄水池,电视塔,海上石油平台,以及工业建筑,大坝,甚至船舶等。
毕业设计(论文)外文文献翻译文献、资料中文题目:钢筋混凝土结构设计文献、资料英文题目:DESIGN OF REINFORCED CONCRETE STRUCTURES 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:土木工程班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业设计(论文)外文参考资料及译文译文题目:DESIGN OF REINFORCED CONCRETE STRUCTURES原文:DESIGN OF REINFORCED CONCRETESTRUCTURES1. BASIC CONCERPTS AND CHARACERACTERISTICS OF REINFORCED CONCRETEPlain concrete is formed from hardened mixture of cement, water , fine aggregate , coarse aggregate (crushed stone or gravel ) , air and often other admixtures . The plastic mix is placed and consolidated in the formwork, then cured to accelerate of the chemical hydration of hen cement mix and results in a hardened concrete. It is generally known that concrete has high compressive strength and low resistance to tension. Its tensile strength is approximatelyone-tenth of its compressive strength. Consequently, tensile reinforcement in the tension zone has to be provided to supplement the tensile strength of the reinforced concrete section.For example, a plain concrete beam under a uniformly distributed load q is shown in Fig .1.1(a), when the distributed load increases and reaches a value q=1.37KN/m , the tensile region at the mid-span will be cracked and the beam will fail suddenly . A reinforced concrete beam if the same size but has to steel reinforcing bars (2φ16) embedded at the bottom under a uniformly distributed load q is shown in Fig.1.1(b). The reinforcing bars take up the tension there after the concrete is cracked. When the load q is increased, the width of the cracks, the deflection and thestress of steel bars will increase . When the steel approaches the yielding stress ƒy , thedeflection and the cracked width are so large offering some warning that the compression zone . The failure load q=9.31KN/m, is approximately 6.8 times that for the plain concrete beam.Concrete and reinforcement can work together because there is a sufficiently strong bond between the two materials, there are no relative movements of the bars and the surrounding concrete cracking. The thermal expansion coefficients of the two materials are 1.2×10-5K-1 for steel and 1.0×10-5~1.5×10-5K-1 for concrete .Generally speaking, reinforced structure possess following features :Durability .With the reinforcing steel protected by the concrete , reinforced concreteFig.1.1Plain concrete beam and reinforced concrete beamIs perhaps one of the most durable materials for construction .It does not rot rust , and is not vulnerable to efflorescence .(2)Fire resistance .Both concrete an steel are not inflammable materials .They would not be affected by fire below the temperature of 200℃when there is a moderate amount of concrete cover giving sufficient thermal insulation to the embedded reinforcement bars.(3)High stiffness .Most reinforced concrete structures have comparatively large cross sections .As concrete has high modulus of elasticity, reinforced concrete structures are usuallystiffer than structures of other materials, thus they are less prone to large deformations, This property also makes the reinforced concrete less adaptable to situations requiring certainflexibility, such as high-rise buildings under seismic load, and particular provisions have to be made if reinforced concrete is used.(b)Reinfoced concrete beam(4)Locally available resources. It is always possible to make use of the local resources of labour and materials such as fine and coarse aggregates. Only cement and reinforcement need to be brought in from outside provinces.(5)Cost effective. Comparing with steel structures, reinforced concrete structures are cheaper.(6)Large dead mass, The density of reinforced concrete may reach2400~2500kg/pare with structures of other materials, reinforced concrete structures generally have a heavy dead mass. However, this may be not always disadvantageous, particularly for those structures which rely on heavy dead weight to maintain stability, such as gravity dam and other retaining structure. The development and use of light weight aggregate have to a certain extent make concrete structure lighter.(7)Long curing period.. It normally takes a curing period of 28 day under specified conditions for concrete to acquire its full nominal strength. This makes the progress of reinforced concrete structure construction subject to seasonal climate. The development of factory prefabricated members and investment in metal formwork also reduce the consumption of timber formwork materials.(8)Easily cracked. Concrete is weak in tension and is easily cracked in the tension zone. Reinforcing bars are provided not to prevent the concrete from cracking but to take up the tensile force. So most of the reinforced concrete structure in service is behaving in a cracked state. This is an inherent is subjected to a compressive force before working load is applied. Thus the compressed concrete can take up some tension from the load.2. HISTOEICAL DEVELPPMENT OF CONCRETE STRUCTUREAlthough concrete and its cementitious(volcanic) constituents, such as pozzolanic ash, have been used since the days of Greek, the Romans, and possibly earlier ancient civilization, the use of reinforced concrete for construction purpose is a relatively recent event, In 1801, F. Concrete published his statement of principles of construction, recognizing the weakness if concrete in tension, The beginning of reinforced concrete is generally attributed to Frenchman J. L. Lambot, who in 1850 constructed, for the first time, a small boat with concrete for exhibition in the 1855 World’s Fair in Paris. In England, W. B. Wilkinson registered a patent for reinforced concrete l=floor slab in 1854.J.Monier, a French gardener used metal frames as reinforcement to make garden plant containers in 1867. Before 1870, Monier had taken a series of patents to make reinforcedconcrete pipes, slabs, and arches. But Monier had no knowledge of the working principle of this new material, he placed the reinforcement at the mid-depth of his wares. Then little construction was done in reinforced concrete. It is until 1887, when the German engineers Wayss and Bauschinger proposed to place the reinforcement in the tension zone, the use of reinforced concrete as a material of construction began to spread rapidly. In1906, C. A. P. Turner developed the first flat slab without beams.Before the early twenties of 20th century, reinforced concrete went through the initial stage of its development, Considerable progress occurred in the field such that by 1910 the German Committee for Reinforced Concrete, the Austrian Concrete Committee, the American Concrete Institute, and the British Concrete Institute were established. Various structural elements, such as beams, slabs, columns, frames, arches, footings, etc. were developed using this material. However, the strength of concrete and that of reinforcing bars were still very low. The common strength of concrete at the beginning of 20th century was about 15MPa in compression, and the tensile strength of steel bars was about 200MPa. The elements were designed along the allowable stresses which was an extension of the principles in strength of materials.By the late twenties, reinforced concrete entered a new stage of development. Many buildings, bridges, liquid containers, thin shells and prefabricated members of reinforced concrete were concrete were constructed by 1920. The era of linear and circular prestressing began.. Reinforced concrete, because of its low cost and easy availability, has become the staple material of construction all over the world. Up to now, the quality of concrete has been greatly improved and the range of its utility has been expanded. The design approach has also been innovative to giving the new role for reinforced concrete is to play in the world of construction.The concrete commonly used today has a compressive strength of 20~40MPa. For concrete used in pre-stressed concrete the compressive strength may be as high as 60~80MPa. The reinforcing bars commonly used today has a tensile strength of 400MPa, and the ultimate tensile strength of prestressing wire may reach 1570~1860Pa. The development of high strength concrete makes it possible for reinforced concrete to be used in high-rise buildings, off-shore structures, pressure vessels, etc. In order to reduce the dead weight of concrete structures, various kinds of light concrete have been developed with a density of 1400~1800kg/m3. With a compressive strength of 50MPa, light weight concrete may be used in load bearing structures. One of the best examples is the gymnasium of the University of Illinois which has a span of 122m and is constructed of concrete with a density of 1700kg/m3. Another example is the two 20-story apartment houses at the Xi-Bian-Men in Beijing. The walls of these two buildings are light weight concrete with a density of 1800kg/m3.The tallest reinforced concrete building in the world today is the 76-story Water Tower Building in Chicago with a height of 262m. The tallest reinforced concrete building in China today is the 63-story International Trade Center in GuangZhou with a height a height of 200m. The tallest reinforced concrete construction in the world is the 549m high International Television Tower in Toronto, Canada. He prestressed concrete T-section simply supported beam bridge over the Yellow River in Luoyang has 67 spans and the standard span length is 50m.In the design of reinforced concrete structures, limit state design concept has replaced the old allowable stresses principle. Reliability analysis based on the probability theory has very recently been introduced putting the limit state design on a sound theoretical foundation. Elastic-plastic analysis of continuous beams is established and is accepted in most of the design codes. Finite element analysis is extensively used in the design of reinforced concrete structures and non-linear behavior of concrete is taken into consideration. Recent earthquake disasters prompted the research in the seismic resistant reinforced of concrete structures. Significant results have been accumulated.3. SPECIAL FEATURES OF THE COURSEReinforced concrete is a widely used material for construction. Hence, graduates of every civil engineering program must have, as a minimum requirement, a basic understanding of the fundamentals of reinforced concrete.The course of Reinforced Concrete Design requires the prerequisite of Engineering Mechanics, Strength of Materials, and some if not all, of Theory of Structures, In all these courses, with the exception of Strength of Materials to some extent, a structure is treated of in the abstract. For instance, in the theory of rigid frame analysis, all members have an abstract EI/l value, regardless of what the act value may be. But the theory of reinforced concrete is different, it deals with specific materials, concrete and steel. The values of most parameters must be determined by experiments and can no more be regarded as some abstract. Additionally, due to the low tensile strength of concrete, the reinforced concrete members usually work with cracks, some of the parameters such as the elastic modulus I of concrete and the inertia I of section are variable with the loads.The theory of reinforced concrete is relatively young. Although great progress has been made, the theory is still empirical in nature in stead of rational. Many formulas can not be derived from a few propositions, and may cause some difficulties for students. Besides, due to the difference in practice in different countries, most countries base their design methods on their own experience and experimental results. Consequently, what one learns in one country may be different in another country. Besides, the theory is still in a stage of rapid。
【分享】结构工程常用词汇混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement 梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield 屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement 预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression 偏心距:eccentric distance 疲劳强度:fatigue strength 偏心荷载:eccentric load 跨度:span跨高比:span-to-depth ratio 跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load 分布荷载:distribution load 分布钢筋:distribution steel 挠度:deflection设计荷载:design load设计强度:design strength 构造:construction简支梁:simple beam截面面积:area of section 浇注:pouring浇注混凝土:concreting 钢筋搭接:bar splicing 刚架:rigid frame脆性:brittleness脆性破坏:brittle failure混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement 梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire 箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement 预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending 受拉区:tensile region受压区:compressive region 塑性:plasticity轴向压力:axial pressure 轴向拉力:axial tension 吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete 无梁楼盖:flat slab 配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression 偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load 跨度:span跨高比:span-to-depth ratio 跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load 分布荷载:distribution load 分布钢筋:distribution steel 挠度:deflection设计荷载:design load设计强度:design strength 构造:construction简支梁:simple beam 截面面积:area of section 浇注:pouring浇注混凝土:concreting 钢筋搭接:bar splicing 刚架:rigid frame 脆性:brittleness脆性破坏:brittle failure。
forced concrete structure reinforced with anoverviewReinSince the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance.Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency.1、steel mechanical link1.1 radial squeeze linkWill be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linkedCharacteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.Easy and simple to handle, construction fast, save energy and material, comprehensive economy profitable, this method has been already a large amount of application in the project.Applicable scope : Suitable for Ⅱ, Ⅲ, Ⅳgrade reinforcing bar (including welding bad reinfor cing bar ) with ribbing of Ф 18- 50mm, connection between the same diameter or different diameters reinforcing bar .1.2must squeeze linkExtruders used in the covers, reinforced axis along the cold metal sleeve squeeze dedicated to insert sleeve Lane two hot rolling steel drums into a highly integrated mechanical linking methods.Characteristic: Easy to operate and joining fast and not having flame homework , can construct for 24 hours , save a large number of reinforcing bars and energy. Applicable scope : Suitable for , set up according to first and second class antidetonation requirement -proof armored concrete structure ФⅡ, Ⅲgrade reinforcing bar with ribbing of hot rolling of 20- 32mm join and construct live.1.3 cone thread connectingUsing cone thread to bear pulled, pressed both effort and self-locking nature, undergo good principles will be reinforced by linking into cone-processing thread at the moment the value of integration into the joints connecting steel bars.Characteristic: Simple , all right preparatory cut of the craft , connecting fast, concentricity is good, have pattern person who restrain from advantage reinforcing bar carbon content.Applicable scope : Suitable for the concrete structure of the industry , civil buil ding and general structures, reinforcing bar diameter is for Фfor the the 16- 40mm one Ⅱ, Ⅲgrade verticality, it is the oblique to or reinforcing bars horizontal join construct live.conclusionsThese are now commonly used to connect steel synthesis methods, which links technology in the United States, Britain, Japan and other countries are widely used. There are different ways to connect their different characteristics and scope of the actual construction of production depending on the specific project choose a suitable method of connecting to achieve both energy conservation and saving time limit for a project ends.钢筋混凝土构造中钢筋连接综述改革开放以来,伴随国民经济旳迅速、持久发展,多种钢筋混凝土建筑构造大量建造,钢筋连接技术得到很大旳发展。
【分享】结构工程常用词汇混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield 屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement 预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression 偏心距:eccentric distance 疲劳强度:fatigue strength 偏心荷载:eccentric load 跨度:span跨高比:span-to-depth ratio 跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load 分布荷载:distribution load 分布钢筋:distribution steel 挠度:deflection设计荷载:design load设计强度:design strength 构造:construction简支梁:simple beam截面面积:area of section 浇注:pouring浇注混凝土:concreting 钢筋搭接:bar splicing 刚架:rigid frame脆性:brittleness脆性破坏:brittle failure混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire 箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement 预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending 受拉区:tensile region受压区:compressive region 塑性:plasticity轴向压力:axial pressure 轴向拉力:axial tension 吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete 无梁楼盖:flat slab 配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression 偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load 跨度:span跨高比:span-to-depth ratio 跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load 分布荷载:distribution load 分布钢筋:distribution steel 挠度:deflection设计荷载:design load设计强度:design strength 构造:construction简支梁:simple beam 截面面积:area of section 浇注:pouring浇注混凝土:concreting 钢筋搭接:bar splicing 刚架:rigid frame 脆性:brittleness20.2。
1.1 许多天然物质,如粘土、砂子和岩石,甚至树枝和树叶都已经被用作建筑材料。
Many naturally occurring substances, such as clay, sand, wood and rocks, even twigs and leaves have been used to construct buildings.1.2 砖块是由窑中烧制材料作成的块体,通常由粘土或页岩制成,但也可由炉渣制成。
A brick is a block made of kiln-fired material, usually clay or shale, but also maybe of lower quality mud.1.3 与水混合后,水泥便发生水化反应,并最终形成像石头一样的材料。
After mixing, the cement hydrates and eventually hardens into a stone-like material.1.4 金属可用作大型结构的框架,也可用来装饰建筑物外表。
Metal is used as structural framework for larger buildings such as skyscrapers, or as an external surface covering.1.5 明亮的窗户不但能使光线进入建筑物,而且也能将恶劣气候隔绝于建筑物之外。
Clear windows provided humans with the ability to both let light into rooms while at the same time keeping inclement weather outside.2.1 材料的抗拉强度是一种广延性质,因此它并不因试件尺寸的不同而改变。
Tensile strength is an intensive property and, consequently, does not depend on the side of the test specimen.2.2 屈服强度是材料从弹性变形到塑性变形转化时的应力。
建筑用英语怎么翻译在当今全球化的社会背景下,建筑作为一种国际化的行业,使用英语进行交流和合作已经变得越来越普遍。
对于从事与建筑相关工作的人士来说,掌握建筑用英语的翻译是一项必备的能力。
但是,由于建筑领域具有其特有的术语和专业知识,因此在进行建筑英语翻译时需要了解一些常用的词汇和表达方式。
本文将为您介绍一些常用的建筑英语翻译方法和技巧。
1. 建筑基础词汇翻译在进行建筑英语翻译时,首先需要了解基本的建筑词汇和表达方式。
以下是一些常见的建筑基础词汇及其对应的英语翻译:•建筑物 (Building)•结构 (Structure)•设计 (Design)•施工 (Construction)•建筑师 (Architect)•工程师 (Engineer)•土木工程 (Civil Engineering)•钢筋混凝土 (Reinforced Concrete)•建筑材料 (Building Materials)•建筑工地 (Construction Site)•建筑图纸 (Architectural Drawing)2. 建筑常用短语翻译除了基础词汇之外,还有一些常用的短语在建筑英语翻译中经常使用。
以下是一些常见的建筑短语及其对应的英语翻译:•承包商 (Contractor)•建设项目 (Construction Project)•建筑规划 (Architectural Planning)•建筑施工 (Building Construction)•建筑工程师 (Civil Engineer)•建筑图纸设计 (Architectural Drawing Design)•建筑工地管理 (Construction Site Management)•结构设计 (Structural Design)•建筑验收 (Building Inspection)•绿色建筑 (Green Building)3. 建筑专业术语翻译建筑领域拥有大量的专业术语,了解并正确翻译这些术语对于进行建筑英语翻译至关重要。
建筑专业土木工程词汇及术语中英文对照建筑专业笔记整理大全-结构工程常用词汇-土木工程常用英语术语结构工程常用词汇混凝土:concrete钢筋:reinforcing steel bar钢筋混凝土:reinforced concrete(RC)钢筋混凝土结构:reinforced concrete structure板式楼梯:cranked slab stairs刚度:rigidity徐变:creep水泥:cement钢筋保护层:cover to reinforcement梁:beam柱:column板:slab剪力墙:shear wall基础:foundation剪力:shear剪切变形:shear deformation剪切模量:shear modulus拉力:tension压力:pressure延伸率:percentage of elongation位移:displacement应力:stress应变:strain应力集中:concentration of stresses应力松弛:stress relaxation应力图:stress diagram应力应变曲线:stress-strain curve应力状态:state of stress钢丝:steel wire箍筋:hoop reinforcement箍筋间距:stirrup spacing加载:loading抗压强度:compressive strength抗弯强度:bending strength抗扭强度:torsional strength抗拉强度:tensile strength裂缝:crack屈服:yield屈服点:yield point屈服荷载:yield load屈服极限:limit of yielding屈服强度:yield strength屈服强度下限:lower limit of yield荷载:load横截面:cross section承载力:bearing capacity承重结构:bearing structure弹性模量:elastic modulus预应力钢筋混凝土:prestressed reinforced concrete预应力钢筋:prestressed reinforcement预应力损失:loss of prestress预制板:precast slab现浇钢筋混凝土结构:cast-in-place reinforced concrete 双向配筋:two-way reinforcement主梁:main beam次梁:secondary beam弯矩:moment悬臂梁:cantilever beam延性:ductileity受弯构件:member in bending受拉区:tensile region受压区:compressive region塑性:plasticity轴向压力:axial pressure轴向拉力:axial tension吊车梁:crane beam可靠性:reliability粘结力:cohesive force外力:external force弯起钢筋:bent-up bar弯曲破坏:bending failure屋架:roof truss素混凝土:non-reinforced concrete 无梁楼盖:flat slab配筋率:reinforcement ratio配箍率:stirrup ratio泊松比:Poisson’s ratio偏心受拉:eccentric tension偏心受压:eccentric compression 偏心距:eccentric distance疲劳强度:fatigue strength偏心荷载:eccentric load跨度:span跨高比:span-to-depth ratio跨中荷载:midspan load框架结构:frame structure集中荷载:concentrated load分布荷载:distribution load分布钢筋:distribution steel挠度:deflection设计荷载:design load设计强度:design strength构造:construction简支梁:simple beam截面面积:area of section浇注:pouring浇注混凝土:concreting钢筋搭接:bar splicing刚架:rigid frame脆性:brittleness脆性破坏:brittle failure土木工程常用英语术语第一节一般术语1. 工程结构building and civil engineering structures房屋建筑和土木工程的建筑物、构筑物及其相关组成部分的总称。
reinforced concrete structure 钢筋混凝土结构;钢筋混凝土建筑物reinforced profile concrete parapet 钢筋混凝土纵向护栏reinforcement 钢筋;加固;加强reinforcement bar 钢筋条reinforcement cage 钢筋笼reinforcing agent 增强剂reinstatement 回复原状;恢复原貌reinstatement of supply 恢复供应reinstatement works 修复工程relative density 相对密度relative humidity 相对湿度relay 继电器release agent 脱模剂release nozzle 泄放喷嘴release spring 回位弹簧release valve 放泄阀relevant experience 有关经验relevant works 有关工程relief road 辅助路relief sewer 溢流污水渠relief valve 保险阀;卸压阀;释气阀relieving arch 减压拱relieving beam 减压梁relocation 迁移remaining slag 剩余熔渣remaining works 余下工程remeasurement contract 按量数付款工程合约remedial measure 补救措施remedial works 补救工程remedy 补救remote control 遥控remoulding 重塑;改造removal 移去;删除rendering 荡面;批荡;底层灰浆renewal 更新;续期renovate 翻新;整修repaint 重新髹漆repair 修理;修葺;修补repair paint 补用漆replace 更换reproduce 复制reprovision 配回地方;另配地方;重配地方requirement 规定rerouting of road 更改行车路线rescue equipment 拯救设备rescue operation 拯救行动reserve 专用范围;保留地;保护区reservoir 储气缸;水库;储水池reset 复位;重置resident site staff 驻工地人员residential area 住宅区residential building 住宅建筑物residual 剩余residual strength 剩余强度residue 滤渣;残渣;残留物resilient mounting 弹性机垫resilient pad 弹性垫片resin 树脂resin emulsion paint 树脂涂料;树脂漆resin insulator 树脂绝缘器resin mortar 树脂胶浆resinoid bond 树脂胶合resistance 电阻;阻力;抵抗力resistance coefficient 阻力系数resistance range 电阻范围;电阻量程resistance thermometer 电阻温度计resistivity test 电阻测试resistor 电阻器resite 安置;徙置;迁移resonance 共振;谐振resource plan 资源计划respirable suspended particulate 可吸入的悬浮颗粒rest garden 休憩花园rest position 止动位置restoration works 修复工程restore 修复restricted access/road 限制使用的道路/通道restricted tender 局限性投标resultant force 合力resurfacing 重铺路面;表面重修retaining structure (earth) 护土结构;护土建筑物retaining wall (earth) 护土墙;挡土墙retardation 减速retarder 缓凝剂;减速剂retention money 保证金return air inlet 回风进口;回气进口return period 重现期return spring 回位弹簧revetment 护岸墙;护墙;护坡revolution per minute (r.p.m.) 每分钟转数revolution switch 旋转开关revolving door 旋转门rewinding 重新绕线rheostat 变阻器riding quality (road) 路面行车质素riding surface (road) 行车道路面rigger 索具装配工right-of-way 通行权;可行使通行权的地区rigid frame 刚性构架rigid joint 刚性接缝rigid metallic pipework 硬金属制的喉管rigid pavement 刚性路面;混凝土路面rigid plastic 硬性塑胶rim 周围;缘ring 圈环ring road 环市/环村道路riprap 乱石堤;堆石护坡;抛石riser 立管;竖管;梯级高度;踢脚;竖板rising main 上行水管;上行电缆;泵送干管risk assessment 风险评估river pier 河墩river trade terminal 内河货运码头river training 改善河道;治河;疏浚河道river wall 河道导流墙;河堤riverside 河畔;河岸rivet 铆钉(窝钉)riveting machine 铆钉机road 道路road base 道路基层road bend 路弯road bridge 道路桥road capacity 道路通车容量;容车量road closure 封路road corridor 干路road cum rail bridge 道路铁路两用大桥road deck 道路面层road divider 道路分隔栏road drainage system 道路排水系统road embankment 路堤road formation 道路基面road furniture 道路设备road geometry 路形road hazard warning lantern 道路危险警告灯road hump 路拱;路丘road intersection 道路交汇处;道路交叉点road joint 道路伸缩缝road junction 路口;道路交界处road level 路面水平road lighting 道路照明设施road lighting cable 路灯电缆road lighting column 路灯柱road lighting lantern 路灯具road lighting pillar box 路灯电箱road marking 道路标记road marking paint 路标漆road network 道路网road opening permit 掘路许可证road reconstruction works 道路重建工程road rehabilitation works 道路修复工程road reinstatement works 恢复道路本来面貌工程road reserve 道路专用范围road resurfacing works 重铺路面工程road roller (vibratory) 压路机(震动式)road serviceability 道路的可用性road stud 路钉road tanker 缸车road testing equipment 验路设备road transport 陆上运输;陆路运输;陆上交通工具road tunnel 行车队道road user 使用道路人士;道路使用者road widening works 道路扩阔工程road width 路面阔度road works 道路工程rock 岩石rock anchor 石锚rock bolt 石栓;岩层锚杆rock cut slope 切割石坡rock dowel 石钉;岩石销钉rock plug 岩塞rock slope 石坡rock-mound breakwater 堆石防波堤rocker arm 摇臂;摇杆rockfill 碎石;填石rodding 以棒条通渠rodding eye 通管孔;通渠孔rolled hardcore 经碾压碎石底层rolled steel 轧制钢rolled steel channel 轧制钢槽roller 压路机;滚筒roller conveyor 滚柱式输送机roller shutter 卷闸roof 屋顶roof cover 上盖roof load 屋顶荷载roof surface 屋顶表面roof tank 天台贮水箱root mean square 均方根rope 缆绳;绳索rope anchorage 缆索紧固锚rope clamp 绳夹rope drum groover 缆索卷筒槽rope guide 导绳器rope round pulley 绕绳滑轮rope thimble 绳端套环rose wood 花梨木rotary drum 滚筒rotary drum screen 滚筒筛滤器rotary pump 旋转式泵rotary switch 旋转式开关rotary vane water meter 翼轮式水表rotary water meter 旋转式水表rotor 转子roughness coefficient 粗糙系数roundabout 旋处routine maintenance 例行维修rubber anti-vibration mounting 橡胶避震垫rubber gasket 橡胶垫圈rubber gland 橡胶压盖rubber grommet 橡胶孔环;橡胶索环rubber hose 橡胶软管rubber moulding 胶模rubber seal ring 橡胶密封环rubber sealing washer 橡胶密垫圈rubber sleeve 橡胶管套rubber spring 橡胶弹簧rubber strip 橡胶条rubber torsion element 橡胶扭力件rubber tube 橡胶喉管rubble 毛石;粗石rubble deposition works 沉积毛石工程rubble mound seawall 堆石海堤rule 规则run-in 车辆出入通道;汽车通道;路口run-off 径流;斜面排水running noise 运行噪音running speed 运行速度running test 运行测试;运行试验running time 运行时间rupture 破裂rural area 乡郊地区rural feeder road 郊区支路rural road 郊区道路rust scale 锈皮rust stain 锈渍saddle 鞍;鞍座safe load 安全载重;安全荷载safe operation 安全运作safe working 安全操作safe working condition 安全操作状态safe working practice 安全操作准则safeguard 防护装置safeguard system 安全防护系统safety belt 安全带safety boot 安全鞋safety clearance 安全间隙;安全距离safety control device 安全控制装置safety curtain 防护幕safety cut out switch 安全截断开关safety fence 安全栏;防撞栏safety goggle 护目镜safety harness 安全吊带safety hook 安全钩safety independent check 独立安全检查safety locking handle 安全锁柄safety margin 安全限度;安全边缘safety measure 安全措施safety plan 工作安全计划safety precaution 安全预防措施safety precaution measure 安全预防措施safety protection system/device 安全保护系统/装置safety requirement 安全规定safety switch 安全开关safety valve 安全阀safety visor 护目面罩safety zone 安全地带sag 垂度saline water 盐水;海水salt water 盐水;海水;咸水salt water flushing system 海水冲厕系统salt water pump 海水抽水机;海水泵salt water pumping station 海水抽水站salt water resistant material 抗咸水物料sample 样本sampling disturbance 取样扰动sampling rate 取样率sand 沙sand blasting 喷沙打磨法sand course 沙面层sand filter 沙过滤器sand patch test 铺沙法试验sand pit 沙池sanding 用沙打磨sanitary fitments 生设备sanitary fittings 卫生设施sanitation 生设施sash 窗扇saturated core sample (concrete) 饱含水分混凝土芯样本saturated density 饱和密度saturation 饱和saturation flow (traffic) 饱和通车量;饱和交通量saw blade 锯片saw dust 锯屑sawing machine 锯床scaffolding 棚架;脚手架;施工架scanner 扫描器scanning 扫描scattered light 分散光scavenging lane 后巷schedule 表;明细表;计划表schematic diagram 示意图scheme 计划;方案Schmidt hammer 混凝土测试枪;石屎枪scoop conveyor 戽式输送机scoring 刻痕;划痕;凹槽scotch 止动块;制动棒;切口;浅刻痕scrape 废料;残渣;刮;削;擦scraper 刮刀;刮土机scratch 刮痕;划痕;抓screeding 沙浆底层screen 遮板;屏障;筛;网罩;银幕screening plant 隔滤厂;筛石厂screw 螺旋;螺钉screw driver 螺钉起子(螺丝批)screw joint 螺纹套管接头;螺旋接合screw pile 螺旋桩screw tap 螺旋式水龙头scriber 划针;划线器sea water booster pump 海水增压泵sea water screen 海水隔滤网seabed 海床seal 封闭;密封;围封;封口sealant 密封剂sealing bar 密封棒sealing compound 绝缘胶;密封剂sealing ring 密封圈;密封环sealing rubber strip 密封胶条sealing strip 封密条sealing tape 密封带sealing washer 密封垫圈sealing wax 火漆seam 缝seat plinth 座位底座seat rim 座缘seating 基座seawall 海堤seawall 海堤;防波堤seawall opening 海堤通孔seawall trench 海堤壕沟seawater 海水seawater pump 海水泵seawater pumping station intake 海水抽水站入口secondary access road 支路secondary meter 分表secondary treatment (of sewage) 二级处理(污水) section 截面;剖面;组;部分;区段section analysis 截面分析sectional area 截面面积sectional axonometric drawing 立体剖面图sectional elevation 立剖面;截视立面图securing dowel 紧固定位销securing hook 紧固securing nut 紧固螺帽securing plate 紧固板securing ring 紧固环securing rod 紧固连杆securing screw 紧固螺钉securing strap 紧固索带security check 保安检查security fencing 保安围栏security gate 保安闸;防盗闸sediment 沉积物seepage 渗漏;渗流seepage force 渗流力segmental launching 分段曳进法segregation 离析seismic coefficient 地震系数seismic load 地震载重;地震荷载seizure 检取self-extinguishing material 自动灭火材料self-weight (of structure) 结构自重semi-conductor 半导体semi-destructive testing 半破坏性测试semi-enclosure (noise) 半开式隔音盖罩sensing capillary 传感毛细管sensing probe 传感探头sensor 传感器separation 分隔separator 分离器;分隔器;分隔物septic tank 化粪池sequence control 程序控制sequence of operation 操作程序sequence of works 施工次序sequence test 程序测试sequence tester 程序测试器serial link 串联接驳series connection 串联service access 维修设施用通道service area 作业地方;服务设施用地service lane 通道巷;通道;后巷service life 使用期限;服务期限;使用寿命service reserve 公用设施专用范围service reservoir 配水库service road 辅助道路service room 水电表房;工作房;机房serviceability 可用性;适用性serviceable condition 可用状况servicing 维修;检修;保养setback 向后退入setback line 退入界setting out 放样;开线;测定;定线settle 沉淀settlement 沉降sewage disposal 污水排放sewage effluent 排放污水sewage pipe 污水管sewage pump 污水泵sewage pump house 污水泵房sewage sump 污水坑;集污槽sewage treatment 污水处理sewage treatment plant 污水处理厂sewage tunnel protection area 污水隧道保护区sewage tunnel works 污水隧道工程sewer 污水管;污水渠sewerage reticulation system 网状污水渠系统sewerage works 污水渠工程shackle 连结环shading effect 遮光效果shadow shield 遮光板shaft 竖井;轴;通风井shank 柄shaping machine 刨床sharp bend/turn/curve 急弯sharp edge 锐边shear key 抗剪键shear reinforcement 剪力钢筋;剪切钢筋shear strength 抗剪强度shear wall 剪力墙shearing force 剪力shearing stress 剪应力shearing test 剪切试验sheath 护套;护层sheave 滑车轮sheer leg 起重机支架sheet iron 铁片sheet pile 板桩sheet pile anchorage 板桩锚sheet pile cofferdam 板桩围堰sheet piled wall 板桩墙sheet steel 钢片shell 套管;壳shelter 遮蔽处;庇护所;收容所;避雨亭shield 防护罩;遮护shift roster 轮班shim 薄垫片;填隙片shock load 冲击荷载shoe 落水斜口shore up 承托shoring 横撑板;撑柱short circuit 短路shot blasting 喷沙shotcrete 喷射混凝土;喷射水泥沙桨shoulder (road) 路肩shovel 铲;铲土机shrine 神龛shrinkage 收缩;收缩量shrinkage coefficient 收缩系数shroud 保护罩shunt 分流器;分路shut off valve 关闭阀shutter 活动遮板;百叶;挡板shuttering 模板side elevation 侧面图side pipe 旁管side road 旁路side span 旁跨;边跨sidewalk 行人道;行人路sieve 筛;滤网sight line 视sign 标志;告示牌;招牌sign gantry 标志架sign mount 标志托架signal 讯号;交通灯signal aspect 讯号示象signal gong 讯号钟signal light 讯号灯signal-controlled pedestrian crossing 交通灯控制行人过路处signalized crossing 灯号控制过路处signboard 招牌silencer 灭声器;灭音器silent zone 静寂地带silica gel 硅胶;矽胶silicone resin 硅树胶sill 窗台;门槛sill of window 窗台silo 仓silt 淤泥;粉沙silt trap 淤泥收集器single span 单跨single stage pump 单级泵single track railway 单轨铁路single-cell box culvert 单孔盒形暗渠sink well 掘井siphon 虹吸;虹吸管site 地盘;地点site boundary 地界范围;地盘界线site clearance 地盘清理site constraint 地盘限制site coverage 上盖面积site diary 地盘工程日志site formation plan 地盘平整工程图则site formation works 地盘平整工程site instruction 工地指令site investigation 地盘勘测;实地勘测site layout plan 地盘设计图site measurement book 地盘量数簿site monitoring 地盘监测site operation 地盘作业site plan 地盘平面图site safety 地盘安全site supervisory staff 工地督导人员site survey 地盘测量site survey plan 地盘测量图siting 定位sitting-out area 休憩场地;休憩处sketch 草图skid resistance 防滑skid resistance test 防滑试验skid resistant surfacing 防滑面层skin friction 表面摩擦skip crane 吊斗起重机skip hoist 吊斗吊重机skirt 踢脚板skirting 墙脚线skylight 空中轮廓线(建筑物)slab 平板slag 熔渣slate 石板sleeper 轨枕sleeve 套管;套袖slewing crane 旋臂起重机;回转式吊机slide rail/track 滑轨sliding bearing 滑动支承sliding coefficient 滑动系数sliding force 滑动力sliding friction 滑动摩擦sling 吊索slip form 滑模;活动板模slip road 连接路slope 斜坡;坡度slope failure 山泥倾泻slope formation works 斜坡平整工程slope protection works 护坡工程slope remedial works 斜坡修葺工程;修补斜坡工程slope stability works 巩固斜坡工程slope toe 坡脚slope toe wall 坡脚墙sludge 污泥;渣滓sludge dewatering 污泥脱水sludge digestion 污泥消化sluice gate 水闸门sluice valve 泄水阀;滑动式泄水阀slump (concrete paste) 坍度(混凝土浆)slurry 泥浆smoke 烟smoke detector 感烟式探测器smoke test 通烟试验soakaway pit 渗水坑;渗水井socket 插座;套;外接头;承口socket-and-spigot joint 承插接头;承窝接合socketed pipe 套接管soffit 天花底;拱腹soffit formwork 底模板soft landscaping works 花卉树林种植工程soft wood 软质木材soil 土壤;污物;便溺污水soil anchor 入泥锚定竿soil behaviour 土壤性能soil investigation works 探土工程soil nail 泥钉soil pipe 便溺污水管soil slope 土壤斜坡soil stabilization works 土壤稳定工程;加固工程solar energy 大阳能solder 焊料;焊锡soldier pile 企桩solenoid 螺线管solid brick 实心砖solid raft 实体筏基solid rock 坚石solid state 固态solvent 溶剂soot 煤屎;煤;灰sorter 分类机sound intensity 声强度sound-level meter 声级计space 空间space frame 空间构架spacer 钢筋定位物;隔间物spacing 间距spalling concrete 混凝土剥落span 跨距;跨度spanner 扳手(土把拿)spare capacity (road) 道路容车余量spark lighter 火花点火器special conditions of contract 特别合约条款specialist contractor 专门承造商;专门承装商specific gravity 比重specification 规格;详细说明specimen 样品;试件speed hump 缓冲路拱speed limit 时速限制speed probe 速度探测器;车速探示器speed range 速度范围speed reducer 减速路拱speedometer 速度表spherical bearing 球形支承spigot 塞子;插口spike 道钉;大钉spillage 溢出物spillway 溢水道;溢洪口spindle 心轴;转轴spiral reinforcement 螺旋钢筋spirit level 水平尺;气泡水准仪splice 并接;镶接splice bar 并接板;鱼尾板splice joint 并合接头spline 塞缝片;槽栓sponge rubber 海棉橡胶spontaneous combustion 自燃spot welding 点焊spotlight 射灯;聚光灯spout 喷水孔spray gun 喷枪sprayed concrete 喷射混凝土spraying nozzle 喷嘴spraying painting 喷漆spread footing 扩展式基脚spread foundation 扩展式地基spring 弹簧sprinkler 喷洒器sprinkler system 消防花洒系统;洒水灭火系统squatter area 寮屋区squatter hut 寮屋stability 稳定性stability analyses 稳定性分析stabilization works 巩固工程;稳固工程;加固工程stabilizing agent 稳定剂stabilizing moment 稳定力矩stack 大烟囱;排气管staggered crossing 分段横过马路处stainless mild steel plate 不软钢板stainless steel 不钢staircase 楼梯stanchion 支柱standard deviation 标准离差;均方误差standby generator 后备发电机standby water pump 后备水泵standpipe 街喉starter 起动器starting torque 起动扭矩static load 静载重;静荷载station concourse 车站大堂statistics 统计;统计资料stator 定子stay rope 系紧线;拉索;牵索steady state 稳定状态steam boiler 蒸气锅炉steam-cured concrete 蒸气养护混凝土steel 钢steel channel 槽钢steel fabric 钢筋网steel H pile 工字钢桩steel pile 钢桩steel pipe 钢管steel pipe pile 钢管桩steel reinforcement 钢筋steel sheet pile 钢板桩steel strand 钢绞线steel structure 钢结构steel truss girder 钢桁梁steel wire 钢丝steel wire rope 钢丝绳steel wool 纲丝绒steep gradient 陡坡steep ramp 陡斜路陡坡道steering wheel 舵轮;驾驶盘step 梯级step channel 级渠step down transformer 降压变压器step up transformer 升压变压器stepped footing 阶梯形底脚stepped foundation 阶梯形地基sterilizer 清毒器;杀菌器stethoscope 听筒;听诊器stiffener 加劲杆;硬化剂stiffening 固化stiffness 劲性;劲度stirrer 搅拌器stockpiling area 贮料区stone ware pipe 粗陶管stop cock 水掣;龙头;活塞storage area 存放区storage capacity 贮存量storage tank 贮水箱storey 楼层;层stormwater box culvert 盒形雨水渠stormwater drain 雨水渠stormwater drainage system 雨水疏导系统stormwater main drain 雨水排放主渠stormwater outfall 雨水渠排水口stormwater overflow chamber 雨水溢流闸箱straight edge 直尺straight ramp 直斜路;直坡道strain 应变strain capacity 应变量strainer 隔滤器strand 绞合线stranded galvanized steel 镀锌钢绞线strategic development plan 发展策略纲领strategic road 重要道路strategic road network 重要道路网stratum 地层stray current 杂散电流stray voltage 杂散电压streak 条痕;纹理stream channel 河道;河槽stream course 河道street furniture 街道装置street lighting 街道照明设备street nameplate 街名牌street refuge 街道安全岛street widening 街道扩阔strength 强度;力strength test 强度测试strengthen 加固strengthening works 加固工程stress 应力stress analysis 应力分析striking 拆除strip foundation 条形地基stripping (formwork) 脱模stroboscope 闪频观测仪stroke 冲程structural analysis 结构分析structural appraisal 结构勘测评估;结构检定structural behaviour 结构性能structural condition survey 结构状勘测structural design 结构设计structural element 结构构件;结构元件structural frame 结构构架structural improvement works 结构改善工程structural integrity 结构完整程度structural investigation 结构勘查structural member 构件structural skeleton 结构骨架structural stability 结构稳定性structural stability analysis 结构稳定性分析structural steel 结构钢structural steel member 结构钢构件structural strength 结构强度structural survey 结构勘测structural use 结构用途structural works 结构工程structure 结构;建筑物;构筑物strut 支撑;支柱;压杆;对角撑stud crossing 行人辅助线;嵌钉行人横过马路线sub-base (road) 路底基层sub-contract 分包工程合约sub-contractor 分包合约承办商;次承建商sub-grade (road) 路基sub-main 次干管sub-soil water 地下水sub-soil water drain 地下水排水渠sub-standard building 未符标准的大厦/楼宇sub-standard concrete 未符标准的混凝土sub-surface building works 地下建筑工程submarine outfall 海底沟管出口处;海底排放管;海底排污管submerged discharge valve 淹没式泄水阀submersible sewage pump 可沉浸的水泵subsidence 沉降;下沉;塌陷subsoil 地基下层泥土substation 配电站;变电站;电力分站substrate 基底substructure 下层结构;底层结构suburban 近郊;市郊subway 隧道;地道suction 吸力suction fan 吸风机;抽风机suction main 吸水干管suction strainer 吸水口滤网suction valve 吸水阀sullage water 淤泥水sump 集水坑sump pit 集水坑sump pump 集水坑泵superelevation 超高superficial area 表面面积superstructure 上盖建筑supervise 监督;监管;督导supervision charge/fee 监督费supervision plan 监工计划书supply fan 进气扇supply pipe 供水管support 支座;支承;支撑;承托;承托物supporting facilities 辅助设备;辅助设施supporting frame 支承构架;承重构架supporting ground 承重土地supporting member 支承构件supporting road network 辅助道路网surface 表面;面层surface channel 排水明渠;路面排水渠surface conduit 明敷导管;明敷线管surface course (road) 道路面层surface drainage 排水明渠;路面排水系统surface finish 表面修饰surface friction 表面摩擦surface gradient 表面坡度surface run-off 地面径流surface tension 表面张力surface texture 表面纹理surface water 地面水surface water channel 地面水渠道;排水明渠surface water drain 地面水排水渠surface water drainage 地面水排水设施surface weather station 地面气象站surface wiring 明线surfacing 铺筑路面;表面修整surge 涌波surrounding ground 周围土地survey 勘测;测量;调查survey plan/sheet 测量图surveyor 测量师suspended ceiling 垂吊式天花板suspended truss 悬挂式桁架suspension bridge 吊桥;悬索桥swan neck fire hydrant 鹅颈消防栓switch 开关switch room 电掣房switchboard 配电盘;电掣板swivel joint 旋转接合symbol 符号symmetrical loading 对称荷载synchronizer 同步器T beam T字梁T connection T形连接T junction T字路口tachometer 转速计tachometer 转速计tack coat 黏油talc 滑石tamper 夯土机;捣固机tamper blade 捣固掌tangent point 切向点tangential force 切向力tank 油缸;容缸taper (road) 楔形路段;逐渐收窄的路段target 目标;指标tarpaulin sheet 防水布;油布teak 柚木technical specification 技术规格tell-tale 试片temperature sensor 温度传感器temporary building 临时建筑物temporary construction 临时结构temporary occupation permit 临时占用许可证;临时入伙纸temporary shed 临时屋棚tender 投标;标书tender assessment 投标评估;评审标书;标书评估tender document 招标文件tender drawing 招标图则tender selection criteria 选标准则tenon 雄榫tensile force 拉力tensile reinforcement 抗拉钢筋tensile strength 抗拉强度tensile stress 拉应力tension 拉力;张力term contract 定期合约terms of reference 职权范围terrace 平台;露台;台阶terraced platform 梯状平台terraced slope 梯状斜坡terrain 地形terrazzo 水磨批荡;意大利批荡test 测试test cube (concrete) 立方体试块(混凝土)test load 测试荷载test piece 试件test run 测试运行test sample 测试样本texture 纹理thermal capacity 热容量thermal expansion coefficient 热膨胀系数thermal insulation 隔热thermal property 热特性thermal transmittance value 传热值thermister 热敏电阻thermocouple 热电偶thermoplastic material 热塑材料thermoplastic road marking paint 热塑路标漆thermosetting 热固性thermostat 恒温器thimble 套圈thinner 稀释剂;天拿水thoroughfare 大道;大街;能穿过的街道thread 螺纹threaded bolt 螺纹栓three-phase transformer 三相变压器threshold 临界值;阈限;界限;门槛throttle 节流阀;风门through crack 贯通裂缝through traffic 直通交通thrust 推力tidal range 潮差tie 系条tie rod 拉杆;系杆tier 层级tile 瓷砖;瓦timber partition 木料间隔timber pile 木桩timber yard 木料堆置场time limit 时限time of concentration 集流时间timer 定时器tin 锡;白铁tinning 镀锡tinplate 镀锡铁皮;白铁皮tinsmith 白铁匠tipper 倾卸斗车;运泥车tipping site 堆填区toe board 周边挡板(踢脚板)toe of wall 墙脚toe wall 矮墙;脚墙tolerance 偏差容限;公差toll area 收费区toll booth 通行费缴款处;收费站;收费亭toll plaza 缴费广场tongue 雄榫tonne (t) 公吨(质量单位)top rail 顶栏杆top storey 顶层topographic survey 地形测量topography 地形torque 转矩;扭矩;扭转torque rod 扭矩杆torsional force 扭力torsional strength 扭转强度total collapse 整体坍塌total floor area 总楼面面积total floor space 总楼面空间total load 总荷载total settlement 总沉降tower 塔tower crane 塔式吊机;塔式起重机towing cable 牵索towing force 牵力town gas 煤气town planner 城市规划师town planning 城市规划tracer 描图员tracing 描摹图;摹绘图track 轨道traction 牵引;牵引力tractor 牵引机;拖拉机trade effluent 工商业污水trade test 行业技能测验traffic actuated signal 车辆触发交通灯号traffic aid 辅助交通设备traffic capacity 交通容量;容车量traffic control and surveillance system 交通管制及监察系统traffic control centre 交通控制中心traffic corridor 交通走廊traffic diversion 交通改道traffic flow 交通流量traffic island 交通安全岛traffic island bollard 交通安全岛指示灯traffic lane 行车道traffic light 交通灯traffic light signal 交通灯号traffic management 交通管理traffic marking 道路交通标志traffic noise 交通噪音traffic sign 交通标志traffic signal 交通灯号traffic study 交通研究traffic survey 交通调查traffic system 运输系统traffic volume 行车量;交通容量trailer 拖车training of river channel 河道疏浚tramway 电车轨道transceiver 收发报机transfer station 转运站transformer 变压器transformer room 电力变压房transformer station 电力变压站transient load 瞬时荷载transient vibration 瞬时振动transistor 晶体管;半导体管transmission 传动;传递;传输transmission gear 传动齿轮transmission of electricity 输送电力transmit 传递transmitter 发射机transom window 门头气窗transparent lacquer 透明亮漆transport demand 运输需求transport infrastructure 基本运输建设;运输基础设施;交通基本建设transport interchange 交通交汇处transport/transportation 运输transportation facilities 运输设施transshipment depot 中转仓库transverse wind 横向风力trap 隔气弯管;存水弯管trap outlet 隔气弯管去水口trapezoidal channel 梯形渠trapped gully 装有隔气弯管的集水沟trapping 隔气travelling crane 移动式起重机travelling derrick crane 移动式转臂起重机traverse station 导线测量站traversing crane 桥式吊车tray 线盘tread 楼梯踏板;级面treatment 处理tremie 混凝土导管trench 喉坑;壕坑;线坑;坑道trench excavator 挖坑机trenching works 壕坑挖掘工程trend 趋势;倾向trial hole 试孔trial run 试车;操作测试triangular file 三角锉tripod 三脚架trolley 手推车trouble shooting 故障分析;故障根查trowel 灰匙truck 卡车truck crane 起重汽车trunk road 干路trunk route 干线trunk sewer 污水干管truss 桁架tube 筒管tubular fluorescent lamp 管状萤光灯tubular handrail 管状扶手tubular railing 管状栏杆tungsten filament lamp 钨丝灯tunnel 隧道tunnel cable 隧道电缆tunnel escape road 隧道太平路tunnel lining 隧道衬砌tunnel portal 隧道口tunnel ventilation fan 隧道通风风扇tunnelling works 隧道工程;开挖隧道工程turbidity 混浊度turbine 涡轮机turbine generator 涡轮发电机turbine pump 涡轮式泵turbo-generator 涡轮发电机turbulent current 湍流turfed area 草坪turfing 铺草皮turn-around facilities 掉头设施turn-key contract 全包合约turning area 回车处turning circle 车处;车场turning lane 车道turnstile 回转栏twin box culvert 双盒形暗渠twin pipe 双管式管道twin track railway 双轨铁路twin tube tunnel 双管队道twist 扭曲twisting force 扭力two way traffic 双程行车typical road section 典型道路截面图typical section 典型横切面U bolt 马蹄螺栓U turn 掉头U turn slip road 掉头支路ultimate bearing capacity 极限承载力ultimate bearing failure 极限承载损坏ultimate limit state design 极限状态设计ultimate load 极限载重;极限荷载ultimate strength 极限强度ultimate stress 极限应力ultrasonic crack detection 超声波裂缝检测ultrasonic flaw detector 超声波探伤仪ultrasonic testing 超声波测试unauthorized person 未获授权的人undercoat 涂底层;涂底漆underground 地面之下underground cable 地下电缆underground chamber 地下池underground fuel tank 地下油缸underground pedestrian walkway 行人隧道underground pipework 地下喉管underground space 地下空间underground well 科学井underpass 高架桥下通道;隧道underpinning 托换基础;支撑underwater lighting 水底照明undisturbed ground 未扰动土地undulation 伏uniaxial load 单轴荷载uniformly distributed load 均布荷载union 管接;联管接unit rate 单位价格unit weight 单位重量universal ball joint 万向球节universal beam 通用钢梁universal coupling shaft 万向联结轴universal joint 万向接头universal mounting 通用托架unleaded petrol 不含铅汽油;无铅汽油unlined galvanized iron pipe 无内搪层镀锌铁管unloader 卸载器;卸货机unplasticised polyvinyl chloride (UPVC) 非塑化聚氯乙烯up-escalator 上行电动扶梯up-hill lane 上坡车道up-ramp 上行坡道upgrading works 改良工程uplift force 上力;浮力upper catchment area 上段集水区upper platform 上层平台upper storey 上层uppermost storey 最高楼层upright wall 直立墙upstream 上游urban area 市区urban corridor 市区走廊urban fringe area 市镇外围地区;市镇边缘地区urban renewal 市区重建usable floor space 实用楼面空间usage 用途use 使用;用途user 使用人utility 公用设施utility building 公用设施建筑物utility room/chamber 杂用房utilization rate 使用率vacant site 空置地盘vacuum air pump 真空泵vacuum relief valve 真空回气阀;真空卸压阀valuable consideration 有值代价value 数值valve 阀;气门;活门valve chamber/house 阀室valve spindle 阀主轴vane 轮叶vaporization 汽化作用;蒸发variation 变动varnish 罩光漆;绝缘漆;清漆vehicle access road 车辆通道vehicle barrier 车辆栏障vehicle parapet 车辆护栏vehicle traffic 车辆交通vehicle weigh station 秤车站vehicular access 车路;车辆通道vehicular border link 边境连接道路vehicular bridge 行车桥vehicular corridor 行车走廊vehicular underpass/tunnel 行车隧道velocity 速度veneer 饰面;薄木片vent 通风口vent duct 通风管道vent pipe 排气管ventilated corridor 通风的走廊ventilated lobby 通风的门廊ventilating pipe 通风管ventilating system 通风系统ventilation fan 通风扇;通风机ventilation opening 通风口ventilation shaft 通风塔ventilator 通风器verandah 走廊;外廊verification 检验;核对vertical clearance 竖向净空;垂直净空vertical curve 竖向曲vertical distance 垂直距离vertical down pipe 直立式落水管vertical formwork 垂直模板vertical imposed load 垂直外加荷载vertical load 垂直荷载vertical seawall 直立式海堤viaduct 高架道路;高架桥viaduct parapet wall 高架桥护墙viaduct pier 高架桥桥墩vibrating load 振动荷载vibrating tamper 震动式捣固机vibrator 震捣器;震动器vibratory compaction 震动压实vibratory roller 震动压路机vice 老虎钳vicinity 邻近范围vierendeel truss 空腹桁架view 观察;视图village flood protection works 乡村防洪工程village resite 乡村迁置vinyl tile 胶地板viscosity 黏度;黏滞度viscous force 黏滞力visual display unit 显示器visual inspection 目视检查;检视;外观检查vitreous tile 釉瓷瓦;玻璃瓦vitreous ware 瓷器vitrified-clay pipe 缸瓦管;陶土管voice-activated control unit 声敏控制装置void 孔隙;空隙;空间;空洞;无效void content 孔隙含量voided slab 空心桥板;空心板volatility 挥发性volcanic rock 火山岩volt (V) 伏特(电压单位)voltage 电压voltmeter 伏特计;电压计volume 容积;体积;音量vortex 漩涡vulcanized rubber 硫化橡胶waling 横挡walkway 行人道;行人通道wall 墙壁wall footing 墙基脚warehouse 仓库warning lantern 警告灯warning sign 警告标志washer 垫圈(介子)waste 废物;废水waste fitments 废水设备waste pipe 废水管water absorption test 吸水测试water booster pump 升压水泵water bowser 水车water carrying pipe 输水喉管water carrying services 输水设施water cement ratio 水灰比water content 含水率water gauge 水标尺;量水表water hammer 水锤water jet 喷水器water jet pump 喷水泵water level 水平面;水位water main 水喉总管;总水管water meter 水表water pipe 水管water pressure 水压力water pump 水泵water seal 水封water spray system 喷水系统water sprinkler system 洒水系统water storage tank 贮水箱water supply 供水water supply point 供水点water tank 水箱;水缸water tight concrete 不透水混凝土water tower 水塔water trap 聚水器water treatment plant 净水厂;滤水厂water vapour 水蒸气watermain diversion works 输水管改移工程waterplug cement 堵水水泥waterproof 防水waterproof cement 防水水泥waterproof membrane 防水膜watershed 分水岭watertight 水密watertight seal 不透水密封垫waterworks 水务工程;水务设施waterworks access road 水务通路waterworks reserve 水务专用范围watt (W) 瓦特(功率单位)wattmeter 瓦特计;功率表wave form 波形wave length 波长wayleave 通行权wear and tear 消耗;磨损wear pad 垫磨片wear plate 垫磨板wear resistant 耐磨性wear ring 磨耗环wearing course 磨耗层weather resistance 抗风化weathered granite 风化的花岗岩weathering 风化。
文献翻译11.6 考虑地震荷载的设计11.6.1基本概念在地震发生时地面将以随意的方式向所有的方向产生运动。
把地面水平和垂直的加速度的测量值作成时间的函数,可以表明地面的加速度可能是相当大的。
例如1940年埃尔森特罗(EI Centro )地震记录的地面水平加速度峰值是0.33g 。
一个极端的例子是1971年的圣费尔南多(San Fernando )地震,当时在帕索依马(Pacoima )水坝坝址测得的地面加速度峰值超过了1g 。
当结构在一次地震中经受地面运动时,它以振动的方式作出反应。
当结构表现为弹性性能时,最大的反应加速度将取决于结构的自振周期和存在的阻尼大小。
结构对一些典型的地震记录做出弹性反应的动力分析已经表明了这些结构可能经受的反应加速度的等级。
这些动力分析的结果可以在维盖尔(Wiegel )和纽马克(Newmark )以及罗森布吕特(Rosenblueth )编著的课本中看到。
例如,图11.20a 阐明了一个承受地面振动的以单自由度振荡器形式出现的简单结构。
图11.20b 则表明了这个结构经受了美国若干次地震中记录的地面运动如豪斯纳(Housner )所获得的最大加速度反应曲线。
这个最大反应加速度a S 是用结构自振周期和阻尼大小的函数画出来的,而阻尼是以临界粘滞阻尼的一个百分率来表示的。
这些曲线是把比较不规则的实际曲线经理想化(“平滑化”)处理得到的;a S =1可以理解为最大的地面加速度。
例如,如果把图11.20b对地面最大加速度为0.33g 的一次地震进行理想化处理,则图中的a S 值就应该乘以0.33g 。
显然,在一定的周期范围内,结构的最大反应加速度可能是地面加速度的好几倍。
周期非常短的结构(即刚度非常大的结构)最大反应加速度接近于最大地面加速度。
振动周期长的结构最大反应加速度几图11.20 用于能对一些地震地面运动做出弹性反应的单 自由度振荡器的,能以阻尼和振动周期的函数给出其反 应加速度的设计频谱。
(a )振荡器;(b )设计频谱。
乎不可能比最大地面加速度大,周期更长的情况下,最大反应加速度可能还小于最大地面加速度。
阻尼的增长总是导致反应加速度的降低。
对于地震过程中作用于简单结构的最大惯性荷载可以利用图11.20用质量乘以加速度得到。
由一些建筑规范,例如加利福尼亚机构工程师协会(SEAOC)规范和建筑官员国际会议(ICBO)规范所介绍的设计地震荷载都是以静力侧向荷载形式出现的。
等效静力侧向荷载作用在多层结构上通常都是以近似三角形的形式分布在结构上,最大的荷载作用在顶部,以模拟图11.20a中第一个振动模型的挠曲性状。
这些规范都是用静力设计荷载来确定结构要抵抗住由地震引起的动力荷载而必须具有的强度。
然而这里建议的静力设计侧向荷载的水平一般都相当低。
在一些记录下来的能在剧烈地震过程中对地面运动作出弹性反应的结构所做的动力分析已经表明理论上的反应惯性荷载可能远远大于这些规范所建议的静力设计侧向荷载。
尽管这个差别对于在设计中用安全系数来进行调节还是过大了,但众所周知,按规范的侧向荷载所设计的一些结构都经受住了一些强烈地震。
这种显然的异常主要归于延性结构通过弹性变形消散能量的能力,而且得到了类似由于阻尼增大和土壤与结构的交互作用而使反应减弱的一些因素的帮助。
构件的延性则可能是最重要的因素。
显然,要把结构设计成能够抵抗住可能发生的最大地震而不损坏将会是不经济的。
为了提供抵抗非常强烈的侧向振动的强度需要的费用必须与结构的重要性和地震发生的概率相权衡。
加利福尼亚结构工程师协会(SEAOC)规范对荷载的水平所给出的判别条件如下:建筑物应能抵抗较小的地震而不损坏;应能抵抗中等的地震而无结构性的破坏,但有一些非结构性的损坏;应能抵抗较大的地震而不倒塌,但可以有一些结构性的和非结构性的损坏。
尽管对损坏的可能性是被接受的,但却不应有生命损失。
规范的目的是要获得一种在其使用寿命中预期不止发生一次的地震的情况下能表现为弹性的结构;此外,这种结构还应能经受住在其使用寿命中可能发生的较大的地震而不倒塌。
为了防止在较大的地震下倒塌,它的构件就必须具有足够的延性以通过弹性后变形来吸收和耗散能量。
这里所需要的延性量级可能伴随着非常大的永久变形。
因此,虽然结构不应倒塌,但造成的损坏可能已无法修复,而结构可能成为一项完全的经济损失。
11.6.2对位移延性的各项要求在抗震设计中,显然一个主要考虑的问题是需要得到一种结构,它能在非弹性阶段经受若干次循环的侧向荷载时以延性方式变形。
对于按规定设计的对典型地震运动作出反应的结构所做的非线性动力分析已经指示出所需要的弹性后变形的量级。
参照一个单自由度振荡器可以看出非线性性能给结构对剧烈地震运动的反应带来的影响。
这样一个能作出弹性反应的振荡器将具有如图11.21a 所示的荷载-挠度关系,其中b点反应最大。
曲线下面的面积abc表示在最大挠度时所贮存的势能;而当质量返回到零位置时,这一能量就会转化为动能。
如果振荡器没有足够的强度来承担全部的弹性反应惯性荷载,并且形成了一个具有弹塑性特性的塑性铰,它的荷载-挠度曲线就会变成图片11.21b所示的那样。
当达到了塑性铰的承载力时,挠度反应就会沿着de进行,而e点表示最大反应。
在这种情况下面积adef表示达到最大挠度时所贮存的势能。
要注意的是,这时作用在结构上的力已经受到塑性铰承载能力的限制。
当质量返回到零位置时,转化为动能的能量是用小三角形面积efg来表示的,因为由面积adeg所表示的能量已被塑性铰以热能或其他不能复原的能量的形式消散掉了。
这样,很明显,在弹性结构中贮存的全部能量在每次循环中又以周转能量的形式被转化回来了,而在弹塑性结构中则只有一部分能量被转化回来。
所以,在每次循环中贮存在弹塑性结构中的势能不需要像在弹性结构中的那么大,而且弹塑性结构的最大挠度也不需要比弹性结构的大太多。
事实上一系列的动力分析已经表明,这两种结构所达到的最大挠度可能几乎相同。
以假定最大挠度相等为基础的工作性能如图11.22a所示。
图11.21 振荡器对地震运动的反应。
(a)弹性反应;(b)弹塑性反应。
图11.22 弹性与弹塑性结构的假定反应。
(a )最大挠度相等的反应;(b )最大势能相等的反应。
度量结构延性的一个量度是位移延性系数μ,其定义为:yu ∆∆=μ(11.37) 其中∆u 为弹性后阶段末的侧向挠度,而∆y 为刚开始屈服时的侧向挠度。
如果涉及若干次荷载循环,∆y 便被认为是在进入弹性后阶段第一个加载历程中的开始屈服时的侧向挠度。
加利福尼亚结构工程师协会(SEAOC )规范的说明指出,在设计中所要求的位移延性系数可以根据弹性反应惯性荷载与规范规定的静力设计荷载的比值来估计(就如同可以根据图11.22a 的相似三角形看出的那样),而且位移延性系数μ的典型值可能是在3到5的范围内。
规范规定的静力设计荷载与弹性反应惯性荷载的比值可以称为荷载降低系数R 。
在图11.22a 所示的最大挠度相等的假定中可以表示为μ1=R (11.38) 一些动力分析已经表明 图11.22a 所示的最大挠度相等的假定可能是不保守的。
特别是钢筋混凝土在荷载逆转时可能表现出刚度退化,而这将导致耗散能量的特性减弱。
布鲁姆(Blume )曾经指出了可以给出一个可能的上限的降低系数R 值为公式11.39是以等能量概念为依据的,这意味着弹性体系在最大挠度时所储存的势能与弹塑性体系在最大挠度时所储存的势能相等。
这一情况如图11.22b 所示并且要求OCD 区域和OEFG 区域的面积相等。
OB OB OD OA )(y u 2y 2∆-∆+∆⨯=⨯∴ 但是OD=y ∆OA/OB ,1-y u/21)2/y u (2y 2y u 2yOA 22∆∆=∆-∆∆=∴∆-∆=∆∴)()(OA OB OB OB 由此即可得出公式11.39,因为OB/OA=R ,而μ=∆∆y /u 。
把通过公式11.38和11.39根据一系列R 值所求得的μ值进行对比如下。
121-=μR (11.39)显然,在较低的强度水平上做出反应的弹塑性体系,如果要吸收和弹性体系相同的能量,就要经历更大的位移。
同样明显的是,当R 值较小时,公式11.38与11.39之间的差别可能是十分大的。
布鲁姆(Blume )绘制的图11.23把公式11.38、11.39与由克娄(Clough )通过对单自由度体系的动力分析所得出的结果进行了对比。
也就是把弹塑性和刚度退化的体系与弹性体系进行了对比。
很明显从图11.23中可以看出,公式11.39可能是一条上边界线,而更贴合实际的R 值可能更接近于公式11.38所给出的数值。
图11.23 1940年对埃尔森特罗(EI Centro )南北向地震做出反应的单自由度振荡器的位移延性和强度与弹性要求的比值关系。
前述的注意事项可以近似用于多层框架结构。
很明显的是按照规范规定的静力荷载设计的建筑在剧烈地震中可能需要相当大的延性,但如果以更高的静力侧向荷载设计延性要求就可以有所降低。
利用图11.20b 所示的设计频谱和通过公式11.38及11.39所定义的降低系数,设计者可以近似地把所要经受的地震与静力设计荷载和位移延性系数联系起来。
弹性反应荷载设计荷载 R 0.20.4 0.6 0.8 1.0 根据公式11.38求得的μ 根据公式11.39求得的μ5.013.0 2.5 3.63 1.67 1.89 1.25 1.28 1.0 1.0。