水塔水流量的估计
- 格式:doc
- 大小:88.00 KB
- 文档页数:10
估计水塔的水流量美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量.许多社区没有测量流入或流出当地水塔的水量的装置,他们只能代之以每小时测量水塔中的水位,其精度不超过5%,更重要的是,当水塔中的水位下降最低水位L 时水泵就启动向水塔输水直到最高水位H,但也不能测量水泵的供水量.因此,当水泵正在输水时不容易建立水塔中水位和水泵工作时用水量之间的关系.水泵每两天输水一次或两次,每次约二小时.试估计任何时刻(包括水泵正在输水的017921 时间内)从水塔流出的流量f(t),并估计一天的总用水量.附表给出了某各小镇一天中真实的数据.附表给出了从第一次测量开始的以秒为单位的时刻.以及该时刻的高度单位为百分之一英尺的水位测量值.例如,3316 秒后,水塔中水位达到31.10 英尺.水塔是一个高为40 英尺,直径为57 英尺的正圆柱.通常当水塔水位降至约27.00 英尺的水泵开始工作,当水位升到35.50 英尺时水泵停止工作.问题分析与数据处理由问题的要求,关键在于确定用水率函数,即单位时间内用水体积,记为f(t),又称水流速度.如果能够通过测量数据,产生若干个时刻的用水率,也就是f(t)在若干个点的函数值,则f(t)的计算问题就可以转化为插值或拟合问题一,问题假设1)水塔中水流量是时间的连续光滑函数,与水泵工作与否无关,并忽略水位高度对水流速度的影响.2)水泵工作与否完全取决于水塔内水位的高度,且每次加水的工作时间为2小时.3)水塔为标准圆柱体.4)水泵第一次供水时间为[32284, 39435],第二次供水时间段为[75021,85948].5)为了方便计算我们把表格中的秒转化成小时.6)我们规定以下符号:h:水塔中水位的高度,是时间的函数,单位为英尺;v:水塔中水的体积,是时间的函数,单位为加仑; t:时间,单位为小时;f:模型估计的水塔水流量,是时间的函数,单位为加仑/小时p:水泵工作时的充水水流量,也是时间的函数,单位为加仑/小时。
水塔水流量的估计一.实验问题某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。
但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一次,每次约2h。
水塔是一个高为12.2m,直径为17.4m的正圆柱。
按照设计,水塔水位降至约8.2m时,水泵自动启动,水位升到约10.8m时水泵停止工作。
表1是某一天的水位测量纪录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。
表1 水位测量纪录二.问题分析根据以上数据的形式和以往经验,适合采用线性拟合的方式进行数据处理。
对第1、2、3未供水时段可直接进行用五次多项式进行拟合。
对第1、2供水时段分别在两端各取两个点用前后时刻的流速拟合得到。
结果可以用分段函数表示分为5段,分别是第一未供水时段,第一供水时段,第二未供水时段,第二供水时段,第三未供水时段。
得出流速之后再乘以水塔横截面积即得任何时刻与水塔流出水流量的关系,即流速与时间的关系。
对流速进行分段积分并求和,即得一天的总水流量。
三.程序的设计与求解方法1.数据的单位转换水塔的横截面积为A=(17.4)^2*pi/4=237.0661(平方米)。
2.拟合水位——时间函数(1)对第1未供水时段的数据进行拟合。
t=[0 0.92 1.84 2.90 3.87 4.98 5.90 7.00 7.93 8.97 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 19.04 19.96 20.84 23.88 24.99 25.91]h=[ 9.68 9.48 9.31 9.13 8.98 8.81 8.69 8.52 8.39 8.22 10.82 10.50 10.21 9.94 9.65 9.41 9.18 8.92 8.66 8.43 8.22 10.59 10.35 10.18] f1=polyfit(t(1:10),h(1:10),5); tm1=0:0.1:9.0; y1=polyval(f1,tm1); plot(tm1,y1)01234567898.28.48.68.899.29.49.69.8(2)对第2未供水时段的数据进行拟合。
冷却塔是水与空气进行热交换的一种设备,它主要由风机、电机、填料、播水系统、塔身、水盘等组成,而进行热交换主要由在风机作用下比较低温空气与填料中的水进行热交换而降低水温。
水塔的构造及设计工况在说明书上有注明,而我们现在采用的水吨为单位是国际上比较常用的单位。
在计算选型上比较方便,另冷却塔在选型上应留有20%左右的余量。
以日立RCU120SY2 为例:冷凝:37℃蒸发:7 ℃蒸发器:Q = 316000 Kcal/h Q = 63.2m3/h冷凝器:Q = 393000 Kcal/h Q = 78.6m3/h这些在日立的说明书上可以查到;如选用马利冷却塔则:78.6×1.2 = 94.32 m3/h(每小时的水流量)选用马利SR-100 可以满足(或其它系列同规格的塔,如SC-100L)在选用水泵时要在SR-100 的100 吨水中留有10%的余量,在比较低的扬程时可选用管道泵,在扬程高时则宜选用IS 泵。
100×1.1=110 吨水/小时选用管道泵GD125-20 可以满足;而在只知道蒸发器Q=316000Kcal/h 时,则可以通过以下公式算出需要多大的冷却塔:316000×1.25(恒值)= 395000 Kcal/h,1.25——冷凝器负荷系数395000÷5 = 79000 KG/h = 79 m3/h79×1.2(余量) = 94.8m3/h(冷却塔水流量)(电制冷主机—通式:匹数×2700×1.2×1.25÷5000 或冷吨×3024×1.2×1.25÷5000= 冷却塔水流量m3/h)冷却塔已知基它条件确定冷却塔循环水量的常用公式:a. 冷却水量=主机制冷量(KW)×1.2×1.25×861/5000(m3/h)b. 冷却水量=主机冷凝器热负荷(kcal/h)×1.2/5000(m3/h)c. 冷却水量=主机冷凝器热负荷(m3/h)×1.2(m3/h)d. 冷却水量=主机制冷量(冷吨)×0.8(m3/h)e. 冷却水量=主机蒸发器热负荷(kcal/h)×1.5×1.25/5000(m3/h)f. 冷却水量=主机蒸发器热负荷(m3/h)×1.2×1.25(m3/h)g. 冷却水量=主机蒸发器热负荷(冷吨)×1.2×1.25×3024/5000(m3/h)注:以上:1.2为选型余量 1.25为冷凝器负荷系数。
水塔流量估计的数学建模水塔是城市供水系统中的重要组成部分,它们储存着大量的水资源,为城市居民提供生活用水。
在城市供水系统中,水塔的流量是一个非常重要的参数,它直接影响着供水系统的运行效率和水资源的利用率。
因此,如何准确地估计水塔的流量是一个非常重要的问题。
水塔的流量估计可以通过数学建模来实现。
首先,我们需要了解水塔的基本结构和工作原理。
水塔通常由水箱、进水管、出水管、溢流管等组成。
当水箱内的水位下降时,进水管会自动打开,将外部的水源引入水箱中,同时出水管会自动关闭,防止水箱内的水流失。
当水箱内的水位上升到一定高度时,溢流管会自动打开,将多余的水流出水箱,以保持水箱内的水位稳定。
在水塔的运行过程中,我们可以通过测量进水管和出水管的水流速度来估计水塔的流量。
根据流量的定义,流量等于单位时间内通过某一截面的液体体积。
因此,我们可以通过测量进水管和出水管的截面积和水流速度来计算水塔的流量。
具体地,假设进水管的截面积为A1,出水管的截面积为A2,进水管的水流速度为v1,出水管的水流速度为v2,则水塔的流量Q可以表示为:Q = A1v1 - A2v2其中,A1v1表示进水管的流量,A2v2表示出水管的流量。
由于进水管和出水管的截面积和水流速度可能会随着时间的变化而发生变化,因此我们需要不断地对它们进行测量和调整,以保证水塔的流量估计的准确性。
除了测量进水管和出水管的水流速度外,我们还可以通过其他的方法来估计水塔的流量。
例如,我们可以通过测量水塔内部的水位变化来估计水塔的流量。
具体地,我们可以安装水位传感器在水塔内部,通过测量水位的变化来计算水塔的流量。
这种方法的优点是不需要对进水管和出水管进行测量,但是需要安装水位传感器,成本较高。
水塔流量估计的数学建模是一个非常重要的问题。
通过测量进水管和出水管的水流速度或者测量水塔内部的水位变化,我们可以准确地估计水塔的流量,从而保证城市供水系统的正常运行。
估计水塔的水流量1、问题提出:某地区用水管理机构需要对居民的用水速度(单位时间的用水量)和日总用水量进行估计。
现有一居民区,其自来水是由一个圆柱形水塔提供,水塔高12.2m,塔的直径为17.4m。
水塔是由水泵根据水塔中的水位自动加水,一般水泵每天工作两次,按照设计,当水塔中的水位降至最低水位,约8.2m时,水泵自动启动加水;当水位升高到最高水位,约10.8m时,水泵停止工作。
表1给出的是某一天的测量数据,测量了28个时刻的数据,但由于水泵正向水塔供水,有三个时刻无法测到水位(表中用—表示),试建立数学模型,来估计居民的用水速度和日用水量。
表1 水塔中水位原始数据2、问题分析:日用水量用水速度每个时刻水塔中水的体积3、模型假设:影响水从水塔中流出的流量的唯一因素是公众对水的传统要求;水塔中的水位、气候条件、温度变化等不影响水流量的大小;水泵充水速度水塔的水流量与水泵状态独立;恒定,且远大于水塔的水流速度;水流量曲线是一条连续光滑的曲线;表1数据是准确的;4、模型的建立与求解:(1)、水塔中水的体积其中, ,(r 为底面半径,d 为水面高度)(2)在Matlab 命令窗口直接运行(不包括未知三点)>>t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.958,23.880,24.986,25.908];>>v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954.6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005.3,1954.6,2572.9,2518.4,2462.0,2420.7]; >> scatter(t,v)得到水塔中水体积的散点图 0510********19002000210022002300240025002600(3)在Matlab 中编写脚本文件(不包括未知三点)采用数值微分的一阶微商的两点公式(末位处近似为sd(n)=sd(n-1))t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.958,23.880,24.986,25.908];v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954.6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005d r V 2π=.3,1954.6,2572.9,2518.4,2462.0,2420.7];for i=1:9sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(10)=sd(9);for i=11:20sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(21)=sd(20);for i=22:24sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(25)=sd(24);scatter(t,sd)hold onplot(t,sd)得到水塔中水流速度的散点图及光滑图0510********(4)预测水塔中的未知流速[1]在Matlab中运行脚本文件(不包括未知三点):采用数值微分的一阶微商的两点公式(末位处近似为sd(n)=sd(n-1))t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12. 032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22 .958,23.880,24.986,25.908];v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954. 6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005 .3,1954.6,2572.9,2518.4,2462.0,2420.7];for i=1:9sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(10)=sd(9);for i=11:20sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(21)=sd(20);for i=22:24sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(25)=sd(24);sd得到速度(不包括未知三点)sd =Columns 1 through 951.1401 44.1432 39.3309 36.8764 36.0434 33.0803 34.6293 35.2495 38.4986Columns 10 through 1838.4986 70.5937 74.8373 70.6840 60.7949 63.0836 58.9382 55.7466 55.6962Columns 19 through 2559.0022 57.6136 57.6136 59.1106 50.9946 44.7939 44.7939 [2]采用拉格朗日插值法估计未知三点的速度:在Matlab命令窗口直接运行>> x0=[7.928,8.967];>> y0=[38.4968,38.4968];>> lglr3(x0,y0,9.981)ans =38.4968>> x0=[8.967,9.981];>> y0=[38.4968,38.4968];>> lglr3(x0,y0,10.925)ans =38.4968>> x0=[19.959,20.839];>> y0=[57.6136,57.6136];>> lglr3(x0,y0,22.015)ans =57.6136[3]在Matalb中运行脚本文件t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,9.981,10.9 25,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.015,22.958,23.880,24.986,25.908];sd=[51.1401,44.1432,39.3309,36.8764,36.0434,33.0803,34.6293,35.2495,3 8.4986,38.4968,38.4968,38.4986,70.5937,74.8373,70.6840,60.7949,63.083 6,58.9382,55.7466,55.6962,59.0022,57.6136,57.6136,57.6136,59.1106,50. 9946,44.7939,44.7939];scatter(t,sd)hold onplot(t,sd)得到水塔中水流速度的散点图及光滑图(new)757065605550454035300510********(4)a、通过曲线拟合,拟合出上述函数(f1)b、通过数值积分(梯形,辛普森)求出用水量(f2)5、模型检验:应该另外测试一批数据检验模型(f1,f2)6、模型分析:(1) 4.(3)中末位处近似为sd(n)=sd(n-1)可以改进,比如先采用数值微分求1----(n-1)的速度,再采用拉格朗日插值法求末位n的速度;(2)拉格朗日插值可以改用其他更为精确的插值法(3)数值微分法可以采用其他的更为精确的方法(而不是一阶微商的两点公式)(4) 4.(4)中的两部暂时不会(5)模型假设处可能有一些瑕疵7、附录:。
估计水塔的水流量(AMCM911.实验问题某地的用水管理机构要求各社区提供用水率(以每小时多少加仑计,英制单位下,1加仑=4.54596dm3,美制单位下,1加仑=3.78533dm3)以及每天所用的总用水量,但许多社区并没有测量流入或流出当地水塔的水量的设备,而只能以每小时测量水塔的水位代替,其精度在0.5%以内。
更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向水塔重新充水直至某一最高水位H,但也无法得到水泵的供水量的测量数据。
因此,在水泵正在工作时,不容易建立水塔中水位与水泵工作时用水量之间的关系。
水泵每天向水塔充水一次或两次,每次大约2小时。
试估计在任何时候,甚至包括水泵正在工作的时间内从水塔流出的流量,并估计一天的总用水量。
水塔是一个垂直圆柱体,高为40英尺,直径为57英尺。
下表给出了某个小镇某一天的真实数据。
表:某小镇某天的水塔水位(1m=3.281英尺)2.实验分析2.1 计算中将流量定义为单位时间流出的水的高度乘以水塔横截面积。
2.2 把时间分成5段:第1未供水段、水泵开启第1段、第2未供水段、水泵开启第2段、第3未供水段。
2.3 先直接对第1、2、3未供水段进行5次曲线拟合。
2.4 再对得到的曲线分别求导,取得流速(即单位时间内流出的水的高度)。
2.5 水泵开启第1、2段,分别在两端各取两个点,用时刻流速进行拟合得到这两段的流速。
2.6 流速乘以水塔横截面积就得到任何时刻的水流量。
2.7 对其进行分段积分,求和得到一天的总水流量。
3.程序设计与求解方法3.1 对表中数据进行处理数据的单位转换:46636,49953,53936,57254,60574,64554,68535,71854,75021,85968,89953,932 70];y=[31.75,31.10,30.54,29.94,29.55,28.92,28.50,27.87,27.52,26.97,35.50, 34.45,33.50,32.67,31.56,30.81,30.12,29.27,28.42,27.67,26.97,34.75,33. 89,33.40];t=x/3600; %时间单位为小时h=y/3.281; %水位高度单位为米水塔横截面积为a=pi*(57/2)^2;3.2 对第1段未供水段进行5次拟合x1=t(1:10);y1=h(1:10);f1=polyfit(x1,y1,5);t1=0:0.01:t(10);h1=polyval(f1,t1);plot(x1,y1,'o',t1,h1,'k');xlabel('时间(h)');ylabel('水位(m)');title('第一未供水时段的时间水位图')3.3 对第2段未供水段进行5次拟合x2=t(11:21);y2=h(11:21);f2=polyfit(x2,y2,5);t2=t(11):0.01:t(21);h2=polyval(f2,t2);plot(x2,y2,'o',t2,h2,'r');xlabel('时间(h)');ylabel('水位(m)');title('第二未供水时段的时间水位图 ')3.4 对第3段未供水段进行5次拟合x3=t(22:24);y3=h(22:24);f3=polyfit(x3,y3,5);t3=t(22):0.01:t(24);h3=polyval(f3,t3);plot(x3,y3,'o',t3,h3,'r');xlabel('时间(h)');ylabel('水位(m)');title('第三未供水时段的时间水位图 '3.5 对1、2、3未供水段进行求导,得到流速,再乘以水塔横截面积得流量b1=polyder(f1);%求导b2=polyder(f2);%求导b3=polyder(f3);%求导g1=-polyval(b1,t1)*a;%流速值再乘以水塔横截面积得流量g11=-polyval(b1,x1)*a;g2=-polyval(b2,t2)*a;%流速值再乘以水塔横截面积得流量g22=-polyval(b2,x2)*a;g3=-polyval(b3,t3)*a;%流速值再乘以水塔横截面积得流量g33=-polyval(b3,x3)*a;plot(x1,g11,'*',t1,g1,'c') %第一未供水段时间流量图plot(t2,g2) %第二未供水段时间流量图plot(t3,g3) %第三未供水段时间流量图3.6 求水泵开启第一段的时间流量图,取那段的前后两端各两个点的流速进行拟合,再乘以水塔横截面积得流量。
水塔流量的估计一.问题的提出某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计其流量。
但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一两次,每次约2h(小时)。
水塔是一个高为12.2m,直径为17.4m 是正圆 柱。
按照设计,水塔水位降至约8.2m 时,水泵自动 启动,水位升到约为10.8m 时水泵停止工作。
表1是某一天的水位测量记录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量及一天的总用水量。
表1:水位测量记录(时刻:h ,水位:cm )时刻 0 0.92 1.84 2.95 3.87 4.98 5.90 7.01 7.93 8.97 水位 968 948 931 913 898 881 896 852 839 822 时刻 9.98 10.92 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 水位 // // 1082 1050 1021 994 965 941 918 892 时刻 19.04 19.96 20.84 22.01 22.96 23.88 24.99 25.91水位866843822////105910351011二、问题分析流量是单位时间流出的水的体积,由于水塔是正圆柱形,横截面积是常数,在水泵不工作的时段,流量很容易从水位对时间的变化率算出,问题是如何估计水泵供水时段的流量。
水泵供水时段的流量只能靠供水时段前后的流量拟合得到,作为用于拟合的原始数据,我们希望水泵不工作的时段流量越准确越好。
这些流量大体可由两种方法计算: 一是直接对表1中的水位用数值微分算出各时段的流量,用它们拟合其它时刻或连续时间的流量。
二是先用表中数据拟合水位~时间函数,求导数即可得到连续时间的流量。
一、课程设计目的:1.训练学生灵活应用所学数值分析知识,独立完成问题分析,结合数值分析理论知识,编写程序求解指定问题。
2.初步掌握解决实际问题过程中的对问题的分析、系统设计、程序编码、测试等基本方法和技能;3.提高综合运用所学的理论知识和方法独立分析和解决问题的能力;4.训练用数值分析的思想方法和编程应用技能模拟解决实际问题,巩固、深化学生的理论知识,提高学生对数值分析的认知水平和编程水平,并在此过程中培养他们严谨的科学态度和良好的工作作风二、课程设计任务与要求:课程设计题目:计算水塔的水流量【问题描述】某居民区的民用自来水是由一个圆柱形的水塔提供,水塔高12.2米,直径17.4米。
水塔是由水泵根据水塔内水位高低自动加水,一般每天水泵工作两次,现在需要了解该居民区用水规律与水泵的工作功率。
按照设计,当水塔的水位降至最低水位,约8.2米时,水泵自动启动加水;当水位升高到一个最高水位,约10.8米时,水泵停止工作。
可以考虑采用用水率(单位时间的用水量)来反映用水规律,并通过间隔一段时间测量水塔里的水位来估算用水率,原始数据表是某一天的测量记录数据,测量了28个时刻,但是由于其中有3个时刻遇到水泵正在向水塔供水,而无水位记录。
试建立合适的数学模型,推算任意时刻的用水率、一天的总用水量。
进一步:可自己增加一些新的计算功能。
【问题假设】1.水塔中水流量是时间的连续光滑函数,与水泵工作与否无关,并忽略水位高度对水流速度的影响。
2.水泵工作与否完全取决于水塔内水位的高度。
3.水塔为标准的圆柱体。
体积V=PI*D*D*h/4 其中D为底面直径,h为水位高。
4.水泵第一次供水时间段为[8.967,10.954],第二次供水时间段为[20.839,22.958]。
【实验数据】原始数据(单位:时刻(小时),水塔中水位(米))【实现提示】由问题的要求,关键在于确定用水率函数,即单位时间内用水体积,记为f(t),又称水流速度。
水塔水流量的估计一.实验问题
美国某州的用水管理机构要求各社区提供以每小时多少加仑计的用水量以及每天所用的总水量。
许多社区没有测量流入或流出水塔水量的装置,只能代之以每小时测量水塔中的水位,其误差不超过5%。
但水塔每天有一次或两次的水泵供水,每次约两小时。
当水塔中的水位下降到最低水位L时,水泵就自动向水塔输水直到最高水位H。
此期间不能测量水位,现在已知该水塔是一个高40ft,直径57ft的正圆柱。
某小镇一天水塔水位的记录数据如下表:
其中水位降至约27ft水泵开始工作,水位升到35.50ft时停止工作。
(注1ft=0.3048m)试估计任何时刻t(包括水泵工作时间)从水塔流出的水流量Q(t),
并估计一天的总水量。
二.问题分析
根据以上数据的形式和以往经验,适合采用线性拟合的方式进行数据处理。
对第1、2、3未供水时段可直接进行用五次多项式进行拟合。
对第1、2供水时段分别在两端各取两个点用前后时刻的流速拟合得到。
结果可以用分段函数表示分为5段,分别是第一未供水时段,第一供水时段,第二未供水时段,第二供水时段,第三未供水时段。
得出流速之后再乘以水塔横截面积即得任何时刻与水塔流出水流量的关系,即流速与时间的关系。
对流速进行分段积分并求和,即得一天的总水流量。
三.程序的设计与求解方法
1.数据的单位转换
水塔的横截面积为A=(57*0.3048)^2*pi/4=237.0661(平方米)。
2.拟合水位——时间函数
(1)对第1未供水时段的数据进行拟合。
t=[0 0.92 1.84 2.90 3.87 4.98 5.90 7.00 7.93 8.97 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 19.04 19.96 20.84 23.88 24.99 25.91]
h=[ 9.6774 9.4793 9.3086 9.1257 8.9825 8.8148 8.6868 8.5192 8.3881 8.2205 10.8204 10.5004 10.2108 9.9365 9.6530 9.4092 9.1806 8.9215 8.6624 8.4338 8.2205 10.5918 10.3541 10.1803] f1=polyfit(t(1:10),h(1:10),5); tm1=0:0.1:9.0; y1=polyval(f1,tm1); plot(tm1,y1)
012
3456789
8.2
8.48.68.899.29.49.69.8
(2)对第2未供水时段的数据进行拟合。
f2=polyfit(t(11:21),h(11:21),5); tm2=10.9:0.1:20.9; y2=polyval(f2,tm2); plot(tm2,y2)
10
121416182022
88.5
9
9.5
10
10.5
11
3.确定流量——时间函数
(1)对第1,2未供水时段的水位求导可得流量,用5次多项式拟合第1,2未供水时段的流速与时间关系曲线。
f1=polyfit(t(1:10),h(1:10),5); f2=polyfit(t(11:21),h(11:21),5); b1=polyder(f1); b2=polyder(f2); tm1=0:0.01:9.00;
tm2=10.95:0.01:20.84; g1=-polyval(b1,tm1);
s1=trapz(tm1,g1);%计算第1未供水时段的总用水量 g2=-polyval(b2,tm2); s2=trapz(tm2,g2); subplot(1,2,1) plot(tm1,g1) subplot(1,2,2) plot(tm2,g2)
5
10
0.15
0.160.17
0.180.190.20.210.22
0.23
0.2410152025
0.23
0.240.25
0.260.270.280.29
0.3
0.31
(2)为使流速函数在水泵开启时连续,取4个点,用5次多项式拟合得第1供水时段流速与时间关系曲线。
q1=-polyval(b1,[7.93 8.97]); q2=-polyval(b2,[10.95 12.03]); dx=[7.93 8.97 10.9 12.03];
dy=[q1,q2]; d=polyfit(dx,dy,5) ex=7.93:0.1:12.03; ey=polyval(d,ex) mx=8.97:0.01:10.95; my=polyval(d,mx) m=trapz(mx,my) plot(ex,ey)
7.588.599.51010.51111.51212.5
0.16
0.180.20.220.240.260.280.3
0.32
(3)对第3未供水时段的数据进行拟合。
f3=polyfit(t(22:24),h(22:24),5); tm3=23.8:0.1:26.0; y3=polyval(f3,tm3); plot(tm3,y3)
23.5
24
24.5
25
25.5
26
10.15
10.210.2510.310.3510.410.4510.510.5510.6
10.65
b3=polyder(f3); g3=-polyval(b3,tm3); plot(tm3,g3)
23.52424.52525.526
0.15
0.160.170.180.190.20.210.22
0.23
S3=trapz(tm3,g3);
(4)为使流速函数在水泵开启时连续,取4个点,用5次多项式拟合得第2供水时段与时间关系曲线。
b3=polyder(f3);
f3=polyfit(t(22:24),h(22:24),5);
q3=-polyval(b2,[19.96 20.84]);
q4=-polyval(b3,[23.88 24.99]);
dx=[19.96 20.84 23.88 24.99];
dy=[q3,q4];
d=polyfit(dx,dy,5)
ex=19.96:0.1:24.99;
ey=polyval(d,ex)
mx=20.84:0.01:23.88;
my=polyval(d,mx)
m=trapz(mx,my)
plot(ex,ey)
19
202122232425
0.205
0.210.2150.220.2250.230.2350.240.245
0.25
四.实验结果与讨论
经过以上分析和讨论,得出任何时刻t (包括水泵工作时间)与从水塔流出的水流量Q (t )的关系式(水塔的横截面积为A=(57*0.3048)^2*pi/4=237.0661(平方米)。
)
1.第1未供水时段:
Q (t )=g1*A ,第一未供水时段的总用水高度对g1的积分即s1=trapz(tm1,g1);用matlab 计算得S1=1.4613
第1未供水时段的总用水量为V1=s1*A=1.4613*A= 346.4247
2.第1供水时段:
Q(t)=my*A, 第一供水时段的总用水高度为对my 的积分即m=trapz(mx,my); 用matlab 计算得
m= 0.4451
第1供水时段的总用水量为V2=m*A=0.4451*A= 105.5181
3.第2未供水时段:
Q(t)=g2*A,第一未供水时段的总用水高度为对g1的积分即s2=trapz(tm2,g2);用matlab计算得s2= 2.6013
第2未供水时段的总用水量为V3= s2*A= 2.6013*A= 616.6800
4.第2供水时段:
Q(t)=my*A, 第2供水时段的总用水高度为对my的积分即m=trapz(mx,my); 用matlab计算得
m= 0.6808
第2供水时段的总用水量为V4=m*A=0.6808*A=161.3946
5.第3未供水时段:
Q(t)=g3*A, 第3未供水时段的总用水高度为对g3的积分即S3=trapz(tm3,g3); 用matlab计算得S3 =0.4416
第3未供水时段的总用水量为V5=s3*A=0.4416*A= 104.6884
全天的总用水量=V1+V2+V3+V4+V5=1.3347e+003=1334.7(立方米) 五.实验体会
实验运用matlab对水塔流量进行估计。
在进行实验的过程中,我们采用多项式线性拟合的方法对表中的数据进行处理,得到水流量的估计值。
通过此次实验,我们对多项式线性拟合的方法有了进一步的体会,并初步掌握其处理数据的原理和方式。