2019届高考数学(文科)江苏版:第9章 概率、统计与算法 2 第2讲 分层演练直击高考含解析
- 格式:doc
- 大小:229.50 KB
- 文档页数:11
.(·南通调研测试)某中学共有学生人,其中高一年级人,高二年级人,高三年级人,现采用分层抽样的方法,抽取人进行体育达标检测,则抽取高二年级学生人数为.[解析] 设高二年级抽取人,则=),故=人.[答案].某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为,则=.[解析] 由已知条件,抽样比为=,从而=,解得=.[答案].对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是.[解析] 由题意知各数为,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,中位数是,众数是,最大数为,最小数为,极差为-=.[答案] ,,.(·江苏省高考命题研究专家原创卷(一))某电商联盟在“双”狂欢节促销活动中,对月日时到时的销售额进行统计,得到如图所示的频率分布直方图.已知时到时的销售额为万元,则时到时的销售额为万元.解析:设时到时的销售额为万元,由题图可知时到时的销售额与时到时的销售额的比值为=,又时到时的销售额为万元,所以=,解得=,所以时到时的销售额为万元.答案:.(·无锡模拟)若一组样本数据,,,,的平均数为,则该组样本数据的方差为.[解析] 因为平均数==,所以=,从而方差为=(++++)=.[答案] .(·苏锡常镇四市调研)是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物.如图是根据哈尔滨三中学生社团某日早点至晚点在南岗、群力两个校区附近的监测点统计的数据(单位:毫克立方米)列出的茎叶图,南岗、群力两个校区浓度的方差较小的是校区.[解析] 方差较小即两者比较时数据比较集中,从茎叶图知,南岗校区数据集中,而群力校区数据分散的很明显,故南岗校区浓度的方差较小.[答案] 南岗.(·鹰潭模拟改编)某市共有所学校,现要用系统抽样的方法抽取所学校作为样本,调查学生课外阅读的情况.把这所学校编上~的号码,再从~中随机抽取一个号码,如果此时抽得的号码是,则在编号为到的学校中,应抽取的学校的编号为.[解析] 根据系统抽样的条件,可知抽取的号码为第一组的号码加上组距的整数倍,所以为号+=号.[答案] .(·江苏省名校高三入学摸底卷)已知一组数据,,,,的方差为,那么相对应的另一组数据,,,,的方差为.解析:,,,,的平均数=+,方差==,而,,,,的平均数=+,方差=×=×=.答案:.(·宿迁调研)将某选手的个得分去掉个最高分,去掉个最低分,个剩余分数的平均分为.现场作的个分数的茎叶图后来有个数据模糊,无法辨认,在图中以表示,则个剩余分数的方差为.解析:由题图可知去掉的两个数是,,所以+×+×+++=×,解得=.所以=×[(-)+(-)×+(-)×+(-)×]=.答案:.在样本的频率分布直方图中,共有个小长方形,这个小长方形的面积由小到大构成等比数列{},已知=,且样本容量为,则小长方形面积最大的一组的频数为.[解析] 因为小长方形的面积由小到大构成等比数列{},且=,所以样本的频率构成一个等比数列,且公比为,所以+++==,所以=,所以小长方形面积最大的一组的频数为×=.。
1.有算法:S1输入n;S2判断n是否是2,若n=2,则n满足条件;若n>2,则执行S3;S3依次从2到n-1检验能不能整除n,若不能整除,则n满足条件.上述满足条件的数是________.(提示:如填奇数、偶数、质数等)[解析] 根据以上算法结合质数定义知满足条件的数是质数.[答案] 质数2.(2018·石家庄质检改编)执行如图所示的流程图,则输出i的值为________.[解析] 当执行第一次循环体时,S=1,i=1;当执行第二次循环体时,S=2,i=2;当执行第三次循环体时,S=6,i=3;当执行第四次循环体时,S=24,i=4;此时输出i,即i=4.[答案] 43.运行如图所示的伪代码,输出的结果是________.a←1b←2a←a+bPrint a[解析] a=1,b=2,把1与2的和赋给a,即a=3,输出的结果是3.[答案] 34.(2018·苏锡常镇四市联考)若下面所给的流程图运行结果为S=35,那判断框中应填入的关于k的条件是________.[解析] 当S=35时,k=6.要使输出S=35,即当k=6时结束程序,因此k>6(或k≥7).[答案] k>6(或k≥7)5.(2018·南通调研)如图是一个算法流程图,则输出的x 的值是________.[解析] 因为x =y =1<50,所以x =2+1=3,y =2×3+1=7<50,再次进入循环得:x =2×3+7=13,y =2×13+7=33<50,再次进入循环得:x =2×13+33=59,y =2×59+33=151>50,此时输出x 的值为59. [答案] 596.如图所示的伪代码运行后,输出的值y 为________. x ←3 If x >3 Then y ←x ×x Else y ←2×x End If Print y[解析] 该伪代码反映的算法是一分段函数y =⎩⎪⎨⎪⎧x 2,x >3,2x ,x ≤3.因为x =3,所以y =6. [答案] 67.执行如图所示的流程图,如果输入的N =100,则输出的x =________.[解析] 由流程图可知x =11×2+12×3+13×4+…+199×100=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫199-1100=99100. [答案]991008.(2018·南京模拟)执行如图所示的伪代码,输出的结果是________. S ←1 I ←3While S ≤200 S ←S ×I I ←I +2 End While Print I[解析] 该循环共执行4次,各次的S 和I 的值分别是3和5、15和7、105和9、945和11,故输出的I =11.[答案] 119.一个算法的流程图如图所示,若输入的值为2 017,则输出的i 值为________.[解析] 运行流程图.x =2 017,a =2 017,i =1,b =11-2 017=-12 016,b ≠x ; i =2,a =-12 016,b =11-⎝⎛⎭⎫-12 016=2 0162 017,b ≠x ;i =3,a =2 0162 017,b =11-2 0162 017=2 017,b =x .终止循环,故输出i =3.[答案] 310.下面的伪代码运行后输出的结果是________. p ←1For k From 1 To 10 Step 3 p ←p +2k -6 End For Print p[解析] p 0=1,当k =1时,p 1=1+2×1-6=-3; 当k =4时,p 2=p 1+2×4-6=-3+2×4-6=-1; 当k =7时,p 3=p 2+2×7-6=-1+2×7-6=7; 当k =10时,p 4=p 3+2×10-6=7+2×10-6=21. 所以p =21. [答案] 2111.学校举行卡拉OK 大赛,请了7名评委,这7名评委给选手甲评定的成绩为:84,79,84,93,84,86,87;下面的算法流程图用来编写程序统计每位选手的成绩,其中k 表示评委人数,a 表示选手的成绩(各评委所给有效分数的平均值).(1)请解释流程图中的“s 1←s -max -min ”的含义; (2)请计算选手甲的成绩.[解] (1)流程图中的“s 1←s -max -min ”的含义是:在计算每位选手的平均分数时,为了避免个别评委所给的极端分数的影响,必须去掉一个最高分和一个最低分后再求平均分.(2)选手甲的成绩为84+84+84+86+875=85.12.已知数列{a n }的各项均为正数,观察流程图,若k =5,k =10时,分别有S =511和S =1021,求数列{a n }的通项公式.[解] 当i =1时,a 2=a 1+d ,M =1a 1a 2,S =1a 1a 2;当i =2时,a 3=a 2+d ,M =1a 2a 3,S =1a 1a 2+1a 2a 3; 当i =3时,a 4=a 3+d ,M =1a 3a 4,S =1a 1a 2+1a 2a 3+1a 3a 4; …因此,由流程图可知,数列{a n }是等差数列,首项为a 1,公差为d . 当k =5时,S =1a 1a 2+1a 2a 3+1a 3a 4+1a 4a 5+1a 5a 6=⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3+1a 3-1a 4+1a 4-1a 5+1a 5-1a 61d =⎝⎛⎭⎫1a 1-1a 61d =5a 1a 6=511,所以a 1a 6=11,即a 1(a 1+5d )=11.① 当k =10时,S =1a 1a 2+1a 2a 3+…+1a 10a 11=⎝⎛⎭⎫1a 1-1a 2+1a 2-1a 3+…+1a 10-1a 111d =⎝⎛⎭⎫1a 1-1a 111d =10a 1a 11=1021,所以a 1a 11=21,即a 1(a 1+10d )=21.② 由①②解得a 1=1,d =2. 所以a n =a 1+(n -1)d =2n -1.1.(2018·无锡模拟)下面是求1+12+…+11 000的值的伪代码,在横线上应填的语句是________.i ←1 S ←0While ________ S ←S +1ii ←i +1 End While Print S[解析] 确保最后一个加入的是11 000,故i ≤1 000或i <1 001都正确.[答案] i ≤1 000(或i <1 001)2.据如图所示的伪代码,可知输出的结果T 为________.[解析] 循环语句,计算功能,T =1+3+5+7+9+11+…+49=25×(1+49)2=625.[答案] 6253.某流程图如图所示,则该程序运行后输出的S 的值为________.[解析] 依题意得,运行程序后输出的是数列{a n }的第2 017项,其中数列{a n }满足:a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,a n <1,18a n ,a n ≥1.注意到a 2=18,a 3=14,a 4=12,a 5=1,a 6=18,…,该数列中的项以4为周期重复性地出现,且2 017=4×504+1,因此a 2 017=a 1=1,运行程序后输出的S 的值为1.[答案] 14.图中x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于________.[解析] x 1=6,x 2=9,|x 1-x 2|=3≤2不成立,即为“N ”,所以再输入x 3; 由绝对值的意义(一个点到另一个点的距离)和不等式|x 3-x 1|<|x 3-x 2|知, 点x 3到点x 1的距离小于点x 3到点x 2的距离, 所以当x 3<7.5时,|x 3-x 1|<|x 3-x 2|成立,即为“Y ”, 此时x 2=x 3,所以p =x 1+x 32,即6+x 32=8.5, 解得x 3=11>7.5,不合题意;当x 3≥7.5时,|x 3-x 1|<|x 3-x 2|不成立,即为“N ”, 此时x 1=x 3,所以p =x 3+x 22,即x 3+92=8.5,解得x 3=8>7.5, 符合题意,故x 3=8. [答案] 85.已知函数y =f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥0,2x -1,x <0.设计一个求函数值的算法,并画出其流程图.[解] 算法为:第一步 输入x 的值; 第二步 判断x 与0的大小关系, 如果x ≥0,则f (x )=x 2-1, 如果x <0,则f (x )=2x -1;第三步 输出函数f (x )的值.流程图如下:6.某百货公司为了促销,采用购物打折的优惠办法:每位顾客一次购物, (1)不满1 000元无优惠;(2)满1 000元且不足2 000元者,按九五折优惠; (3)满2 000元且不足3 000元者,按九折优惠; (4)满3 000元且不足5 000元者,按八五折优惠; (5)满5 000元及以上者,按八折优惠. 试编写伪代码求优惠价.[解] 设购物款数为x 元,优惠价为y 元,则优惠付款公式为y =⎩⎪⎨⎪⎧x ,x <1 000,0.95x ,1 000≤x <2 000,0.9x ,2 000≤x <3 000,0.85x ,3 000≤x <5 000,0.8x ,x ≥5 000.伪代码如下 Read xIf x <1 000 Then y ←x ElseIf x <2 000 Then y ←0.95x ElseIf x<3 000Then y←0.9xElseIf x<5 000Then y←0.85xElsey←0.8xEnd IfEnd IfEnd IfEnd IfPrint y。
2019年高考(文科)数学真题专题10 概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生D .815号学生【答案】C【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25D .15【答案】B【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式即可求解.【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种, 所以恰有2只做过测试的概率为63105=,故选B . 【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.6.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.【答案】(1)男、女顾客对该商场服务满意的概率的估计值分别为0.8,0.6;(2)有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.8 50=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.6 50=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.7.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【答案】(1)产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)这类企业产值增长率的平均数与标准差的估计值分别为30%,17%. 【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i ii s n y y ==-∑ 222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.8.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)0.35a =,0.10b =;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00. 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.9.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为, , , , , A B C D E F .享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率. 【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i )见解析,(ii )1115. 【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力. 【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10, 由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i )从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C {, },{, },{, },{, {,}},,B D B E B F C D C E {,},C F {,},{,},{,}D E D F E F ,共15种.(ii )由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B C E B F E C F D F E F ,共11种.所以,事件M 发生的概率11()15P M =. 10.【2019年高考北京卷文数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.【答案】(1)该校学生中上个月A ,B 两种支付方式都使用的人数约为400;(2)0.04;(3)见解析. 【解析】(1)由题知,样本中仅使用A 的学生有27+3=30人, 仅使用B 的学生有24+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100–30–25–5=40人. 估计该校学生中上个月A ,B 两种支付方式都使用的人数为401000400100⨯=. (2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则1()0.0425P C ==.(3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 假设样本仅使用B 的学生中,本月支付金额大于2 000元的人数没有变化, 则由(2)知,4(0)0.P E .答案示例1:可以认为有变化.理由如下:()P E 比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化, 所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E 是随机事件,()P E 比较小,一般不容易发生,但还是有可能发生的, 所以无法确定有没有变化.。
2019年普通高等学校招生全国统一考试·江苏卷数学(文科)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.如图是一个算法流程图,则输出的S的值是.4.函数y=的定义域是.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD 的体积是.10.在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P 到直线x+y=0的距离的最小值是.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.已知=﹣,则sin(2α+)的值是.14.设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB =BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小..于.圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m≤b k≤c k+1成立,求m的最大值.时,都有ck2019年普通高等学校招生全国统一考试·江苏卷数学(文科)参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.2.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.3.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.4.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].5.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.6.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.7.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.8.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.9.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V=E﹣BCD==×AB×BC×DD1=10.故答案为:10.10.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.11.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).12.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:13.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.14.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.16.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.17.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).18.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x,0),2则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.19.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x+x2=,x1x2=,1可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x)=x1(x1﹣b)(x1﹣1)1=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2] ==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.20.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;}的公比为q,②设{cn存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c成立,k+1即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.。
YN 输出n 开始1a 2n ←←,1n n ←+32a a ←+20a <结束 (第5题)2019年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:()2234,34=5Z i Z =-=+-3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025n i i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ . 解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =A BC1ADEF 1B1C9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+u u u r u u u r u u u r u u u r u u u r u u ur u u u r所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞U12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ . 解析:由题意知2212,bc a b d d c a c c==-= 所以有26b bcc a= 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即33e =13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=10a = , 10a =-(舍去) 综上1a =-或10a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223 (1),.222222011521312913236002292212n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴->-+∴<<=>∴==Q QQ n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。
2019年普通高等学校招生全国统一考试(江苏卷)—数学(解析版)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!〔全卷总分值160分,考试时间120分钟〕参考公式: 棱锥的体积13V Sh=,其中S 为底面积,h 为高、 【一】填空题:本大题共14小题,每题5分,共计70分、请把答案填写在答题卡相应位置上........、 1、〔2018年江苏省5分〕集合{124}A =,,,{246}B =,,,那么A B =▲、【答案】{}1,2,4,6。
【考点】集合的概念和运算。
【分析】由集合的并集意义得{}1,2,4,6AB =。
2、〔2018年江苏省5分〕某学校高【一】高【二】高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,那么应从高二年级抽取▲名学生、 【答案】15。
【考点】分层抽样。
【解析】分层抽样又称分类抽样或类型抽样。
将总体划分为假设干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
因此,由350=15334⨯++知应从高二年级抽取15名学生。
3、〔2018年江苏省5分〕设a b ∈R ,,117i i 12ia b -+=-〔i 为虚数单位〕,那么a b +的值为▲、【答案】8。
【考点】复数的运算和复数的概念。
【分析】由117i i 12i a b -+=-得()()()()117i 12i 117i 1115i 14i ===53i12i 12i 12i 14a b -+-+++=+--++,所以=5=3a b ,,=8a b +。
4、〔2018年江苏省5分〕下图是一个算法流程图,那么输出的k 的值是▲、【答案】5。
【考点】程序框图。
【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:是否继续循环 k 2k 5k 4-+ 循环前0 0 第一圈 是 1 0 第二圈 是 2 -2 第三圈 是 3 -2 第四圈 是 4 0 第五圈 是 5 4 第六圈否输出5∴最终输出结果k=5。
1.先后抛掷硬币三次,则至少一次正面朝上的概率是________. 解析:至少一次正面朝上的对立事件的概率为18,故P =1-18=78.答案:782. 如图,在一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1 000 颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此实验数据为依据,可以估计出该不规则图形的面积为________平方米.解析:设该不规则图形的面积为x 平方米,向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375,所以根据几何概型的概率计算公式可知3751 000=1x ,解得x =83.答案:833.已知函数f (x )=x 2-x -2,x ∈[-5,5],若从区间[-5,5]内随机抽取一个实数x 0,则所取的x 0满足f (x 0)≤0的概率为________.解析:令x 2-x -2≤0,解得-1≤x ≤2,由几何概型的概率计算公式得P =2-(-1)5-(-5)=310=0.3. 答案:0.34.从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是__________.解析:从2,3,8,9中任取两个不同的数字,(a ,b )的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log 28=3,log 39=2为整数,所以log a b 为整数的概率为16.答案:165.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是________.解析:设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A +B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.答案:17356.(2018·镇江模拟)设m ,n 分别为连续两次投掷骰子得到的点数,且向量a =(m ,n ),b =(1,-1),则向量a ,b 的夹角为锐角的概率是________.解析:所有的基本事件的个数有36个,因为向量a ,b 的夹角为锐角,所以a·b >0且a ,b 不共线,即m -n >0且m ≠-n ,故满足条件的基本事件有1+2+3+4+5=15个,故所求的概率为P =1536=512.答案:5127.连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m ”为事件A ,则P (A )最大时,m =________.解析:m 可能取到的值有2,3,4,5,6,7,8,9,10,11,12,对应的基本事件个数依次为1,2,3,4,5,6,5,4,3,2,1,所以两次向上的数字之和等于7对应的事件发生的概率最大.答案:78.(2018·郑州模拟)若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,y ≥2x -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.解析:作出不等式组与不等式表示的可行域如图所示,平面区域N 的面积为12×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24.答案:π249.(2018·江苏省高考名校联考(九))2017年1月18日支付宝集福活动“又”来了,假定每次扫福都能得到一张福卡(福卡一共有五种:爱国福、富强福、和谐福、友善福、敬业福),且得到每一种类型福卡的概率相同,若小张已经得到了富强福、和谐福、友善福,则小张再扫两次可以集齐五福的概率为________.解析:再扫两次得到福卡的所有情况有(爱国福,爱国福)、(爱国福,富强福)、(爱国福,和谐福)、(爱国福,友善福)、(爱国福,敬业福)、(富强福,爱国福)、(富强福,富强福)、(富强福,和谐福)、(富强福,友善福)、(富强福,敬业福)、(和谐福,爱国福)、(和谐福,富强福)、(和谐福,和谐福)、(和谐福,友善福)、(和谐福,敬业福)、(友善福,爱国福)、(友善福,富强福)、(友善福,和谐福)、(友善福,友善福)、(友善福,敬业福)、(敬业福,爱国福)、(敬业福,富强福)、(敬业福,和谐福)、(敬业福,友善福)、(敬业福,敬业福),共25种,记“小张再扫两次可以集齐五福”为事件M ,则事件M 包含的情况有(爱国福,敬业福)、(敬业福,爱国福),共2种,根据古典概型的概率计算公式可得所求概率为P (M )=225. 答案:22510.(2018·江苏省高考命题研究专家原创卷(七))若一次函数f (x )=2ax -5满足a ∈[-3,2]且a ≠0,则f (x )≤0在x ∈[0,2]上恒成立的概率为________.解析:由题意可得函数f (x )=2ax -5≤0在x ∈[0,2]上恒成立,当x =0时,-5≤0,显然恒成立;当x ∈(0,2]时,可化为a ≤52x ,而y =52x 在x ∈(0,2]上的最小值为54,所以a ≤54,结合a ∈[-3,2]且a ≠0,得a ∈[-3,0)∪(0,54],由几何概型的概率计算公式可得f (x )≤0在x ∈[0,2]上恒成立的概率P =(54-0)+[0-(-3)](2-0)+[0-(-3)]=1720.答案:172011.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.[解] (1)由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B -包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.12.(2018·南通模拟)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下:(1)从该班任意抽取 (2)若测试成绩为“优”的3名男生记为a 1,a 2,a 3,2名女生记为b 1,b 2.现从这5人中任选2人参加学校的某项体育比赛.①写出所有等可能的基本事件; ②求参赛学生中恰有1名女生的概率.[解] (1)记“测试成绩为良或中”为事件A ,“测试成绩为良”为事件A 1,“测试成绩为中”为事件A 2,事件A 1,A 2是互斥的.由已知,有P (A 1)=1950,P (A 2)=2350.因为当事件A 1,A 2之一发生时,事件A 发生, 所以由互斥事件的概率公式,得 P (A )=P (A 1+A 2)=P (A 1)+P (A 2)=1950+2350=2125.故这名学生的测试成绩为“良”或“中”的概率为2125.(2)①有10个基本事件:(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2).②记“参赛学生中恰好有1名女生”为事件B . 在上述等可能的10个基本事件中,事件B 包含了(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2). 故所求的概率为P (B )=610=35.即参赛学生中恰有1名女生的概率为35.1.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.[解析] 由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35.[答案] 352.(2018·江苏省重点中学领航高考冲刺卷(四))若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在直线x +3y =15两侧的概率为________.[解析] 由题意可知m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},点P (m ,n )共有36种可能,其中只有当⎩⎪⎨⎪⎧m =3n =4和⎩⎪⎨⎪⎧m =6n =3时,点P 落在直线x +3y =15上,故点P 落在直线x +3y =15两侧的概率为P =1-236=1718.[答案]17183.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当a >b ,b <c 时称为“凹数”(如213,312等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“凹数”的概率是________.[解析] 由1,2,3组成的三位数有123,132,213,231,312,321,共6个;由1,2,4组成的三位数有124,142,214,241,412,421,共6个;由1,3,4组成的三位数有134,143,314,341,413,431,共6个;由2,3,4组成的三位数有234,243,324,342,432,423,共6个.所以共有6+6+6+6=24个三位数.当b =1时,有214,213,314,412,312,413,共6个“凹数”; 当b =2时,有324,423,共2个“凹数”. 所以这个三位数为“凹数”的概率是6+224=13.[答案] 134.节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,若都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是________.[解析] 设第一串彩灯亮的时刻为x ,第二串彩灯亮的时刻为y ,则⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,要使两串彩灯亮的时刻相差不超过2秒, 则⎩⎨⎧0≤x ≤4,0≤y ≤4,-2≤x -y ≤2.如图, 不等式组⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4所表示的图形面积为16,不等式组⎩⎨⎧0≤x ≤4,0≤y ≤4,-2≤x -y ≤2所表示的六边形OABCDE 的面积为16-4=12,由几何概型的公式可得P =1216=34.[答案] 345.将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a ,正四面体的三个侧面上的数字之和为b ”.设复数为z =a +b i.(1)若集合A ={z |z 为纯虚数},用列举法表示集合A ;(2)求事件“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的概率. [解] (1)A ={6i ,7i ,8i ,9i}.(2)满足条件的基本事件的个数为24.设满足“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的事件为B . 当a =0时,b =6,7,8,9满足a 2+(b -6)2≤9; 当a =1时,b =6,7,8满足a 2+(b -6)2≤9; 当a =2时,b =6,7,8满足a 2+(b -6)2≤9; 当a =3时,b =6满足a 2+(b -6)2≤9.即B 为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个.所以所求概率P =1124.6.设f (x )和g (x )都是定义在同一区间上的两个函数,若对任意x ∈[1,2],都有|f (x )+g (x )|≤8,则称f (x )和g (x )是“友好函数”,设f (x )=ax ,g (x )=bx.(1)若a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数”的概率; (2)若a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数”的概率. [解] (1)设事件A 表示f (x )和g (x )是“友好函数”, 则|f (x )+g (x )|(x ∈[1,2])所有的情况有: x -1x ,x +1x ,x +4x ,4x -1x ,4x +1x ,4x +4x , 共6种且每种情况被取到的可能性相同. 又当a >0,b >0时ax +bx 在⎝⎛⎭⎫0,b a 上递减,在⎝⎛⎭⎫b a ,+∞上递增;x -1x 和4x -1x在(0,+∞)上递增, 所以对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x -1x ,故事件A 包含的基本事件有4种, 所以P (A )=46=23,故所求概率是23.(2)设事件B 表示f (x )和g (x )是“友好函数”,因为a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数,所以点(a ,b )所在区域是长为3,宽为3的矩形区域.要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立, 需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b2≤8,所以事件B 表示的点的区域是如图所示的阴影部分.所以P (B )=12×⎝⎛⎭⎫2+114×33×3=1924,故所求的概率是1924.。
2019年高考江苏卷数学试题解析1.已知集合A ={-1,0,1,6},{}|0,B x x x R =>∈,则A ∩B =_____.【答案】{1,6}.由题意利用交集的定义求解交集即可.【解析】由题知,{1,6}A B = .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____.【答案】2本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值.【解析】2(a 2)(1i)222(2)i a ai i i a a i ++=+++=-++ ,令20a -=得2a =.3.下图是一个算法流程图,则输出的S 的值是_____.【答案】5结合所给的流程图运行程序确定输出的值即可.【解析】执行第一次,1,1422xS S x =+==≥不成立,继续循环,12x x =+=;执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=;执行第三次,3,342x S S x =+==≥不成立,继续循环,14x x =+=;执行第四次,5,442x S S x =+==≥成立,输出 5.S =4.函数y =【答案】[-1,7]由题意得到关于x 的不等式,解不等式可得函数的定义域.【解析】由已知得2760x x +-≥,即2670x x --≤解得17x -≤≤,故函数的定义域为[-1,7].5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.【答案】53由题意首先求得平均数,然后求解方差即可.【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.【答案】710先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【解析】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况,若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y =根据条件求b ,再代入双曲线的渐近线方程得出答案.【解析】由已知得222431b -=,解得b =或b =,因为0b >,所以b =.因为1a =,所以双曲线的渐近线方程为y =.8.已知数列{a n }*()n ∈N 是等差数列,S n 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16由题意首先求得首项和公差,然后求解前8项和即可.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩,解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=.9.如图,长方体ABCD -A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E -BCD 的体积是_____.【答案】10由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.【答案】4将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【解析】当直线22gR r 平移到与曲线4y x x =+相切位置时,切点Q 即为点P 到直线22gR r的距离最小.由2411y x '=-=-,得2(2)x =舍,32y =即切点2,32)Q ,则切点Q 到直线22gR r4=,故答案为:4.11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点A 的坐标是____.【答案】(e,1)设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标.【解析】设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=,点A 在曲线ln y x =上的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,代入点(),1e --,得001ln 1e x x ---=-,即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =,故点A 的坐标为(),1A e 12.如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅ ,则AB AC的值是_____.3由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD.()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC = 即3,AB = 故3AB AC =.【迁移】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____.【答案】10由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【解析】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭,当tan 2α=时,上式22222122==22110⎛⎫⨯+- ⎪+⎝⎭当1tan 3α=-时,上式=22112133=210113⎛⎫⎛⎫⎛⎫⨯-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2.410πα⎛⎫+= ⎪⎝⎭【迁移】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.14.设f (x ),g (x )是定义在R 上的两个周期函数,f (x )的周期为4,g (x )的周期为2,且f (x )是奇函数.当(0,2]x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程f (x )=g (x )有8个不同的实数根,则k 的取值范围是_____.【答案】12,34⎡⎫⎪⎢⎪⎣⎭分别考查函数()f x 和函数()g x 图像的性质,考查临界条件确定k 的取值范围即可.【解析】当(]0,2x ∈时,()f x =即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x=在(0,9]上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点;当g()(2)x k x =+时,()g x 的图象为恒过点(-2,0)的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心(1,0)到直线20kx y k -+=的距离为1,1=,得24k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点(1,1)时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =.综上可知,满足()()f x g x =在(0,9]上有8个实根的k 的取值范围为1234⎡⎪⎢⎪⎣⎭,.【迁移】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值;(2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)33c =;(2)255.(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin(2B π+的值.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2ac b B ac +-=,得2222(3)(2)323c c c c+-=⨯⨯,即213c =.所以33c =.(2)因为sin cos 2A B a b=,由正弦定理sin sin a b A B =,得cos sin 2B B b b =,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =.因此π25 sin cos25B B⎛⎫+==⎪⎝⎭.【迁移】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【迁移】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,2E --.(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF 的方程,联立直线方程与圆的方程,确定点B 的坐标,联立直线BF 2与椭圆的方程即可确定点E 的坐标;解法二:由题意利用几何关系确定点E 的纵坐标,然后代入椭圆方程可得点E 的坐标.【解析】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==,因此2a =DF 1+DF 2=4,从而a =2由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1)2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=,解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得1x =-或137x =.又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-.因此3(1,2E --.【迁移】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.18.如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321解:解法一:⊥,垂足为E.利用几何关系即可求得道路PB的长;(1)过A作AE BD(2)分类讨论P和Q中能否有一个点选在D处即可.(3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离.解法二:(1)建立空间直角坐标系,分别确定点P和点B的坐标,然后利用两点之间距离公式可得道路PB的长;(2)分类讨论P和Q中能否有一个点选在D处即可.(3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离.【解析】解法一:⊥,垂足为E.(1)过A作AE BD由已知条件得,四边形ACDE为矩形,6, 8DE BE AC AE CD =====.因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=;当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==.因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+-≤≤.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设P 1为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -;当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+,所以Q (4+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+d 最小,此时P ,Q 两点间的距离4(13)17PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17+(百米).【迁移】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.设函数()()()(),,,R f x x a x b x c a b c =---∈,()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{-3,1,3}中,求f (x )的极小值;(3)若0,01,1a b c =<≤=,且f (x )的极大值为M ,求证:M ≤427.【答案】(1)2a =;(2)见解析;(3)见解析.(1)由题意得到关于a 的方程,解方程即可确定a 的值;(2)由题意首先确定a ,b ,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.(3)由题意首先确定函数的极大值M 的表达式,然后可用如下方法证明题中的不等式:解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式;解法二:由题意构造函数,求得函数在定义域内的最大值,因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =.列表如下:x1(0,)3131(,1)3()g'x +0–()g x ↗极大值↘所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x =b 或23a bx +=.因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠,所以21,3,33a ba b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:x(-∞,-3)-3(-3,1)1(1,+∞)+0–0+()f x ↗极大值↘极小值↗所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得1211,33b b x x ++==.列表如下:x1(,)x -∞1x ()12,x x 2x 2(,)x +∞+0–0+()f x ↗极大值↘极小值↗所以()f x 的极大值()1M f x =.解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤.解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得13x =.列表如下:x1(0,)3131(,1)3()g'x +0–()g x ↗极大值↘所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫==⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.【迁移】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定k b 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m 的最大值.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k k qk q -≤≤,其中k =1,2,3,…,m .当k=1时,有q≥1;当k=2,3,…,m时,有ln lnln1 k kqk k≤≤-.设f(x)=ln(1)x xx>,则21ln()xf'xx-=.令()0f'x=,得x=e.列表如下:x(1,e)e(e,+∞) ()f'x+0–f(x)↗极大值↘因为ln2ln8ln9ln32663=<=,所以maxln3()(3)3f k f==.取q=k=1,2,3,4,5时,ln lnk qk≤,即kk q≤,经检验知1k q k-≤也成立.因此所求m的最大值不小于5.若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6.综上,所求m的最大值为5.【迁移】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)【选做题】本题包括21、22、23三小题,请选定其中两小题,并在相应的答题................区域内作答......若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.【答案】(1)115106⎡⎤⎢⎥⎣⎦;(2)121,4λλ==.(1)利用矩阵的乘法运算法则计算2A 的值即可;(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可.【解析】(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦.(2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.【迁移】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.22.在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(2)2.(1)由题意,在OAB △中,利用余弦定理求解AB 的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=.【迁移】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.23.设x ∈R ,解不等式||+|2 1|>2x x -.【答案】1{|1}3x x x <->或.由题意结合不等式的性质零点分段即可求得不等式的解集.【解析】当x <0时,原不等式可化为122x x -+->,解得x <–13:当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解;当x >12时,原不等式可化为x +2x –1>2,解得x >1.综上,原不等式的解集为1{|1}3x x x <->或.【迁移】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.设2*012(1),4,nnn x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a +=+*,a b ∈N ,求223a b -的值.【答案】(1)5n =;(2)-32.(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值;(2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;解法二:利用(1)中求得的n 的值,由题意得到(51的展开式,最后结合平方差公式即可确定223a b -的值.【解析】(1)因为0122(1)C C C C 4nnnn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n+=02233445555555C C C C C C =+++++a =+解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.解法二:50122334455555555(1C C (C (C (C (C (=+++++012233445555555C C C C C C =-+-+-.因为*,a b ∈N ,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.【迁移】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.25.在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈ 令n n n n M A B C = .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).【答案】(1)见解析;(2)见解析.(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值.【解析】(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======.(2)设()A a b ,和()B c d ,是从n M 中取出的两个点.因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况.①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;④若12b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。
1.(2018·南通调研测试)某中学共有学生2 800人,其中高一年级970人,高二年级930人,高三年级900人,现采用分层抽样的方法,抽取280人进行体育达标检测,则抽取高二年级学生人数为________.[解析] 设高二年级抽取n 人,则n 930=2802 800,故n =93人. [答案] 932.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n =________.[解析] 由已知条件,抽样比为13780=160, 从而35600+780+n =160,解得n =720. [答案] 7203.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是________.[解析] 由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.[答案] 46,45,564.(2018·江苏省高考命题研究专家原创卷(一))某电商联盟在“双11”狂欢节促销活动中,对11月11日9时到14时的销售额进行统计,得到如图所示的频率分布直方图.已知13时到14时的销售额为4.5万元,则10时到13时的销售额为________万元.解析:设10时到13时的销售额为x 万元,由题图可知13时到14时的销售额与10时到13时的销售额的比值为0.100.15+0.40+0.25=18,又13时到14时的销售额为4.5万元,所以4.5x =18,解得x =36,所以10时到13时的销售额为36万元. 答案:365.(2018·无锡模拟)若一组样本数据8,x ,10,11,9的平均数为10,则该组样本数据的方差为________.[解析] 因为平均数=8+x +10+11+95=10,所以x =12,从而方差为s 2=15(4+4+0+1+1)=2.[答案] 26.(2018·苏锡常镇四市调研)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据哈尔滨三中学生社团某日早6点至晚9点在南岗、群力两个校区附近的PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,南岗、群力两个校区浓度的方差较小的是________校区.[解析] 方差较小即两者比较时数据比较集中,从茎叶图知,南岗校区数据集中,而群力校区数据分散的很明显,故南岗校区浓度的方差较小.[答案] 南岗7.(2018·鹰潭模拟改编)某市共有400所学校,现要用系统抽样的方法抽取20所学校作为样本,调查学生课外阅读的情况.把这400所学校编上1~400的号码,再从1~20中随机抽取一个号码,如果此时抽得的号码是6,则在编号为21到40的学校中,应抽取的学校的编号为________.[解析] 根据系统抽样的条件,可知抽取的号码为第一组的号码加上组距的整数倍,所以为号20+6=26号.[答案] 268.(2018·江苏省名校高三入学摸底卷)已知一组数据1,2,3,4,5m 的方差为2,那么相对应的另一组数据2,4,6,8,10m 的方差为________.解析:1,2,3,4,5m 的平均数x -=2+m ,方差s 2=(-m -1)2+m 2+(1-m )2+(-m +2)2+(4m -2)25=2,而2,4,6,8,10m 的平均数x -1=4+2m ,方差s 21=4×(-m -1)2+m 2+(1-m )2+(-m +2)2+(4m -2)25=4×2=8.答案:89.(2018·宿迁调研)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则7个剩余分数的方差为________.解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,解得x =4.所以s 2=17×[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367. 答案:36710.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列{a n },已知a 2=2a 1,且样本容量为300,则小长方形面积最大的一组的频数为________.[解析] 因为小长方形的面积由小到大构成等比数列{a n },且a 2=2a 1,所以样本的频率构成一个等比数列,且公比为2,所以a 1+2a 1+4a 1+8a 1=15a 1=1,所以a 1=115, 所以小长方形面积最大的一组的频数为300×8a 1=160.[答案] 16011.一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生小张只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.小张所在班级共有40人,此次考试选择题得分情况统计表如下:(1)应抽取多少张选择题得60分的试卷?(2)若小张选择题得60分,求他的试卷被抽到的概率.[解] (1)得60分的人数为40×10%=4.设抽取x 张选择题得60分的试卷,则4020=4x, 则x =2,故应抽取2张选择题得60分的试卷.(2)设小张的试卷为a 1,另三名得60分的同学的试卷为a 2,a 3,a 4,所有抽取60分试卷的方法为(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 2,a 3),(a 2,a 4),(a 3,a 4)共6种,其中小张的试卷被抽到的抽法共有3种,故小张的试卷被抽到的概率为P =36=12. 12.甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算两组数据的平均数;(2)分别计算两组数据的方差;(3)根据计算结果,估计一下两名战士的射击水平谁更好一些.[解] (1) x -甲=110(8+6+7+8+6+5+9+10+4+7)=7, x -乙=110(6+7+7+8+6+7+8+7+9+5)=7. (2)由方差公式s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]可求得s 2甲=3.0,s 2乙=1.2. (3)由x -甲=x -乙,说明甲、乙两战士的平均水平相当;又因为s 2甲>s 2乙,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定.1.(2018·徐州模拟)某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为________.[解析] 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200双皮靴.[答案] 1 2002.(2018·北京海淀区模拟)某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.[解析] 第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015.[答案] 50 1 0153.某公司300名员工2016年年薪情况的频率分布直方图如图所示,由图可知,员工中年薪在1.4~1.6万元的共有________人.[解析] 由频率分布直方图知年薪低于1.4万元或者高于1.6万元的频率为(0.2+0.8+0.8+1.0+1.0)×0.2=0.76,因此,年薪在1.4到1.6万元间的频率为1-0.76=0.24,所以300名员工中年薪在1.4到1.6万元间的员工人数为300×0.24=72(人).[答案] 724.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登记错了,甲实得80分,却记了50分,乙实得70分,却记了100分,更正后平均分和方差分别是________.[解析] 因为甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s 2, 则由题意可得:s 2=148[(x 1-70)2+(x 2-70)2+…+(80-70)2+(70-70)2+…+(x 48-70)2],而更正前有75=148[(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2], 化简整理得s 2=50.[答案] 70,505.某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并采用茎叶图表示本次测试30人的跳高成绩(单位:cm),跳高成绩在175 cm 以上(包括175 cm)定义为“合格”,跳高成绩在175 cm 以下(不包括175 cm)定义为“不合格”.(1)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取5人,则5人中“合格”与“不合格”的人数各为多少?(2)若从甲队178 cm(包括178 cm)以上的6人中抽取2人,则至少有一人在186 cm 以上(包括186 cm)的概率为多少?[解] (1)根据茎叶图可知,30人中有12人“合格”,有18人“不合格”.用分层抽样的方法,则5人中“合格”与“不合格”的人数分别为2人、3人.(2)甲队178 cm(包括178 cm)以上的6人中抽取2人的基本事件为(178,181),(178,182),(178,184),(178,186),(178,191),(181,182),(181,184),(181,186),(181,191),(182,184),(182,186),(182,191),(184,186),(184,191),(186,191),共15个.其中都不在186 cm 以上的基本事件为(178,181),(178,182),(178,184),(181,182),(181,184),(182,184),共6个.所以都不在186 cm 以上的概率P =615=25,由对立事件的概率公式得,至少有一人在186 cm 以上(包括186 cm)的概率为1-P =1-25=35. 6.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.[解] (1)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a +0.5×a ,解得a =0.30.(2)由(1),100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x <2.5.由0.50×(x -2)=0.5-0.48,解得x =2.04.故可估计居民月均用水量的中位数为2.04吨.。
1.先后抛掷硬币三次,则至少一次正面朝上的概率是________.
解析:至少一次正面朝上的对立事件的概率为18,故P =1-18=78
. 答案:78
2. 如图,在一不规则区域内,有一边长为1米的正方形,
向区域内随机地撒1 000 颗黄豆,数得落在正方形区域内(含边
界)的黄豆数为375颗,以此实验数据为依据,可以估计出该不规则图形的面积为________平方米.
解析:设该不规则图形的面积为x 平方米,向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375,所以根据几何概型的概率计算
公式可知3751 000=1x ,解得x =83
. 答案:83
3.已知函数f(x)=x 2-x -2,x ∈[-5,5],若从区间[-5,5]内随机抽取一个实数x 0,则所取的x 0满足f(x 0)≤0的概率为________.
解析:令x 2-x -2≤0,解得-1≤x ≤2,由几何概型的概率计算公式得P =2-(-1)5-(-5)=310
=0.3. 答案:0.3
4.从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整
数的概率是__________.
解析:从2,3,8,9中任取两个不同的数字,(a ,b)的所有可能结果有(2,
3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log 28=3,log 39=2为整数,所以log a b 为整数
的概率为16
. 答案:16
5.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17
,都是白子的概率是1235
,则从中任意取出2粒恰好是同一色的概率是________. 解析:设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A +B ,且事件A 与B
互斥.所以P(C)=P(A)+P(B)=17+1235=1735
.即任意取出2粒恰好是同一色的概率为1735
. 答案:1735
6.(2018·镇江模拟)设m ,n 分别为连续两次投掷骰子得到的点数,且向量a =(m ,n),b =(1,-1),则向量a ,b 的夹角为锐角的概率是________.
解析:所有的基本事件的个数有36个,因为向量a ,b 的夹角为锐角,所以a ·b>0且a ,b 不共线,即m -n>0且m ≠-n ,故满足条件的基本事件有1
+2+3+4+5=15个,故所求的概率为P =1536=512
. 答案:512
7.连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m ”为事件A ,则P(A)最大时,m =________.
解析:m 可能取到的值有2,3,4,5,6,7,8,9,10,11,12,对应的基本事件个数依次为1,2,3,4,5,6,5,4,3,2,1,所以两次向上的数字之和等于7对应的事件发生的概率最大.
答案:7
8.(2018·郑州模拟)若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,y ≥2x -6
表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.
解析:作出不等式组与不等式表示的可行域如图所示,平面
区域N 的面积为12
×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24. 答案:π24 9.(2018·江苏省高考名校联考(九))2017年1月18日支付宝集福活动“又
”。