2020高考数学数列复习指导
- 格式:docx
- 大小:37.48 KB
- 文档页数:2
2020届高三数学复习 数列解题方法集锦数列是高中数学的重要内容之一,也是高考考查的重点。
而且往往还以解答题的形式出现,所以我们在复习时应给予重视。
近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。
一、数列的基础知识 1.数列{a n }的通项a n 与前n 项的和S n 的关系它包括两个方面的问题:一是已知S n 求a n ,二是已知a n 求S n ; 1.1 已知S n 求a n对于这类问题,可以用公式a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n .1.2 已知a n 求S n这类问题实际上就是数列求和的问题。
数列求和一般有三种方法:颠倒相加法、错位相减法和通项分解法。
2.递推数列:⎩⎨⎧==+)(11n n a f a aa ,解决这类问题时一般都要与两类特殊数列相联系,设法转化为等差数列与等比数列的有关问题,然后解决。
例1 已知数列{a n }的前n 项和S n =n 2-2n+3,求数列{a n }的通项a n ,并判断数列{a n }是否为等差数列。
解:由已知:S n =n 2-2n+3,所以,S n-1=(n-1)2-2(n-1)+3=n 2-4n+6,两式相减,得:a n =2n-3(n ≥2),而当n=1时,a 1=S 1=2,所以a n =⎩⎨⎧≥-=)2(32)1(2n n n .又a 2-a 1≠a 3-a 2,故数列{a n }不是等差数列。
注意:一般地,数列{a n }是等差数列⇔S n =an 2+bn ⇔S n2)(1n a a n +.数列{a n }是等比数列⇔S n =aq n-a.例2 已知数列{a n }的前n 项的和S n =2)(1n a a n +,求证:数列{a n }是等差数列。
证明:因为S n =2)(1n a a n +,所以,2))(1(111++++=n n a a n S两式相减,得:2)())(1(1111n n n a a n a a n a +-++=++,所以n n n na a n a a -++=++111)1(2,即:11)1(a na a n n n -=-+,同理: 11)1()2(a a n a n n n --=--,即:11)2()1(a a n a n n n +-=--,两式相加,得:n n n a n a n a n )22()1()1(11-=-+--+,即:n n n a a a 211=+-+,所以数列{a n }是等差数列。
数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题.§03. 数列知识要点1. ⑴等差、等比数列:⑵看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )① 注①:i. acb =,是a 、b 、c 成等比的双非条件,即ac b =、b 、c 等比数列.ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0φac →为a 、b 、c 等比数列的充要.注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1φx )成等比数列.⑷数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件). ②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件. ③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --;②若等差数列的项数为2()+∈Nn n ,则,奇偶nd S S =-1+=n n a a S S 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇 得到所求项数到代入12-⇒n n . 3. 常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n Λ③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n Λ[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nn a . 4. 等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++-⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m m m mm m mr r ar x r r x r a x r x r x r x r a5. 数列常见的几种形式:⑴n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若21x x ≠可设n n n x c x c a 2211.+=,若21x x =可设n n x n c c a 121)(+=;③由初始值21,a a 确定21,c c .⑵r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定.①转化等差,等比:1)(11-=⇒-+=⇒+=+++P rx x Px Pa a x a P x a n n n n . ②选代法:=++=+=--r r Pa P r Pa a n n n )(21x P x a P r P P r a a n n n -+=---+=⇒--1111)(1)1(Λ r r P a P n n +++⋅+=--Pr 211Λ.③用特征方程求解:⇒⎭⎬⎫+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1111-+--+=⇒-=-n n n n n n Pa a P a Pa Pa a )(. ④由选代法推导结果:Pr P P r a c P c a P r a c P r c n n n -+-+=+=-+=-=--111111112121)(,,. 6. 几种常见的数列的思想方法:⑴等差数列的前n 项和为n S ,在0πd 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法:一是求使0,01π+≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值.⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211n n -⋅⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(11---n nn n a a a a 为同一常数。
二、命题分析数列一直是高考的重点和热点,有时甚至是难点.历年来,数列在高考中的题型有如下特征:1.每年必出一道选择题或填空题,主要考查等差、等比数列的概念和性质,以及通项公式、前用,题目具有“小、巧、活”的特点.2.每年必出一道解答题,题目往往与函数、导数、三角不等式、方程、平面向量、解析几何等知识综合起来考查,难度中等或中等偏难,突出考查对数列知识的理解、分析能力,创新能力,运算能力以及化归转化能力.相对于理科的命题,文科更注重基本解法、基本能力的考查.3.从新考纲的要求来看,2012年高考仍将延续这些特征,并将更侧重于考查学生的创新能力与逻辑思维能力.其他 标准摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项4.数列的表示法(1)数列的一般形式可以写成:(2)数列的表示法分别为 、 5.数列的通项公式如果数列{a n }的第n 项a n 与 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 6.数列的递推公式若一个数列首项确定,其余各项用a n 与a n -1的关系式表示(如a n =2a n -1+1,n >1),则这个关系式就称为数列的递推公式.(三)基础自测1.(2010·安徽文)设数列{ɑn }的前n 项和S n =n2,则a 8的值为()A .15B .16C .49D .64 [答案] A[解析] a 8=S 8-S 7=64-49=15,a 8=15.2.数列12,-34,58,-716,…的一个通项公式是( )A .a n =(-1)n +12n -12n B .a n =(-1)n 2n -12n C .a n =(-1)n +12n -12n D .a n =(-1)n 2n -12n [答案] C3.若数列{a n }(n ∈N*)的首项为14,前n 项的和为S n ,点(a n ,a n +1)在直线x -y -2=0上,那么下列说法正确的是( ) A .当且仅当n =1时,S n 最小 B .当且仅当n =8时,S n 最大 C .当且仅当n =7或8时,S n 最大 D .Sn 有最小值,无最大值 [答案] C[解析] 由题意得:a n -a n +1-2=0,则a n +1-a n =-2,所以数列{a n }是以a 1=14,d =-2的等差数列,则S n =14n +n n -2×(-2)=-n 2+15n ,所以当且仅当n =7或8时,S n 最大.4.数列{a n }的前n 项和为S n ,若a n =1nn +,则S 5等于( )A .1 B.56 C.16 D.130[答案] B[解析] (1)注意到前四项中两项分子均为4,不妨把分子都统一为4,即45,48,411,414,…,因而有a n =43n +2.(2)注意到6=2×3,10=2×5,15=3×5,规律还不明显,再把各项同乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n n +2.(3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3,因此把第1项变为-2-32,至此原数列已化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n-32n .(4)将数列各项改写为:93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,∴a n =13(10n-1).[点评] 根据数列的前几项写出数列的一个通项公式,解决这一问题的关键是通过观察、分析、比较去发现项与项之间的关系.如果关系不明显,可将项适当变形,让规律突显出来以便于找出通项公式. 跟踪练习1:根据下面各数列的前几项的值,写出数列的一个通项公式: (1)1,13,935,1763,3399,…(2)-37,25,-513,38,-719,411,…(3)12,34,78,1516,3132,…; (4)23,-1,107,-179,2611,-3713,…. (5)1,3,7,15,31,… [解析] (1)将数列写成:31×3,53×5,95×7,177×9,339×11,… 观察分子、分母与项数n 之间的联系,易知: 其通项公式为a n =2n+1n -n +.(2)这是一个与(-1)n 有关的数列,可将数列写成 -37,410,-513,616,-719,822,… 可知分母组成以3为公差的等差数列,分子为以3为首项,1为公差的等差数列,因此其通项公式为:a n =(-1)nn +23n +4. (3)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(4)偶数项为负,奇数项为正,故通项公式必含因子(-1)n +1,观察各项绝对值组成的数列,从第3项到第6项可见,分母分别由奇数7,9,11,13组成,而分子则是32+1,42+1,52+1,62+1,按照这样的规律第1、2两项可改写为12+12+1,-22+12·2+1,所以a n =(-1)n +1·n 2+12n +1. (5)考虑数列的差分数列{an +1-an }. a 2-a 1=2 a 3-a 2=4, a 4-a 3=8, ……a n -1n a=2n -1.(n ≥2)将这n -1个式子累加,得a n -1a =2+22+23+…+2n -1=2n -2 (n ≥2)∴ a n =1a +2n -2=1+2n -2=2n -1. (n ≥2)当n =1时,此式仍成立,故所求通项公式为an =2n -1.[点评] 根据数列的前几项写通项时,所求的通项公式不是惟一的.其中常用方法是观察法.观察an 与n 之间的联系,用归纳法写出一个通项公式,体现了由特殊到一般的思维规律.联想与转换是有效的思维方法,它是由已知认识未知、将未知转化为已知的重要思维方法. 2.命题方向:由na与ns的关系求通项[例2] 已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *).(1)求a 1,a 2,a 3的值; (2)求a n 的通项公式及S 10.[解析] (1)由a 1=S 1=13(a 1-1)得a 1=-12.又a 1+a 2=S 2=13(a 2-1),解得a 2=14.同理a 3=-18(2)n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12. ∴数列{a n }是首项为-12,公比为-12的等比数列.即a n =(-12)n ,∴S 10=a 1-q 101-q =-3411024. (2)n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.∴数列{a n }是首项为-12,公比为-12的等比数列.即a n =(-12)n ,∴S 10=a 1-q101-q =-3411024. [点评] 数列的通项a n 与前n 项和S n 的关系是:a n =⎩⎪⎨⎪⎧S 1n =S n -S n -1 n.此公式经常使用,应引起重视.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. 跟踪练习2:已知数列{an }的前n 项和Sn ,求{an }的通项公式.(1)S n =2n 2-3n ;(2)Sn =3n +b .[解析] 利用数列的通项a n 与前n 项和S n 的关系a n =⎩⎨⎧S 1 =S n -S n -1.解 (1)当n =1时,a 1=S 1=-1, 当n ≥2时,a n =S n -S n -1=4n -5. 又∵a1=-1,适合,a n =4n -5, ∴a n =4n -5.(2)当n =1时,a 1=S 1=3+b.n ≥2时,a n =S n -S n -1=2·3n -1,因此,当b =-1时,a 1=2适合a n =2·3n -1, ∴an =2·3n -1.当b ≠-1时,a 1=3+b 不合适a n =2·3n -1,∴a n =⎩⎨⎧3+b =2·3n -1.综上可知,当b =-1时,a n =2·3n -1; 当b≠-1时,a n =⎩⎨⎧3+b n =2·3n -13.命题方向:根据递推公式求通项公式[例3] 根据下列条件,写出数列的通项公式. (1)a 1=2,a n +1=a n +n ;(2)a 1=1,2n -1a n =an -1. [分析] (1)将递推关系写成n -1个等式累加.(2)将递推关系写成n -1个等式累乘,或逐项迭代也可. [解析] (1)当n =1,2,3,…,n -1时,可得n -1个等式: an -an -1=n -1,an -1-an -2=n -2,…,a 2-a 1=1, 将其相加,得an -a 1=1+2+3+…+(n -1),∴a n =a 1+1+n -1n -12=2+n n -12=n 2-n +42.(2)方法一:∵a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2·…·⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫121·a 1=⎝ ⎛⎭⎪⎫121+2+…+(n -1)=⎝ ⎛⎭⎪⎫12n -n2,∴a n =⎝ ⎛⎭⎪⎫12n -n2.方法二:由2n -1a n =a n -1得a n =⎝ ⎛⎭⎪⎫12n -1a n -1∴a n =⎝ ⎛⎭⎪⎫12n -1a n -1=⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2a n -2=…=⎝ ⎛⎭⎪⎫12n -1·⎝ ⎛⎭⎪⎫12n -2·…·⎝ ⎛⎭⎪⎫121a 1=⎝ ⎛⎭⎪⎫12(n -1)+(n -2)+…+2+1=⎝ ⎛⎭⎪⎫12n n -2.[点评] 1.已知a 1且an -an -1=f (n )(n ≥2),可以用“累加法”,即an -an -1=f (n ),an -1-an -2=f (n -1),…,a 3-a 2=f (3),a 2-a 1=f (2).所有等式左右两边分别相加,代入a 1得an .2.已知a 1且a na n -1=f (n )(n ≥2),可以用“累乘法”, 即a n a n -1=f (n ),a n -1a n -2=f (n -1),…,a 3a 2=f (3),a 2a 1=f (2),所有等式左右两边分别相乘,代入a 1得a n . 提醒:并不是每一个数列都有通项公式,如果一个数列有通项公式,那么它的通项公式在形式上也可以不止一个.跟踪练习3:根据下列各个数列{a n }的首项和基本关系式,求其通项公式. (1)a 1=1,a n =a n -1+3n -1(n ≥2);(2)a 1=1,a n =n -1na n -1(n ≥2). [解析] (1)∵an =an -1+3n -1, ∴an -an -1=3n -1, an -1-an -2=3n -2, an -2-an -3=3n -3, …a 2-a 1=31.以上n -1个等式两边分别相加得a n =a 1+31+32+…+3n -1=1+3+32+…+3n -1=3n-12.a 2=12a 1.以上n -1个式子等式两边分别相乘得a n =a 1·12·23·…·n -1n =a 1n =1n .4.命题方向:函数与方程思想在数列中的应用[例4] 已知数列{a n }的通项公式a n =(n +1)·(910)n,求n 为何值时,a n 取最大值.[分析] 已知数列{a n }的通项公式,要求n为何值时a n 取最大值,则需满足⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1.因为涉及a n -1,所以∴a n +1a n=n +2+1-n +n 2+1-n=n 2+1+n n +2+1+n +<1.∴a n +1<a n .即{a n }为递减数列.(五)思想方法点拨:1.数列中数的有序性是数列定义的灵魂,要注意辨析数列的项和数集中元素的异同.数列可以看作是一个定义域为正整数集或它的子集的函数,因此在研究数列问题时,既要注意函数方法的普遍性,又要注意数列方法的特殊性. 2.观察法是求数列通项公式的最基础的一个方法,它一般适用于给出了数列的前几项,根据这些项来写出该数列的通项公式,一般来说,所给的数列的前几项规律性特别强并且规律也比较明显,要么能直接看出,要么需略作变形即可.3.通项an 与前n 项和Sn 的关系是一个十分重要的考点.运用时,不要忘记对an =Sn -Sn -1(n ≥2)的条件的验证. 4.数列的通项公式与递推公式是表达数列特征与构造的两种方法.观察法和猜想法一般适合于选择题和填空题;如果在解答题中用猜想法,则一定要用数学归纳法加以证明.而特定系数法一般是适合已知数列的类型的题目.(六)课后强化作业一、选择题1.已知数列{a n }对任意的p 、q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ) A .-165 B .-33 C .-30 D .-21 [答案] C[解析] ∵对任意p 、q ∈N *都有a p +q =a p +a q . ∴a 10=a 8+a 2=a 4+a 4+a 2=5a 2=-30.2.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时)-n 2 (当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10200 [答案] B[解析] 当n 为奇数时, a n =n 2-(n +1)2=-(2n +1) 当n 为偶数时,a n =-n 2+(n +1)2=2n +1, 则a n =(-1)n (2n +1),a 1+a 2+…+a 100=-3+5-7+9…-199+201=2×50=100.3.(2011·沈阳一模)将数列{3n -1}按“第n 组有n 个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A .34950B .35000C .35010D .35050。
2020年高考数学二轮复习重点专题冲刺复习指导 专题1 数列【高考考场实情】数列是高中数学的主干知识之一,又是学习高等数学的基础,所以在高考中占有重要的地 位.在高考考查中解答题17题一般是数列和三角函数交替出现.故数列在高考考查中一般有两种情形:其一,两道选择题或一道选择题和一道填空题,共2道小题,分值为10分;其二,一道选择或填空题和一道解答题,共2道题,分值为17分.【考查重点难点】高考对数列这一部分的考查以基础题、中档题为主,但解题方法灵活多样,技巧性较强些, 讲究解题的通性通法,侧重考查等差数列、等比数列的基本概念、特殊性质及基本量的运算;突出考查等差、等比数列有关的通项公式、前n 项和公式、以及数列求和的常用方法等;重点考查数列n a 与n S 的关系的应用等.而学生在平时的复习中,往往对定义、概念理解不透,对公式、性质等应用不熟练导致错误.下面对学生存在的主要问题进行剖析,并提出相应的学习方法.【存在问题分析】1.概念模糊不清【指点迷津】概念模糊不清主要表现在等差、等比数列的概念及等差中项或等比中项的定 义认识不到位等。
【例1】 “ac b 2”是“c b a ,,成等比数列”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 答案:B【名师点睛】学生对等比数列的首项及公比不为零模糊而错选C .原因在于学生等比数列 概念模糊思考不严密,漏掉了特例对结论的影响,忽略了等比数列是由后一项与前一项的比为定值来定义的,即等比数列的任一项都是非零值.比例式化为乘积式成立,反之乘积式化为比例式时,应注意取值为零时不能转化这一特例.【例2】设数列{}n a 中,11=S ,22=S ,)2(02311≥=+--+n S S S n n n ,判断{}n a 是不是等 比数列.【解析】:∵)2(02311≥=+--+n S S S n n n ,∴)(211-+-=-n n n n S S S S ,即)2(21≥=+n a a n n ,又111==S a ,1122=-=S S a ,2112≠=a a ,所以{}n a 不是等比数列. 【名师点睛】学生常会忽视1a 与)2(≥n a n 关系,由)2(21≥=+n a a n n 直接判断{}n a 是等比数 列,体现学生对等比数列的定义理解不透彻,从)2(21≥=+n a a n n 来看,反映的是数列{}n a 从第3项开始后一项与前一项的比是常数,而等比数列的定义是从第2项开始,后一项与前一项的比是常数,故需讨论1a 与)2(≥n a n 关系.2.运算能力不佳【指点迷津】在数列专题中,常常出现求数列某一项m a 、基本量()1,,,a n d q 、通项公式n a 及前n 项和n S 等计算问题.在计算过程中,整体代换意识薄弱,不能合理运用有关公式进行恒等变形,是导致失分的主要原因,主要包括:①用数列的有关公式和性质求解一些基本量的问题时用错公式,而在用n a 与n S 的关系时易漏掉1=n 时的情况;②对等比数列前n 项和n S 公式的结构特征认识不透,不能从整体的意识上(计算中常把11a q -作为整体代换)去分析和思考问题等.【例3】(2015高考新课标1,文7)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项 和,若844S S =,则10a =( )A .172B .192C .10D .12答案:B【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算.这方面有了解到有学生因记不住相关公式或用错公式而导致丢分.【例4】等比数列的前项和为9632S S S S n =+,,求公比. 【解析】:当时,则,01≠a Θ,11929a a ⨯≠∴,1≠∴q .当1≠q 时,有q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131,0)12(363=--∴q q q , 0≠q Θ,01236=--∴q q ,0)1)(12(33=-+∴q q ,1≠q Θ,0123=+∴q ,243-=∴q . 【名师点睛】此题在等比数列前n 项和公式使用时经常出现不合理情况,易忽略,在 等比数列求和时要分公比两种情况进行讨论;另一种情况是当1q ≠时要把11a q-作为整体去运算。
第38讲 数列求和1.掌握数列求和的常用方法与思路.2.能选择适当的方法解决有关数列求和的问题.知识梳理 1.常用公式(1)等差数列求和公式:S n = n (a 1+a n )2=na 1+n (n -1)2d ,推导方法是 倒序相加 . (2)等比数列求和公式:S n = ⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q=a 1-a n q 1-q (q ≠1) ,推导方法是 错位相减 .2.常用方法(1)分组求和法:将通项展开后分解成几组,其中每一组可转化为等差或等比数列或其他可求和的数列求和. (2)裂项求和法:将数列中的通项拆成两项之差求和,使之正负相消,剩下首尾若干项.(3)并项求和法:依次将数列中相邻两项并成一项,使之转化为等差或等比数列或其他可求和的数列求和. (4)倒序相加法:将一个数列倒过来排列(倒序)与原数列相加,叫倒序相加,主要用于倒序相加后对应项和有公因式可提的数列求和,如等差数列求和公式就是用倒序相加法推导出来的.(5)错位相减法:这是推导等比数列前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.1.常见数列的前n 项和 (1)1+2+3+…+n =n (n +1)2;(2)2+4+6+…+2n =n 2+n ; (3)1+3+5+…+(2n -1)=n 2;(4)12+22+…+n 2=n (n +1)(2n +1)6.2.常见的裂项公式(1)若{a n }各项都是不为0的等差数列,公差为d (d ≠0),则 1a n ·a n +1=1d (1a n -1a n +1); (2)1n (n +k )=1k (1n -1n +k ); (3)1n +n +1=n +1-n .热身练习1.数列112,314,518,7116,…,(2n -1)+12n 的前n 项和是(B)A .1+n 2-(12)n -1B .1+n 2-(12)nC .1+n 2-(12)n +1 D .1+n 2-2n112+314+518+7116+…+(2n -1)+12n =[1+3+5+7+…+(2n -1)] +(12+14+18+116+…+12n ) =n [1+(2n -1)]2+12[1-(12)n ]1-12=n 2+1-(12)n .2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=(A) A .15 B .12 C .-12 D .-15因为a n =(-1)n (3n -2),则a 1+a 2+…+a 10=-1+4-7+10-…-25+28 =(-1+4)+(-7+10)+…+(-25+28) =3×5=15. 3.求和S n =11×3+12×4+13×5+…+1n (n +2)= 12(32-1n +1-1n +2) .因为1n (n +2)=12(1n -1n +2),所以原式=12[(1-13)+(12-14)+(13-15)+…+(1n -1n +2)]=12(1+12-1n +1-1n +2) =12(32-1n +1-1n +2). 4.sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=892.设S =sin 21°+sin 22°+…+sin 288°+sin 289°, 则S =sin 289°+sin 288°+…+sin 22°+sin 21° 上述两式相加得2S =1×89,所以S =892.5.化简和式:1×2+2×4+…+n ×2n = (n -1)2n +1+2 .令S n =1·2+2·22+3·23+…+n ·2n ,①2S n =1·22+2·23+3·24+…+(n -1)·2n +n ·2n +1,② ①-②得:-S n =21+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=2n +1-2-n ·2n +1. 所以S n =(n -1)2n +1+2.分组求和与并项求和(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.(1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q=1,b 4=b 3q =27,所以b n =3n -1(n ∈N *). 设等差数列{a n }的公差为d .因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2. 所以a n =2n -1(n ∈N *).(2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n (1+2n -1)2+1-3n 1-3=n 2+3n -12.(1)数列求和,要注意通项的分析,根据通项的特点灵活选择方法.本题通项c n 可表示为a n +b n 的形式,其中{a n }是等差数列,{b n }是等差数列,故可采取拆项求和的方法.(2)“拆项”和“并项”方式不同,但目的都是为了转化,通过“拆”和“并”的手段,将不可直接求和的数列问题转化为可求和的数列来处理.1.若S n =-12+22-32+…+(-1)n n 2(n ∈N *),求S n .当n 为偶数时,S n =-12+22-32+…+[-(n -1)2]+n 2 =(22-12)+(42-32)+…+[n 2-(n -1)2] =3+7+…+(2n -1)=3+(2n -1)2·n 2=n (n +1)2. 当n 为奇数时,S n =S n -1+a n =(n -1)n 2-n 2=-n (n +1)2.综上,可知S n =(-1)nn (n +1)2.裂项求和法(经典真题)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1a2n -1a 2n +1的前n 项和.(1)设{a n }的公差为d ,则S n =na 1+n (n -1)d2.由已知可得⎩⎪⎨⎪⎧ 3a 1+3d =0,5a 1+10d =-5,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12(12n -3-12n -1), 从而数列⎩⎨⎧⎭⎬⎫1a2n -1a 2n +1的前n 项和为12(1-1-11+11-13+…+12n -3-12n -1) =n1-2n.(1)本题考查了等差数列的基本量及其关系,考查了裂项求和的基本方法.(2)利用裂项求和法时,应注意抵消后并不一定只剩下第一项和最后一项,要根据通项的特点来确定.2.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时, a 1+3a 2+…+(2n -3)a n -1=2(n -1),两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 所以{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1,则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.错位相减法求和(经典真题)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和.(1)方程x 2-5x +6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而a 1=32,所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减得12S n =34+(123+…+12n +1)-n +22n +2 =34+14(1-12n -1)-n +22n +2=1-n +42n +2. 所以S n =2-n +42n +1.(1)本题考查了等差数列的通项公式及错位相减法求和的基本方法,考查运算求解能力. (2)一般地,若{a n }是等差数列,{b n }是等比数列,则求数列{a n ·b n }的前n 项和可采用错位相减法.3.(2017·山东卷)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .(1)设{a n }的公比为q ,由题意知a 1(1+q )=6,a 21q =a 1q 2,又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n .(2)由题意知S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1. 令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+(12+122+…+12n -1)-2n +12n +1 =32+1-12n -1-2n +12n +1=52-2n +52n +1,所以T n =5-2n +52n .1.数列求和的基本思想是“转化”,其一是转化为基本数列(如等差、等比数列)的求和或其他可求和的数列;其二是通过消项,把较复杂的数列求和转化为求不多的几项的和.到底如何进行转化,关键是在分析数列通项及其和式的构成规律,根据其特点转化为基本数列求和,或分解为基本数列求和.2.对于一般的数列求和无通法可循,能求和的是几类特殊的数列,其常用的方法有分组求和法、并项求和法、倒序相加法、错位相减法、裂项求和法等,要注意分析总结这几种方法的适用类型.3.对通项中含有(-1)n 或奇数项、偶数项由等差(等比)数列构成的数列,求前n 项和时,注意根据n 的奇偶性进行讨论,转化为基本数列求和.。
2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。
数列中的最值问题一、考情分析数列中的最值是高考热点,常见题型有:求数列的最大项或最小项、与n S 有关的最值、求满足数列的特定条件的n 最值、求满足条件的参数的最值、实际问题中的最值及新定义题型中的最值问题等. 二、经验分享(1) 数列的最值可以利用数列的单调性或求函数最值的思想求解.解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列.②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断.(2) 最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1,则a n 最小. (3)求等差数列前n 项和的最值,常用的方法:①利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,通过二次函数的性质求最值.另外,对于非等差数列常利用函数的单调性来求其通项或前n 项和的最值. 三、知识拓展已知等差数列{}n a 的公差为d ,前n 项和为n S ,①若0d >,n S 有最小值,若,则k S 最小,若0k a =则1,k k S S -最小; ①若0d <,n S 有最大值,若,则k S 最大,若0k a =则1,k kS S -最大。
四、题型分析(一) 求数列的最大项或最小项求数列中的最大项的基本方法是: (1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)确定数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)确定数列的最小项.(3)利用函数或数列单调性求最大项或最小项. 【例1】已知数列}{n a 的通项公式为n a =2156nn +,求}{n a 的最大项. 【分析】思路1:利用基本不等式求解.思路2:求满足⎩⎨⎧≥≥-+11n nn n a a a a 的n 的值.【解法一】基本不等式法., 120S <,则当0n S >时, n 的最大值为11,故选A(三) 求满足数列的特定条件的n 的最值【例3】【贵州省凯里市第一中学2018届高三下学期一模】已知{}n a 的前n 项和为,且145,,2a a a -成等差数列,,数列{}n b 的前n 项和为n T ,则满足20172018n T >的最小正整数n 的值为( )A. 8B. 9C. 10D. 11 【分析】先求和,再解不等式. 【答案】C【解析】,当2n ≥时,,由145,,2a a a -成等差数列可得,即,解得2m =-,故2nn a =,则,故,由20172018n T >得,即122019n +>,则111n +≥,即10n ≥,故n 的最小值为10.【小试牛刀】【湖南省邵东县创新实验学校2019届高三月考】已知数列的通项,数列的前项和为,若这两个数列的公共项顺次构成一个新数列,则满足的的最大整数值为( )A .338B .337C .336D .335 【答案】D(四) 求满足条件的参数的最值【例4】已知n S 为各项均为正数的数列{}n a 的前n 项和,.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,若对恒成立,求实数t 的最大值.【分析】(1)首先求得1a 的值,然后利用n a 与n S 的关系推出数列{}n a 为等差数列,由此求得{}n a 的通项公式;(2)首先结合(1)求得n b 的表达式,然后用裂项法求得n T ,再根据数列{}n T 的单调性求得t 的最大值.(2)由32n a n =- ,可得.因为,所以1n n T T +>,所以数列{}n T 是递增数列,所以,所以实数t 的最大值是1.【点评】(1) 求解与参数有关的问题,一般是分离变量,再构造新函数求解.(2)使用裂项法,要注意正负项相消时,消去了哪些项,保留了哪些项.要注意由于数列{}n a 中每一项n a 均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样多的,切不可漏写未被消去的项,未被消去的项有前后对称的特点.【小试牛刀】已知数列{}n a 的通项公式为11n a n =+,前n 项和为n S ,若对任意的正整数n ,不等式恒成立,则常数m 所能取得的最大整数为 .【答案】5 【解析】要使恒成立,只需.因,所以,,数列为等差数列,首项为,,,,,在数列中只有,,为正数的最大值为故选5.【湖南师范大学附属中学2019届高三上学期月考】已知数列的前项和为,通项公式,则满足不等式的的最小值是( )A.62 B.63C.126 D.127【答案】D6.【湖南省岳阳市第一中学2019届高三上学期第三次质检】在数列中,,,若数列满足,则数列的最大项为()A.第5项 B.第6项 C.第7项 D.第8项【答案】B【解析】数列中,,,得到:,,,,上边个式子相加得:,解得:.当时,首项符合通项.故:.数列满足,则, 由于,故:,解得:,∴当n ∈[1,44]时,{a n }单调递减,当n ∈[45,100]时,{a n }单调递减,结合函数f (x )=x - 2 013x - 2 014的图象可知,(a n )max =a 45,(a n )min =a 44,选C.10.已知函数,且,设等差数列{}n a 的前n 项和为n S ,()*n N ∈若()n S f n =,则41n n S aa --的最小值为( ) A .276 B .358 C .143 D .378【答案】【解析】由题意可得等差数列的通项公式和求和公式,代入由基本不等式可得. 由题意可得或解得a=1或a=-4, 当a=-1时, ,数列{a n }不是等差数列;当a=-4时,,,,当且仅当1311n n +=+,即1n =时取等号, ∵n 为正数,故当n=3时原式取最小值378,故选D . 11.已知等差数列{}n a 的通项公式为n a n =,前n 项和为n S ,若不等式恒成立,则M 的最小值为__________. 【答案】625912.【江苏省常州2018届高三上学期期末】各项均为正数的等比数列{}n a 中,若,则3a 的最小值为________.【解析】因为{}n a 是各项均为正数的等比数列,且,所以,则,即,即,即3a 13.【福建省闽侯县第八中学2018届高三上学期期末】已知数列{}n na 的前n 项和为n S ,且2n n a =,则使得的最小正整数n 的值为__________.【答案】5【解析】,,两式相减,故, 112n n a ++=故,故n 的最小值为5.14.【河北省承德市联校2018届高三上学期期末】设等差数列{}n b 满足136b b +=, 242b b +=,则12222n b b b 的最大值为________.【答案】512【解析】依题意有,解得,故.,故当3n =时,取得最大值为92512=.15.【新疆乌鲁木齐地区2018届高三第一次诊断】设n S 是等差数列{}n a 的前n 项和,若250S >, 260S <,则数列的最大项是第________项.【答案】1316.【安徽省淮南市2018届高三第一次(2月)模拟】已知正项数列{}n a 的前n 项和为n S ,当2n ≥时,,且11a =,设,则的最小值是________.【答案】9【解析】当2n ≥ 时,,即,展开化为:∵正项数列{}n a 的前n 项和为n S∴数列{}n S 是等比数列,首项为1,公比为4.则则当且仅当3611n n +=+即5n =时等号成立. 故答案为919.已知数列{}n a 满足:*1a ∈N ,136a …,且,记集合.(1)若16a =,写出集合M 的所有元素;(2)若集合M 存在一个元素时3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析:(1)6,12,24.(2)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数.由,可归纳证明对任意n k …,n a 是3的倍数.如果1k =,则M 的所有元素都是3的倍数; 如果1k >,因为12k k a a -=或,所以12k a -是3的倍数,或1236k a --是3的倍数,于是1k a -是3的倍数.类似可得,2k a -,…,1a 都是3的倍数.从而对任意1n …,n a 是3的倍数,因此M 的所有元素都是3的倍数.综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.。
(5)3333312n ++++=5.(1)分组求和:把一个数列分成几个可以直接求和的数列.(2)拆项相消:有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和. (3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和; (4)倒序相加:例如,等差数列前n 项和公式的推导方法.(三)基础自测1.(2011·威海模拟)设f (n )=2+24+27+…+23n +1(n ∈N *),则f (n )等于( )A.27(8n -1)B.27(8n +1-1)C.27(8n +2-1)D.27(8n +3-1) [答案] B[解析] 由题意发现,f (n )即为一个以2为首项,公比q =23=8,项数为n +1的等比数列的和.由公式可得f (n )=S n +1=a 1-q n +11-q=-8n +11-8=27(8n +1-1). 2.(2011·滨州模拟)已知数列2011,1,-2010,-2011,-1…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2012项之和S 2012等于( )A .2010B .2011C .1D .2012 [答案] D[解析] a 1=2011,a 2=1,a 3=-2010,a 4=-2011,a 5=-1,a 6=2010,a 7=2011,a 8=1, 该数列是周期为6的周期数列且S 6=0,∴S 2012=S 2=2011+1=2012.3.数列{a n }的通项公式是a n =1n +n +1(n ∈N *),若前n 项的和为10,则项数n 为( )A .11B .99C .120D .121[答案] C[解析] ∵a n =1n +n +1=n +1-n ,∴a 1=2-1,a 2=3-2,…,a n =n +1-n , ∴S n =n +1-1=10,∴n =120.4.(2009·广东理)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2[答案] C[解析] 考查等比数列的性质、通项、等差数列求和及对数的运算法则.∵a n 为等比数列,且a 5·a 2n -5=22n ,∴a n 2=22n , ∵a n >0,∴a n =2n ,∴a 2n -1=22n -1.∴log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+5+…+(2n -1)=n 2.5.(2011·济南模拟)数列1,1+2,1+2+22,…,1+2+22+…+2n -1,…的前n 项和为________. [答案] 2n +1-2-n[解析] 该数列的前n 项和S n =a 1+a 2+…+a n ,而a n =1+2+22+…+2n -1=-2n 1-2=2n-1.∴S n =(21-1)+(22-1)+(23-1)+...+(2n -1)=(2+22+ (2))-n =-2n1-2-n =2n +1-2-n .6.(教材改编题)数列112,214,318,4116,…的前n 项和为________.[答案] 12(n 2+n +2)-12n[解析] 数列的通项公式为:a n =n +12n ,S n =(1+2+3+…+n )+⎝ ⎛⎭⎪⎫12+14+18+…+12n =n n +2+⎝ ⎛⎭⎪⎫1-12n =12(n 2+n +2)-12n .7.求数列1,3a,5a 2,7a 3,…,(2n -1)a n -1,…(a ≠0)的前n 项和.[解析] 当a =1时,数列变为1,3,5,7,…,(2n -1),…,S n =1+3+5+7+…+(2n -1)=n+2n -2=n 2;当a ≠1时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1,①aSn =a +3a 2+5a 3+7a 4+…+(2n -1)an ,② 令①-②,得Sn -aSn =1+2a +2a 2+2a 3+2a 4+…+2an -1-(2n -1)an ,(1-a )S n =1+2·a -a n -11-a-(2n -1)a n,∵1-a ≠0,∴S n =1-n -a n1-a+a -a n-a2.(四)典型例题1.命题方向:公式法求和[例1] 已知函数f (x )=x 2-2(n +1)x +n 2+5n -7(n ∈N*).(1)若函数f (x )的图像的顶点的横坐标构成数列{a n },试证明数列{a n }是等差数列; (2)设函数f (x )的图像的顶点到x 轴的距离构成数列{b n },试求数列{b n }的前n 项和S n .[解析] f (x )=x 2-2(n +1)x +n 2+5n -7=[x -(n +1)]2+3n -8.(1)由题意,a n =n +1,故a n +1-a n =(n +1)+1-(n +1)=1,故数列{a n }是等差数列. (2)由题意,b n =|3n -8|.当1≤n ≤2时,b n =-3n +8,数列{b n }为等差数列,b 1=5,∴S n =n -3n +2=-3n 2+13n 2;当n ≥3时,b n =3n -8,数列{b n }是等差数列,b 3=1. ∴S n =S 2+n -+3n -2=3n 2-13n +282.∴S n=⎩⎪⎨⎪⎧-3n 2+13n2,1≤n ≤23n 2-13n +282,n ≥3.[点评] 用等差数列或等比数列的求和公式时,一定要看清数列的哪些项构成等差数列或等比数列.在第(2)问的求解中,1≤n ≤2或n ≥3时,都可以用等差数列的前n 项和公式,但当1≤n ≤2时,不要误求为数列的前2项和;当n ≥3时,数列的首项为b 3,项数为n -2,不要误求为n 项的和,也不要误求为n -3项的和. 跟踪练习1在等差数列{a n }中,a 16+a 17+a 18=a 9=-36,其前n 项和为S n . (1)求S n 的最小值,并求出S n 取最小值时n 的值; (2)求Tn =|a 1|+|a 2|+…+|a n |.[解析] ∵a 16+a 17+a 18=3a 17=-36.∴a 17=-12. 又∵a 9=-36,∴d =a 17-a 917-9=-12+368=3,首项a 1=a 9-8d =-60,(1)方法一:设前n 项和S n 最小,则⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,即⎩⎪⎨⎪⎧3n -63≤0,n +-63≥0,得n =20或n =21.故n =20或n =21时S n 的值最小,且最小值为S 20=S 21=-630. 方法二:S n =-60n +n n -2×3=32(n 2-41n )=32⎝ ⎛⎭⎪⎫n -4122-50438.∵n ∈N *,∴当n =20或21时,S n 取最小值,最小值为-630. (2)由a n =3n -63≤0,得n ≤21. ∴当n ≤21时,T n =-S n =32(41n -n 2);当n >21时,T n =-a 1-a 2-…-a 21+a 22+…+a n =S n -2S 21=32(n 2-41n )+1260.2.命题方向:分组求和[例2] (2008·陕西)已知数列{a n }的首项a 1=23,a n +1=2a na n +1,n =1,2,….(1)证明:数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列; (2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n .[分析] (1)由已知条件利用等比数列的定义证明,即从a n +1=2a n a n +1得到1a n +1-1与1a n-1的等式关系.(2)充分利用(1)的结论得出1a n =12n +1.欲求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n 可先求出T n =12+222+323+…+n2n 的值.[解析] (1)∵a n +1=2a na n +1, ∴1a n +1=a n +12a n =12+12·1a n, ∴1a n +1-1=12⎝ ⎛⎭⎪⎫1a n -1, 又a 1=23,∴1a 1-1=12,∴数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列.(2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,∴n a n =n2n +n . 设T n =12+222+323+…+n2n ,①则12T n =122+223+…+n -12n +n2n +1,② ①-②得12T n =12+122+…+12n -n 2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n2n +1∴T n =2-12n -1-n2n .又1+2+3+…+n =n n +2.∴数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +n n +12=n 2+n +42-n +22n .跟踪练习2(2011·浙江省金丽衢联考)已知在数列{a n }中,a 1=3,a n +1=2a n -1(n ∈N*). (1)求证:数列{a n -1}是等比数列;(2)设数列{2na n }的前n 项和为S n ,求S n 的大小. [解析] (1)∵a 1=3,a n +1=2a n -1, ∴a n +1-1=2(a n -1),∴{a n -1}是以a 1-1=2为首项,以2为公比的等比数列.(2)由(1)知a n -1=2·2n -1=2n , ∴a n =2n +1,∴2na n =2n (2n +1)=n ·2n +1+2n ,∴S n =2(21+1)+4(22+1)+6(23+1)+…+2n (2n+1)=(2×21+4×22+6×23+…+2n ×2n)+(2+4+6+…+2n )设T n =2×21+4×22+6×23+…+2n ×2n,12T n =21+4×2+6×22+…+2n ·2n -1, 两式相减,得12T n =-2-22-23-…-2n -1-2n +2n ·2n =2n ·2n -n-2-1=2n ·2n -2n +1+2,∴T n =4(n -1)·2n+4, ∴S n =4(n -1)·2n +4+n 2+n .3.命题方向:错位相减求和[例3] (2009·山东文)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N*,点(n ,Sn )均在函数y =bx +r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =n +14a n (n ∈N *),求数列{b n }的前n 项和T n .[解析] (1)由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1(b -1), 由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列, 又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b , 解得r =-1.(2)由(1)知,n ∈N *,a n =(b -1)bn -1=2n -1所以b n =n +14×2n -1=n +12n +1.T n =222+323+424+…+n +12n +1.12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=12+123-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 故T n =32-12n -n +12n +1=32-n +32n +1.跟踪练习3:(2010·新课标理)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .[解析] 本小题主要考查数列的基础知识,即数列的通项公式与前n 项和的求法以及分析问题与解决问题的能力. (1)由已知得,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1.①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1.即S n =[(3n -1)22n +1+2]. 4.命题方向:裂项相消求和[例4] (2008·江西)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.[解析] (1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正整数,a n =3+(n -1)d ,b n =qn -1,依题意有⎩⎪⎨⎪⎧S 2b 2=+d q =64S 3b 3=+3d q 2=960解得⎩⎪⎨⎪⎧d =2q =8,或⎩⎪⎨⎪⎧d =-65q =403(舍去)故a n =3+2(n -1)=2n +1,b n =8n -1.(2)S n =3+5+…+(2n +1)=n (n +2),∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n n +=12⎣⎢⎡ ⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…⎦⎥⎤+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +3n +n +. 跟踪练习4求数列31×22,522×32,522×32,732×42,…,2n +1n 2(n +1)2的前n 项和S n . [解析] ∵2n +1n2(n +1)2=1n 2-1(n +1)2,∴S n =⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫122-132+…+⎣⎢⎡⎦⎥⎤1n2-1(n +1)2=1-1(n +)2=n 2+2nn +2.5.命题方向:倒序相加法求和[例5] 设函数f (x )=3x 3x +3图像上有两点P 1(x 1,y 1),P 2(x 2,y 2),若P 为P 1P 2的中点,且P 点的横坐标为12.(1)求证:P 点的纵坐标为定值,并求出这个值;(2)求f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n n.[分析] (1)由已知函数图像上两点P 1P 2可得y 1=3x 13x 1+3,y 2=3x 23x 2+3,设P (x ,y ),根据中点坐标公式去求y =y 1+y 22.(2)根据(1)的结论:若x 1+x 2=1,则由f (x 1)+f (x 2)=1可以得到f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n =1,利用倒序相加进行求解.[解析] (1)证明:∵P 为P 1P 2的中点, ∴x 1+x 2=1,y p =y 1+y 22.又y 1+y 2=3x 13x 1+3+3x 23x 2+3=1-33x 1+3+1-33x 2+3=2-6+3x 1+3x 26+3x 1+3x 2=2-1=1,∴y p =y 1+y 22=12. (2)由x 1+x 2=1,得y 1+y 2=f (x 1)+f (x 2)=1,f (1)=3-32. 设S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n n ,又S n =f ⎝⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n n ,∴2S n =1+1+1+1+…+1++2f (1)=n +2-3, 即S n =n +2-32.(五)思想方法点拨1.常见数列求和的类型及方法(1)an =kn +b ,利用等差数列前n 项和公式直接求解;(2)an =a ·qn -1,利用等比数列前n 项和公式直接求解,但要注意对q 分q =1与q ≠1两种情况进行讨论; (3)an =bn ±cn ,数列{bn },{cn }是等比数列或等差数列,采用分组转化法求{an }前n 项和; (4)an =bn ·cn ,{bn }是等差数列,{cn }是等比数列,采用错位相减法求{an }前n 项和; (7)an =(-1)nf (n ),可采用相邻两合并求解,即采用“并项法”. (8)求出S 1,S 2,S 3,然后猜出Sn ,用数学归纳法证明. 2.求和时应注意的问题(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列的特点和规律,在分析数列通项的基础上或分解为基本数列求和,或转化为基本数列求和.(六)课后强化作业一、选择题1.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .42 [答案] C[解析] 由题意设S n =An 2+Bn ,又∵S 2=2,S 4=10,∴4A +2B =2,16A +4B =10, 解得A =34,B =-12,∴S 6=36×34-3=24.2.数列{a n }的前n 项和为S n ,若a n =1n +n +,则S 8等于( )A.25B. 130C.730D.56 [答案] A [解析] ∵a n =1n +n +=1n +1-1n +2, 而S n =a 1+a 2+…+a n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n n +,∴S 8=8+=25. 3.数列1×12,2×14,3×18,4×116,…的前n 项和为( )A .2-12n -n 2n +1B .2-12n -1-n2nC.12(n 2+n +2)-12nD.12n (n +1)+1-12n -1 [答案] B[解析] S =1×12+2×14+3×18+4×116+…+n ×12n =1×121+2×122+3×123+…+n ×12n ,①则12S =1×122+2×123+3×124+…+(n -1)×12n +n ×12n +1,② ①-②得12S =12+122+123+…+12n -n ×12n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n2n +1.∴S =2-12n -1-n2n .4.122-1+132-1+142-1+…+1n +2-1的值为( )A.n +1n + B.34-n +1n +C.34-12⎝ ⎛⎭⎪⎫1n +1+1n +2D.32-1n +1+1n +2 [答案] C [解析] ∵1n +2-1=1n 2+2n =1n n +=12⎝ ⎛⎭⎪⎫1n -1n +2.∴S n =12⎝ ⎛1-13+12-14+13-15+ (1)-⎭⎪⎫1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2. 5.(2011·汕头模拟)已知a n =log (n +1)(n +2)(n ∈N *),若称使乘积a 1·a 2·a 3·…·a n 为整数的数n 为劣数,则在区间(1,2002)内所有的劣数的和为( )A .2026B .2046C .1024D .1022 [答案] A[解析] ∵a 1·a 2·a 2·…·a n =lg3lg2·lg4lg3·…·n +n +=n +lg2=log 2(n +2)=k ,则n =2k-2(k ∈Z).令1<2k-2<2002,得k =2,3,4, (10)∴所有劣数的和为-291-2-18=211-22=2026.6.(2011·威海模拟)已知数列{a n }的前n 项和S n =n 2-4n +2,则 |a 1|+|a 2|+…+|a 10|=( ) A .66 B .65 C .61 D .56 [答案] A[解析] 当n ≥2时,a n =S n -S n -1=2n -5; 当n =1时,a 1=S 1=-1,不符合上式,∴a n =⎩⎪⎨⎪⎧-1,n =1,2n -5,n ≥2,∴{|a n |}从第3项起构成等差数列,首项|a 3|=1, 末项|a 10|=15.∴|a 1|+|a 2|+…+|a 10|=1+1++2=66.7.(文)(2009·江西)公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90 [答案] C[解析] 由题意可知⎩⎪⎨⎪⎧a 42=a 3×a 7S 8=32,∴⎩⎪⎨⎪⎧a 1+3d 2=a 1+2d a 1+6d8a 1+8×72×d =32,∴⎩⎪⎨⎪⎧a 1=-3d =2,∴S 10=10×(-3)+10×92×2=60,选C.(理)(2009·重庆)设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( ) A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n4 D .n 2+n [答案] A[解析] 设等差数列公差为d ,∵a 1=2,∴a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 32=a 1a 6,即(2+2d )2=2(2+5d ),整理得2d 2-d =0.∵d ≠0,∴d =12,∴S n =na 1+n n -2d =n 24+74n .故选A.8.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n +1-2 B .3n C .2n D .3n-1[答案] C[解析] 解法1:由{a n }为等比数列可得a n +1=a n ·q ,a n +2=a n ·q 2由{a n +1}为等比数列可得(a n +1+1)2=(a n +1)(a n +2+1),故(a n ·q +1)2=(a n +1)(a n ·q 2+1), 化简上式可得q 2-2q +1=0,解得q =1,故a n 为常数列,且a n =a 1=2,故S n =n ·a 1=2n ,故选C. 解法2:设等比数列{a n }的公比为q ,则有a 2=2q 且a 3=2q 2, 由题设知(2q +1)2=3·(2q 2+1), 解得q =1,以下同解法1. 二、填空题9.设f (x )=12x +2,则f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)的值为________.[答案] 5 2[解析] ∵f (-n )+f (n +1)=12-n +2+12n +1+2=2n1+2n ·2+12n +1+2=2n·2+12n +1+2=22, ∴f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)=5 2.10.(2011·启东模拟)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.[答案] 2n +1-2[解析] ∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n,∴S n =2-2n +11-2=2n +1-2.11.(2011·江门模拟)有限数列A ={a 1,a 2,…,a n },S n 为其前n 项的和,定义S 1+S 2+…+S nn为A 的“凯森和”;如果有99项的数列{a 1,a 2,…,a 99}的“凯森和”为1000,则有100项的数列{1,a 1,a 2,…,a 99}的“凯森和”为________.[答案] 991[解析] ∵{a 1,a 2,…,a 99}的“凯森和”为S 1+S 2+…+S 9999=1000,∴S 1+S 2+…S 99=1000×99,数列{1,a 1,a 2,…,a 99}的“凯森和”为: 1+S 1++S 2++…+S 99+100=100+S 1+S 2+…+S 99100=991.三、解答题12.(2010·重庆文)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和. (1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n .[解析] 本题主要考查等差数列的基本性质,以及通项公式的求法,前n 项和的求法,同时也考查了学生的基本运算能力.(1)因为{a n }为首项a 1=19,公差d =-2的等差数列, 所以a n =19-2(n -1)=-2n +21,S n =19n +n n -2(-2)=-n 2+20n .(2)由题意知b n -a n =3n -1,所以b n =3n -1-2n +21T n =b 1+b 2+…+b n =(1+3+…+3n -1)+S n =-n 2+20n +3n-12.13.已知数列{a n }的前n 项和S n =2n 2-3n . (1)求证:数列{a n }是等差数列;(2)若b n =a n ·2n,求数列{b n }的前n 项和T n .[解析] (1)证明:a 1=S 1=-1,当n ≥2时,a n =S n -S n -1=2n 2-3n -2(n -1)2+3(n -1)=4n -5. 又a 1适合上式,故a n =4n -5(n ∈N *). 当n ≥2时,a n -a n -1=4n -5-4(n -1)+5=4, 所以{a n }是等差数列且d =4,a 1=-1. (2)b n =(4n -5)·2n,∴T n =-21+3·22+…+(4n -5)·2n,① 2T n =-22+…+(4n -9)·2n +(4n -5)·2n +1,②①-②得-T n =-21+4·22+…+4·2n -(4n -5)·2n +1=-2+4·-2n -11-2-(4n -5)·2n +1=-18-(4n -9)·2n +1,∴T n =18+(4n -9)·2n +1.14.设数列{a n }的前n 项和为S n ,已知a 1=1,且a n +2S n S n -1=0(n ≥2), (1)求数列{S n }的通项公式; (2)设S n =1f(n ),b n =f (12n )+1.记P n =S 1S 2+S 2S 3+…+S n S n +1,T n =b 1b 2+b 2b 3+…+b n b n +1,试求T n ,并证明P n <12.[解析] (1)解:∵a n +2S n S n -1=0(n ≥2), ∴S n -S n -1+2S n S n -1=0. ∴1S n -1S n -1=2.又∵a =1,∴S n =12n -1(n ∈N +). (2)证明:∵S n =1f n,∴f (n )=2n -1.∴b n =2(12n )-1+1=(12)n -1.T n =(12)0·(12)1+(12)1·(12)2+…+(12)n -1·(12)n =(12)1+(12)3+(12)5+…+(12)2n -1=23[1-(14)n ].∵S n =12n -1(n ∈N +) ∴P n =11×3+13×5+…+1n -n +=12⎝ ⎛⎭⎪⎫1-12n +1<12.15.(2010·山东理)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a n 2-1(n ∈N *),求数列{b n }的前n 项和T n . [解析] 本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练掌握数列的基础知识是解答好本类题目的关键.对(1)可直接根据定义求解,(2)问采用裂项求和即可解决.(1)设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有⎩⎪⎨⎪⎧a 1+2d =72a 1+10d =26,解得a 1=3,d =2,所以a n =3+2(n -1)=2n +1;S n =3n +n n -2×2=n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a n 2-1=1n +2-1=14·1nn +=14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14·⎝ ⎛⎭⎪⎫1-1n +1=n n +,即数列{b n }的前n 项和T n =n n +.[点评] 数列在高考中主要考查等差、等比数列的定义、性质以及数列求和,解决此类题目要注意合理选择公式,对于数列求和应掌握经常使用的方法,如:裂项、叠加、累积.本题应用了裂项求和.第五节 数列的综合应用(一)高考目标考纲解读能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 考向预测1.以递推关系为背景,考查数列的通项公式与前n 项和公式. 2.等差、等比交汇,考查数列的基本计算.3.数列与函数、不等式、解析几何交汇,考查数列的综合应用. 4.以考查数列知识为主,同时考查“等价转化”、“变量代换”思想.(二)课前自主预习知识梳理1.数列在实际生活中着广泛的应用,其解题的基本步骤,可用图表示如下:2.数列应用题常见模型:(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差. (2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比. (3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是an 与an +1的递推关系,还是前n 项和Sn 与Sn +1之间的递推关系.(4)分期付款模型:设贷款总额为a ,年利率为r ,等额还款数为b ,分n 期还完,则b =r +r n+r n-1a . 3.数列与其他章节的综合题数列综合题,包括数列知识和指数函数、对数函数、不等式的知识综合起来;另外,数列知识在复数、三角函数、解析几何等部分也有广泛的应用. 4.数列的探索性问题探索性问题是高考的热点,常在数列解答题中出现,探索性问题对分析问题、解决问题的能力有较高的要求.(三)基础自测1.已知数列{a n }满足a n +1=⎩⎪⎨⎪⎧3a na n a n -a n,若a 1=23,则a 2012的值为 ( )A.23B .1C .2D .3[答案] C[解析] 由递推公式可知a 2=3a 1=2,a 3=a 2-1=1,a 4=3a 3=3,a 5=a 4-1=2,a 6=a 5-1=1…, 可见{a n }满足a n +3=a n (n ≥2). 故a 2012=a 2=1.2.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( )A.nn +1B.n +2n +1 C.nn -1D.n +1n[答案] A[解析] f ′(x )=mx m -1+a =2x +1,∴a =1,m =2,∴f (x )=x (x +1),1f (n )=1nn +=1n -1n +1, ∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 3.(教材改编题)一个凸多边形,它的各内角度数成等差数列,最小角为60°,公差为20°,则这个多边形的边数是( )A .3B .4C .5或9D .4或9[答案] B[解析] 设边数为n ,则60°n +n n -2·20°=(n -2)·180°,解得n =4或9.当n =9时,最大内角度数为60°+(9-1)×20°=220°>180°,故舍去.4.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要( )A .6秒钟B .7秒钟C .8秒钟D .9秒钟 [答案] B[解析] 设至少需要n 秒钟,则 1+21+22+…+2n -1≥100,∴1-2n1-2≥100,∴n ≥7.故选B. 5.(2011·安徽合肥模拟)秋末冬初,流感盛行,某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N*),则该医院30天入院治疗流感的人数共有________. [答案] 255[解析] 由于a n +2-a n =1+(-1)n,所以a 1=a 3=…=a 29=1,a 2,a 4,…,a 30构成公差为2的等差数列,所以a 1+a 2+…+a 29+a 30=15+15×2+15×142×2=255.6.设等差数列{an }的前n 项和为Sn ,S 4≥10,S 5≤15,则a 4的最大值是________. [答案] 4[解析] 由题意,得⎩⎪⎨⎪⎧4a 1+4×32d ≥105a 1+5×42d ≤15,即⎩⎪⎨⎪⎧4a 1+6d ≥105a 1+10d ≤15,也即⎩⎪⎨⎪⎧2a 1+3d ≥5a 1+2d ≤3,又a 4=a 1+3d =-(2a 1+3d )+3(a 1+2d )≤-5+3×3=4,故a 4的最大值为4.7.某科研单位欲拿出一定的经费奖励科研人员第1名得全部资金的一半加一千元,第二名得剩下的一半加一千元,以名次类推都得到剩下的一半加一千元,到第10名恰好资金分完,求此科研单位共拿出多少千元资金进行奖励. [解析] 设单位共拿出x 千元资金,第1名到第10名所得资金构成数列{a n },前n 项和为S n ,则a 1=x 2+1,a n =12(x -S n -1)+1(n ≥2),∴2a n =x -S n -1+2,2a n +1=x -S n +2, 两式相减得2a n +1-2a n =-a n , ∴2a n +1=a n .∴{a n }是首项为x 2+1,公比为12的等比数列,∴S 10=⎝ ⎛⎭⎪⎫x 2+1⎝ ⎛⎭⎪⎫1-12101-12=x ,解得x =2046.故单位共拿出2046千元资金进行奖励.又a 2=2S 1+a 1=3a 1,a n ≠0,∴{a n }是首项为a 1,公比为3的等比数列, ∴a n =a 1·3n -1.(2)方法一:∵S n =a 1-q n1-q=-12a 1+12a 1·3n,∴b n =1-S n =1+12a 1-12a 1·3n,要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2,此时b n =3n,∴{b n }是首项为3,公比为3的等比数列. ∴{b n }能为等比数列,此时a 1=-2.方法二:设数列{bn }能为等比数列,则b 1,b 2,b 3成等比数列, ∴b 22=b 1·b 3,∵Sn =a 1+a 2+…+an ,an =a 1·3n -1,bn =1-Sn , ∴b 2=1-4a 1,b 1=1-a 1,b 3=1-13a 1, ∴(1-4a 1)2=(1-a 1)(1-13a 1),又an ≠0,得a 1=-2,此时bn =1-Sn =3n , ∴{bn }是首项为3,公比为3的等比数列, ∴{bn }能为等比数列,此时a 1=-2.方法三:设数列{b n }能为等比数列,即满足b n 2=b n -1·b n +1(n ≥2,n ∈N *),又∵b n =1-S n ,b n -1=1-(S n -a n ),b n +1=1-(S n +a n +1), ∴(1-S n )2=(1-S n +a n )(1-S n -a n +1),∴(1-S n )2=(1-S n )2+(a n -a n +1)(1-S n )-a n a n +1,即-2a n ·⎣⎢⎡⎦⎥⎤1-a 1-3n1-3=a n a n +1,将a n =a 1·3n -1代入得a 1=-2,此时b n =1-S n =3n.2.命题方向:数列与函数的综合应用[例2] 已知f (x )=log ax (a >0且a ≠1),设f (a 1),f (a 2),…,f (an )(n ∈N*)是首项为4,公差为2的等差数列. (1)设a 为常数,求证:{an }成等比数列;(2)若bn =anf (an ),{bn }的前n 项和是Sn ,当a =时,求Sn .[分析] 利用函数的有关知识得出an 的表达式,再利用表达式解决其他问题.[解析] (1)f (a n )=4+(n -1)×2=2n +2,即log a a n =2n +2, 可得a n =a2n +2.∴a n a n -1=a 2n +2an -+2=a 2(n ≥2),为定值.∴{a n }为等比数列. (2)b n =a n f (a n )=a 2n +2log a a2n +2=(2n +2)a2n +2.当a =2时,b n =(2n +2)(2)2n +2=(n +1)2n +2.S n =2·23+3·24+4·25+…+(n +1)·2n +2①2S n =2·24+3·25+4·26+…+n ·2n +2+(n +1)·2n +3②①-②得-S n =2·23+24+25+…+2n +2-(n +1)·2n +3=16+24-2n -11-2-(n +1)2n +3=16+2n +3-24-n ·2n +3-2n +3=-n ·2n +3.∴S n =n ·2n +3(n ∈N *).[点评] 数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题.此类问题一般利用函数的性质、图像研究数列问题;②已知数列条件,解决函数问题.解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形. 跟踪练习2在数列{a n }中,a 1=4,且对任意大于1的正整数n ,点(a n ,a n -1)在直线y =x -2上. (1)求数列{a n }的通项公式;(2)已知b 1+b 2+…+b n =a n ,试比较a n 与b n 的大小. [解析] (1)∵点(a n ,a n -1)在直线y =x -2上,∴a n =a n -1+2,即数列{a n }是以a 1=2为首项,公差d =2的等差数列.∴a n =2+2(n -1)=2n , ∴a n =4n 2.(2)∵b 1+b 2+…+bn =an ,∴当n ≥2时,bn =an -an -1=4n 2-4(n -1)2=8n -4, 当n =1时,b 1=a 1=4,满足上式.∴bn =8n -4,∴an -bn =4n 2-(8n -4)=4(n -1)2≥0, ∴an ≥bn .[点评] 第(2)问可由b 1+b 2+…+bn =an 得,an -bn =an -1=4(n -1)2≥0,∴an ≥bn 简捷明了,注意观察分析常能起到事半功倍的效果.3.命题方向:数列与导数、解析几何的综合应用[例3] (2011·山东模拟)设曲线y =x 2+x +2-ln x 在x =1处的切线为l ,数列{an }的首项a 1=-m (其中常数m 为正奇数),且对任意n ∈N*,点(n -1,an +1-an -a 1)均在直线l 上. (1)求出{an }的通项公式;(2)令bn =nan (n ∈N*),当an ≥a 5恒成立时,求出n 的取值范围,使得bn +1>bn 成立.[分析] 问题(1)可先利用求导公式求得直线的斜率,进而求出直线方程,利用累加法即求得数列的通项公式;问题(2)是恒成立问题,可转化为数列的单调性问题进而求得数列的最小值.[解析] (1)由y =x 2+x +2-ln x ,知x =1时,y =4.又y ′|x =1=(2x +1-1x)|x =1=2,每个图中的小正方形的个数就构成一个数列{a n},有以下结论:A .①②B .①③C .①④D .① [答案] C[解析] 当n =1时,a 1=1;当n =2时,a 2=3;当n =3时,a 3=6;当n =4时,a 4=10,…,观察图中规律,有a n +1=a n +n +1,a 5=15.故①④正确.5.△ABC 中,tan A 是以-4为第三项,-1为第七项的等差数列的公差,tan B 是以12为第三项,4为第六项的等比数列的公比,则该三角形的形状是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上均错 [答案] B[解析] 由题意知:tan A =-1--7-3=34>0. tan 3B =412=8,∴tan B =2>0,∴A 、B 均为锐角.又∵tan(A +B )=34+21-34×2=-112<0,∴A +B 为钝角,即C 为锐角, ∴△ABC 为锐角三角形.6.在正项数列{a n }中,a 1=2,点(a n ,a n -1)(n ≥2)在直线x -2y =0上,则数列{a n }的通项公式a n 为( ) A .2n -1B .2n -1+1 C .2n D .2n+1[答案] C[解析] 据题意得a n -2a n -1=0,即a n =2a n -1,所以a n =2×2n -1=2n.7.编辑一个运算程序:1&1=2,m &n =k ,m &(n +1)=k +3(m 、n 、k ∈N *),1&2004的输出结果为( ) A .2004 B .2006 C .4008 D .6011 [答案] D[解析] 由已知m &(n +1)-m &n =3可得,数列{1&n }是首项为1&1=2,公差为3的等差数列,∴1&2004=2+(2004-1)×3=6011.应选D.8.下表给出一个“直角三角形数阵” 14 12,14 34,38,316∵y ′=2x ,∴过点(a k ,a k 2)的切线方程为y -a k 2=2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.(理)如图,“杨辉三角”中从上往下数共有n (n >7,n ∈N)行,设其第k (k ≤n ,k ∈N *)行中不是1的数字之和为a k ,由a 1,a 2,a 3,…组成的数列{a n }的前n 项和是S n .现在下面四个结论:①a 8=254;②a n =a n -1+2n ;③S 3=22;④S n =2n +1-2-2n .1 1 12 1 13 3 1 14 6 4 1 … … … …其中正确结论的序号为________.(写出所有你认为正确的结论的序号) [答案] ①④[解析] 由已知得a n =C n 0+C n 1+C n 2+…+C n n-2 =(1+1)n -2=2n-2,∴a 8=28-2=256-2=254,①正确;a n -a n -1=2n -2-2n -1+2=2n -1≠2n ,②不正确;∵S n =2-2+22-2+ (2)-2=-2n1-2-2n =2n +1-2n -2,∴S 3=24-6-2=8≠22,③不正确,④正确. ∴①④正确. 三、解答题12.已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和. (1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝ ⎛⎭⎪⎫1,S 11,P 2⎝ ⎛⎭⎪⎫2,S 22,…,P n ⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd=3,即公比q =3.(2)证明:∵S n =na 1+n n -2d ,∴S n n=a 1+n -12d =1+n -12d .∴点P n ⎝⎛⎭⎪⎫n ,S n n在直线y =1+x -12d 上.∴点P 1,P 2,…,P n (n ∈N *)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).13.(2010·福建文)数列{a n }中,a 1=13.前n 项和S n 满足S n +1-S n =(13)n +1(n ∈N *).(1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t (S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值.[解析] 本小题主要考查数列,等差数列,等比数列等基础知识,考查运算求解能力,考查函数与方程思想,化归与转化思想.(1)由S n +1-S n =(13)n +1得a n +1=(13)n +1(n ∈N *)又a 1=13,故a n =(13)n (n ∈N *)从而S n =13×[1-13n]1-13=12[1-(13)n ](n ∈N *) (2)由(1)可得S 1=13,S 2=49,S 3=1327从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得 13+3×(49+1327)=2×(13+49)t ,解得t =2. 14.(2010·湖北文)已知某地今年年初拥有居民住房的总面积为a (单位:m 2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b (单位:m 2)的旧住房.(1)分别写出第一年末和第二年末的实际住房面积的表达式;(2)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b 是多少?(计算时取1.15=1.6)[解析] 本小题主要考查阅读资料,提取信息,建立数学模型的能力,同时考查运用所学知识分析和解决实际问题的能力.(1)第1年末的住房面积a ·1110-b =(1.1a -b )(m 2) 第2年末的住房面积(a ·1110-b )1110-b =a (1110)2-b (1+1110)=(1.21a -2.1b )(m 2)(2)第3年末的住房面积⎣⎢⎡⎦⎥⎤a 11102-b+1110·1110-b =a ·⎝ ⎛⎭⎪⎫11103-b ⎣⎢⎡ 1+1110+⎦⎥⎤11102第4年末住房面积为:a (1110)4-b ⎣⎢⎡⎦⎥⎤1+1110+11102+11103. 第5年末住房面积为:a ·(1110)5-b ⎣⎢⎡ 1+1110+11102+11103⎦⎥⎤+11104=1.6a -6b 依题意可得,1.6a -6b =1.3a ,解得b =a20,所以每年拆除的旧房面积为a20(m 2).15.某企业投资1000万元于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率,问经过多少年后,该项目资金可以达到或超过翻两番(4倍)的目标?(取lg2=0.3)[解析] 设该企业逐年的项目资金依次为a 1,a 2,a 3,…,a n ,则由已知a n +1=a n (1+25%)-200(n ∈N *),即a n +1=54a n -200, 令a n +1-x =54(a n -x ),即a n +1=54a n -14x ,由x4=200,得x =800, ∴a n +1-800=54(a n -800)(n ∈N *),故{a n -800}是以a 1-800为首项,54为公比的等比数列.∵a 1=1000(1+25%)-200=1050, ∴a 1-800=250∴a n -800=250⎝ ⎛⎭⎪⎫54n -1,∴a n =800+250⎝ ⎛⎭⎪⎫54n -1(n ∈N *).由题意a n ≥4000,∴800+250⎝ ⎛⎭⎪⎫54n -1≥4000,即⎝ ⎛⎭⎪⎫54n≥16, ∴n ln 54≥lg16,即n (1-3lg2)≥4lg2,∵lg2=0.3,∴0.1n ≥1.2,故n ≥12. 答:经过12年后,该项目资金可以翻两番.教师备课平台一、函数与方程的思想在数列中的应用在数列中,数列本身就是一种函数.这种函数的定义域是N +(或其子集),从而表现在图像上就是孤立的点.数列具有单调性,如等差数列(除去公差为0的情况),等比数列(如a 1>0,q >1).因此研究数列问题,可以类比函数的一些性质来研究,用运动变化的观点来研究,例如数列中求某项的范围问题,某个字母的范围问题、最值问题等就可以利用函数思想,转化成求函数值域问题,或解不等式.在等差、等比数列问题中,已知五个基本量中的几个,求另几个时,往往是设出基本量,建立方程或方程组来解决问题.但需注意数列看作函数时的定义域与一般函数定义域的区别.[例1] 已知数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=2x-1的图像上,数列{b n }满足b n =log 2a n -12(n ∈N *).(1)求数列{a n }的通项公式a n ;(2)当数列{b n }的前n 项和最小时,求n 的值;(3)设数列{b n }的前n 项和为T n ,求不等式T n <b n 的解集.[分析] 先利用函数关系求出S n 的表达式,再依a n 与S n 关系求出a n .进而求出b n 、T n ,使问题解决. [解析] 由题意得S n =2n-1. (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1.又∵a 1=1=21-1,∴a n =2n -1.(2)b n =log 2a n -12=log 22n -1-12=(n -1)-12=n -13,∴b n =n -13,令b n ≥0得n ≥13,∴数列{b n }的前12项均为负数,第13项为0,从第14项起均为正数,∴当n =12或13时,数列{b n }的前n 项和最小.(3)∵b n +1-b n =1,∴数列{b n }为等差数列. ∴T n =n n -2<n -13,整理得n 2-27n +26<0,解得1<n <26. ∴T n <b n 的解集为{n |1<n <26,n ∈N *}.[例2] 设S n 为等差数列{a n }的前n 项和,已知S 7=21,S 15=-75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n 的最大值.[分析] 列方程组可求得S n ,继而求得T n ,把T n 看成关于自变量n 的函数来求最大值即可. [解析] 设等差数列{a n }公差为d ,则S n =na 1+12n (n -1)d .∵S 7=21,S 15=-75,∴⎩⎪⎨⎪⎧7a 1+21d =21,15a 1+105d =-75,即⎩⎪⎨⎪⎧a 1+3d =3,a 1+7d =-5,解得⎩⎪⎨⎪⎧a 1=9,d =-2.∴S n =na 1+n n -2d =9n -(n 2-n )=10n -n 2,则S nn=10-n , ∵S n +1n +1-S nn=-1, ∴数列⎩⎨⎧⎭⎬⎫S n n 是以9为首项,公差为-1的等差数列. 则T n =n ·[9+-n2=-12n 2+192n=-12⎝ ⎛⎭⎪⎫n -1922+3618.∵n ∈N *,∴当n =9或n =10时,T n 有最大值45. 二、分类整合思想在数列中的应用分类整合思想在数列中的体现,主要是表现在对字母范围的讨论上.例如,涉及到等比数列前n 项和问题时,需要对公比q 进行讨论,在对公比q 进行讨论时,除去q =1,q ≠1两种情况外,有时还需对0<q <1及q >1进行讨论,这需认真审题弄清题意,切实做到分类讨论时不漏不重,合情合理.已知S n 求a n 时,需对n =1与n ≥2两种情况进行讨论.最后需进行验证,能否将通项公式写为一个通式.若能,则写为一个通式;若不能,则需写成分段函数的形式.[例3] 设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,…). (1)求q 的取值范围;(2)设b n =a n +2-32a n +1,记{b n }的前n 项和为T n ,试比较S n 和T n 的大小.[解析] (1)因为{a n }是等比数列,S n >0, 可得a 1=S 1>0,q ≠0. 当q =1时,S n =na 1>0; 当q ≠1时,S n =a 1-qn1-q>0,∴1-q n1-q >0.∴⎩⎪⎨⎪⎧1-q <01-q n<0或⎩⎪⎨⎪⎧1-q >01-q n>0.∴-1<q <0或0<q <1或q >1. 综上所述,q >-1且q ≠0.。
2020高考数学复习数列知识点汇总高考是人生道路上的重要转折点,会对考生的未来发展产生重要的影响作用,甚至改变命运。
想要在高考中取得好成绩,自然是要付出努力的,只有努力才能获得回报。
这里给大家分享一些2020高考高频考点知识归纳,希望对大家有所帮助。
2020高考数学复习数列知识点汇总1.高二数学数列知识点数列概念①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
点击查看:高中数学知识点总结等差数列1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。
⾼考复习指导讲义第四章数列极限数学归纳法⾼考复习指导讲义第四章数列、极限、数学归纳法⼀、考纲要求 1.掌握:①掌握等差数列、等⽐数列的概念、通项公式、前n 项和公式;②能够运⽤这些知识解决⼀些实际问题;③掌握极限的四则运算法则. 2.理解:①数列的有关概念;②能根据递推公式算出数列的前⼏项;③会求公⽐的绝对值⼩1的⽆穷等⽐数列前n 项的极限. 3.了解:①了解递推公式是给出数列的⼀种⽅法;②了解数列极限的意义;③了解数学归纳法的原理,并能⽤数学归纳法证明⼀些简单问题. ⼆、知识结构(⼀)数列的⼀般概念数列可以看作以⾃然数集(或它的⼦集)为其定义域的函数,因此可⽤函数的观点认识数列,⽤研究函数的⽅法来研究数列。
数列表⽰法有:列表法、图像法、解析法、递推法等。
列表法:就是把数列写成a 1,a 2,a ……a n ……或简写成{a n },其中a n 表⽰数列第n 项的数值,n 就是它的项数,即a n 是n 的函数。
解析法:如果数列的第n 项能⽤项数n 的函数式表⽰为a n =f(n)这种表⽰法就是解析法,这个解析式叫做数列的通项公式。
图像法:在直⾓坐标系中,数列可以⽤⼀群分散的孤⽴的点来表⽰,其中每⼀个点(n,a n )的横坐标n 表⽰项数,纵坐标a n 表⽰该项的值。
⽤图像法可以直观的把数列a n 与n 的函数关系表⽰出来。
递推法:数列可以⽤两个条件结合起来的⽅法来表⽰:①给出数列的⼀项或⼏项。
②给出数列中后⾯的项⽤前⾯的项表⽰的公式,这是数列的⼜⼀种解析法表⽰称为递推法。
例如:数列2,4,5,529,145941…递推法表⽰为 a 1=2 其中a n+1=a n +na 4⼜称该数列 a n+1=an+na 4(n ∈N) 的递推公式。
由数列项数的有限和⽆限来分数列是有穷数列和⽆穷数列。
由数列项与项之间的⼤⼩关系来分数列是递增数列、递减数列、摆动数列以及常数列。
由数列各项绝对值的取值范围来分数列是有界数列和⽆界数列、通项公式是研究数列的⼀个关键,归纳通项公式是求数列通项公式的最基本⽅法,给出数列的前n 项,求这个数列的通项公式并不是唯⼀的,也并⾮所有的数列都能写出通项公式。
2020高考数学必胜秘诀(三)数列――概念、方法、题型、易误点及应试技巧总结三、数列1、数列的概念:数列是一个定义域为正整数集N*〔或它的有限子集{1,2, 3,…,n}〕的专门函数,如〔1〕a nI I *— (nN),那么在数列{a n}的最大项n 156为__〔答:1〕;〔2〕数列{a n}的通项为a25为〔答:a n a n 1〕; 〔3〕数列{a n}中,a数列的通项公式也确实是相应函数的解析式。
bTl,其中a,b均为正数,那么a n与a m的大小关系n2 n,且{a n}是递增数列,求实数的取值范畴〔答: 3〕;〔4〕一给定函数y f(x)的图象在以下图中,同时对任意a1 (0,1),由关系式务1 f (a n)得到的数列{a n}满足a n 1 a n(n N*),那么该函数的图象是〔〕〔答:A〕定义法N *为通项公式的数列{b n}为等差数列。
a na n 1(n 2)。
如设{a n}是等a n d(d为常数)或aCA2.等差数列的有关概念〔1〕等差数列的判定方法:差数列,求证:以b n= —並n〔2〕等差数列的通项:a n a1 (na2050,那么通项a n _________ 〔答:1)d 或a n10丨;数,那么公差的取值范畴是〔答:2n8a m (n m)d。
如(1)等差数列{a n}中,%30,〔2〕首项为-24的等差数列,从第10项起开始为正〔3〕等差数列的前n和:S n3n(a1 a n) S,S nanan 1〔2〕数列T n12n2n1 *—(n 2,n N ),a.2{a.}的前n项和S n2n (n 6, n N )3212n,前n项和S nn(n 1)dd 。
215,那么a1=―,2如〔1〕数列{a n}中,n =_〔答: a1 3,n 10〕;12n 72( n 6,n2n,求数列{| a n |}的前n项和人〔答:〔4〕等差中项:假设a,A,b成等差数列,那么A叫做a与b的等差中项,且提醒:〔1〕等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、d称作为差不多元素。
数列12 数列的通项(构造特殊数列求通项)一、具体目标:掌握用不同的数学方法求不同形式数列的通项公式.通过数列通项公式的求解过程,利用数列的变化规律,恰当选择方法,是数列的研究和探索奠定基础. 二、知识概述: 1.数列的通项公式:(1)如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.即()n a f n =,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式.(2)数列{}n a 的前n 项和n S 和通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩.2.求数列的通项公式的注意事项:(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.由不完全归纳法得出的结果是不可靠,要注意代值验证.(3)对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号的联系,从而归纳出构成数列的规律,写出通项公式.3.数列通项一般有三种类型:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知S n ,求通项,破解方法:利用S n -S n -1= a n ,但要注意分类讨论,本例的求解中检验必不可少,值【考点讲解】得重视;(3)已知数列的递推公式,求通项,破解方法:猜想证明法或构造法。
4. 已知数列{}n a 的前n 项和n S ,求数列的通项公式,其求解过程分为三步: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用=n a 1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.【注】该公式主要是用来求数列的通项,求数列通项时,一定要分两步讨论,结果能并则并,不并则分. 5. 递推公式推导通项公式方法: (1)叠加法:1()n n a a f n +-= 叠加法(或累加法):已知()⎩⎨⎧=-=+n f a a aa n n 11,求数列通项公式常用叠加法(或累加法)即112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ.(2)累乘法:已知()⎪⎩⎪⎨⎧==+n f a a a a nn 11求数列通项公式用累乘法. (3)待定系数法:1n n a pa q +=+(其中,p q 均为常数,)0)1((≠-p pq ) 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. (4)待定系数法: nn n q pa a +=+1(其中,p q 均为常数,)0)1)(1((≠--q p pq ). (或1nn n a pa rq +=+,其中,,p q r 均为常数).解法:在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q++=⋅+,令n n n q a b =,得:q b q p b nn 11+=+,再按 第(3)种情况求解.(5)待定系数法:b an pa a n n ++=+1(100)p a ≠≠,, 解法:一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较, 解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列.1122332211a a a a a a a a a a a a n n n n n n n⋅⋅⋅⋅⋅⋅=-----Λ(6)待定系数法:21(0,1,0)n n a pa an bn c p a +=+++≠≠解法:一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n z p a xn yn z ++++++=+++,与已知递推式比较,解出y x ,,从而转化为{}2n a xn yn z +++是公比为p 的等比数列. (7)待定系数法:n n n qa pa a +=++12(其中,p q 均为常数).解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中,s t 满足s t pst q +=⎧⎨=-⎩,再按第(4)种情况求解.(8)取倒数法:1()()()nn n g n a a f n a t n +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1,按第(3)种情况求解.(11()()()0n n n n g n a t n a f n a a +++-=,解法:等式两边同时除以1n n a a +⋅后换元转化为q pa a n n +=+1,按第(3)种情况求解.).(9)取对数rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取以p 为底的对数,后转化为q pa a n n +=+1,按第(3)种情况求解. 6. 以数列为背景的新定义问题是高考中的一个热点题型,考查频率较高,一般会结合归纳推理综合命题.常见的命题形式有新法则、新定义、新背景、新运算等.(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要 求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法.类型一:已知数列{}n a 中,(),212,111≥+==-n a a a n n 求{}n a 的通项公式. 【解析】方法一:转化法.目的是想将数列通过形式的转化,转化为特殊数列.(),21121,12111=++=+∴+=--a a a a a n n n n 又Θ故{}1+n a 是首项为2,公比为2的等比数列,n n a 21=+∴即.12-=n n a方法二:引入新数列法.,12,1211+=+=+-n n n n a a a a Θ两式相减得 ()112-+-=-n n n n a a a a故数列{}n n a a -+1是首项为,212=-a a 公比为2的等比数列, 即,21n n n a a =-+再用累加法得:.12-=n n a法三:由121n n a a -=+可得: ()12n n a t a t -+=+,整理得:12n n a a t -=+,可知1t =,即{}1+n a 是首项为2, 公比为2的等比数列,n n a 21=+∴即.12-=n n a类型二:在数列{}n a 中,112a =,11n n a a n +=-++,求数列的通项.【解析】由题意可得:()11()n n a k n b a kn b ++++=-++满足:11n n a a n +=-++,所以有2121k k b -=⎧⎨--=⎩,得到1214k b ⎧=-⎪⎪⎨⎪=-⎪⎩新数列1124n a n ⎧⎫--⎨⎬⎩⎭是以14-为首项,-1为公比的等比数列. 所以()11111244n n a n ---=-⋅-,即()111424nn a n -=++()*∈N n .1.【2018年高考全国I 卷理数】记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =___________. 【解析】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =n a 【真题分析】时,11121S a a ==+,解得11a =-,所以数列{}n a 是以−1为首项,以2为公比的等比数列,所以()66126312S --==--,故答案是63-.【答案】63-2.【2019优选题】在数列{}n a 和{}n b 中,12a =,且对任意正整数n ,130n n a a +-=,n b 是n a 与1n a +的等差中项,则{}n b 的前n 项的和为 . 【解析】∵130n n a a +-=,∴ 113n n a a +=,∴{}n a 是以12a =为首项,公比为13的等比数列, ∴112()3n n a -=⋅.∵111111141()[2()2()]()223333n n n n n n b a a --+=+=⋅+⋅=⋅,∴{}n b 是以143=b 为首项,公比为13的等比数列∴n S 41[1()]1332[1()]1313n n -==--. 【答案】12[1()]3n-3. 【2019优选题】数列{}n a 中,148,2a a ==且满足.212(*)n n n a a a n N ++=-∈,数列{}n a 的通项公式 【解析】 由题意,211n n n n a a a a +++-=-,所以{}n a 为等差数列.设公差为d , 由题意得2832d d =+⇒=-,得82(1)102n a n n =--=-. 【答案】=102n a n -()n N*∈4.【2019优选题】已知正项数列{}n a 的首项11a =,前n 项和为n S ,若以(),n n a S 为坐标的点在曲线()112y x x =+上,则数列{}n a 的通项公式为________.【答案】n a n =5.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【答案】1n-6.【2018优选题】已知数列{}n a 满足12a =-,且136n n a a +=+,则n a =________________.【解析】法一:由136n n a a +=+可得: ()1333n n a a ++=+,所以{}3n a +是以1为首项3为公比的等比数列,所以133n n a -+=,故133n n a -=-. 法二:1136,36,n n n n a a a a -+=+=+Q 两式相减得()113n n n n a a a a +--=-.故数列{}n n a a -+1是首项为,212=-a a 公比为3的等比数列, 即123,n n n a a +-=⨯再用累加法得:13 3.n n a -=-法三:由136n n a a +=+可得: ()13n n a t a t ++=+,整理得:132n n a a t ++=,可知3t =,即()1333n n a a ++=+,所以{}3n a +是以1为首项3为公比的等比数列,所以133n n a -+=,故133n n a -=-. 【答案】133n n a -=-7. 【2019优选题】已知数列{}n a 中,12a =,12n n a a n +=+,求数列的通项为 . 【解析】结合题意得:()112()n n a k n b a kn b ++++=++整理得:12n n a a kn b k +=++-,满足12n n a a n +=+,即0kn nb k =⎧⎨-=⎩所以有11k b =⎧⎨=⎩,新数列{}1n a n ++是以4为首项,2为公比的等比数列,所以1142n n a n -++=⨯,即121n n a n +=--()*∈N n .【答案】121n n a n +=--8.【2019优选题】已知数列{a n },a n =2a n -1+n +1,a 1=1(n ∈N *),则a n =__________. 【解析】由已知可得a n +n +3=2[a n -1+(n -1)+3].设b n =a n +n +3,则b n =2b n -1,所以{b n }是公比为2的等比数列,且b 1=a 1+1+3=5, 所以b n =5×2n -1,所以a n =5×2n -1-n -3.答案:5×2n -1-n -3. 【答案】5×2n -1-n -39.【2019优选题】已知数列}{n a满足110,1)n n a a a n N *+==++∈,则n a =___. 【解析】由已知得21)11(11211++=++++=++n n n n a a a a , 且01>+n a .所以1111++=++n n a a ,即{1+n a }是首项、公差均为1的等差数列,所以1+n a =n ,即有12-=n a n . 【答案】12-=n a n .10.【2017精品题】已知数列{ a n }满足:110,n a a +==,则2016a = .【解析】法一:将10a =代入递推关系,依次得2340,...a a a ==,可见数列{ a n }是以3为周期的周期数列,所以,20163a a ==.法二:因为1n a +=,将tan x 换n a ,则有:()2tan tan3tan 121tan tan 32tan()3x x x x πππ++==-=+所以数列{ a n }的通项公式为2(1)tan3n n a π-=,2016a =11.【16新课标III 文】已知各项都为正数的数列{}n a 满足11=a ,()0212112=---++n n n n a a a a .(1)求2a ,3a ; (2)求{}n a 的通项公式.【分析】(Ⅰ)将11a =代入递推公式求得2a ,将2a 的值代入递推公式可求得3a ;(Ⅱ)将已知的递推公式进行因式分解,然后由定义可判断数列{}n a 为等比数列,由此可求得数列{}n a 的通项公式. 【解析】(Ⅰ)由题意,得41,2132==a a . (Ⅱ)由02)12(112=---++n n n n a a a a 得)1()1(21+=++n n n n a a a a . 因为{}n a 的各项都为正数,所以211=+n n a a . 故{}n a 是首项为1,公比为21的等比数列,因此121-=n n a . 【答案】(Ⅰ)41,2132==a a ;(Ⅱ)121-=n n a . 12.【2018年新课标I 卷文】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123,,b b b ;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式. 【解析】分析: (1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n ++=,分别令n =1和n =2,代入上式求得a 2=4和a 3=12,再利用n n a b n =,从而求得1231,2,4b b b ===.(2)利用条件可以得到121n na a n n+=+,可以得到12n n b b +=,这样就可以得到数列{}n b 是首项为1,2为公比的等比数列了.(3)借助(2)的结论求出数列{}n a 的通项,完成了题的三个要求. 【解析】(1)由已知11a =,()121n n na n a +=+, nn a b n=,可得234,12a a ==,从而可得1231,2,4b b b ===.(2){}n b 是首项为1,公比为2的等比数列.由条件可得121n na a n n+=+,即12n n b b +=,又11b =,所以{}n b 是首项为1,公比为2的等比数列. (3)由(2)可得1=2n n a n-,所以12n n a n -=⋅.【答案】(1) 1231,2,4b b b ===.(2) {}n b 是首项为1,公比为2的等比数列.理由见解析. (3) 12n n a n -=⋅.13.【2019全国Ⅱ】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+, 即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.【模拟考场】1.在数列{a n }中,a 1=2,且a n +1=212+n a ,则{a n }的通项公式为 .【解析】将a n +1=212+n a 两边平方可得:a n +12=21a n 2+21.∴a n +12-1=21(a n 2-1). ∴{a n +12-1}是以3为首项,公比为21的等比数列 ∴a n +12-1=3×n⎪⎭⎫⎝⎛21,即a n =1231-+n .【答案】a n =1231-+n2.已知数列{}n a 满足112,32n n a a a -==-,那么n a 等于( ). A .132n -+ B.131n -+ C.31n + D.1231n -⨯+【解析】由112,32n n a a a -==-得113(1)n n a a --=-,数列{}1n a -是首项为1,公比为3的等比数列 于是, 113n n a --=.所以, 131n n a -=+. 【答案】B3.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a(1)求321,,a a a ;(2)求数列}{n a 的通项公式;(3)求数列}{n a 的前n 项和n S . 【解析】本题考查的是数列通项及数列求和的具体应用. (1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a(2)由121+=-n n a a 知2211+=+-n n a a)1(211+=+-n n a a {}1+∴n a 构成以211=+a 为首项以2为公比的等比数列; 112)1(1-⋅+=+∴n n a a ;,21n n a =+∴ .12-=∴n n a 为所求通项公式(3)12-=n n a Θ123......n n S a a a a ∴=++++123(21)(21)(21)......(21)n =-+-+-++-123(222......2)nn =++++-n n ---=21)21(2 .221n n --=+4.已知在数列{}n a 中,,22,111+==+n n a a a 求{}n a 的通项公式.【解析】由122n n a a +=+得,()1222n n a a ++=+,所以数列{}2n a +是以3为首项,2为公比的等比数列,所以可得:1232n n a -+=⋅所以1322n n a -=⋅-,即1322n n a -=⋅-()n N *∈. 5.数列{}n a 满足a 1=1,a n =21a 1-n +1(n ≥2),求数列{a n }的通项公式。
2020高考数学数列复习指导
数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
相关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的相关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地使用数列知识和方法解决数学和实际生活中的相关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的理解,沟通各类知识的联系,形成更完整的知识网络,提升分析问题和解决问题的水平,
进一步培养学生阅读理解和创新水平,综合使用数学思想方法分析问题与解决问题的水平。
3.培养学生善于分析题意,富于联想,以适合新的背景,新的设
问方式,提升学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。