初中八年级数学一元一次不等式及一元一次不等式组专题练习
- 格式:doc
- 大小:154.89 KB
- 文档页数:12
一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。
【2022春北师大版八下数学压轴题突破专练】专题04 一元一次不等式与一元一次不等式组一、选择题1.(2021八上·鄞州期末)已知a <b ,下列式子正确的是( )A .a+3>b+3B .a ﹣3<b ﹣3C .﹣3a <﹣3bD .33a b > 2.(2021八上·鄞州期末)若a >b ,则下列各式正确的是( ) A .a ﹣b <0 B .3﹣a <3﹣b C .|a|>|b| D .33a b < 3.(2021八上·瓯海月考)某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )A .24人B .23人C .22人D .不能确定4.(2021八上·秀洲月考)不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( ) A .a <3 B .a=3 C .a >3 D .a≥35.(2021八上·余杭月考)已知关于x 的不等式(4)4a x a -<-的解集为1x <-,则a 的取值范围是( )A .4a >B .4a ≠C .4a <D .4a6.(2021八上·金东期中)不等式 054ax ≤+≤ 的整数解是1,2,3,4.则实数a 的取值范围是( )A .514a -≤<- B .1a ≤- C .54a ≤- D .54a ≥- 7.(2021八下·郑州期中)如果关于x 的分式方程 2x a x -- =1+ 522x x x -- 有正整数解,且关于y 的一元一次不等式组 33240y y y a -⎧>-⎪⎨⎪-≤⎩ 的解集为y≤a,则所有满足条件的整数a的和为( )A .8B .7C .3D .28.(2020八下·南岸期末)如图,已知直线 3y ax =+ 与 3y bx =- 交点为P ,根据图象有以下3个结论:①0a > ;②0b >③2x > 是不等式 33ax bx +>- 的解集.其中正确的个数是( )A .0B .1C .2D .39.(2020八上·余杭期末)如图,直线 y ax b =+ 与 x 轴交于点 ()4,0A ,与直线 y mx = 交于点 ()2,B n ,则关于 x 的不等式组 0ax b mx <-< 的解为( )A .42x -<<-B .2x <-C .4x >D .24x << 二、填空题 10.(2022八下·长兴开学考)如图,直线y=x+2与直线y=ax+c 相交于点P (m ,3).则关于x 的不等式x+2≥ax+c 的不等式的解为 。
八年级数学一元一次不等式和一元一次不等式组的解法基础练习试卷简介:试卷针对学生的易错点不等式基本性质3来出题,考察学生解一元一次不等式和一元一次不等式组的能力学习建议:建议学生对不等式的基本性质3多次复习,在解不等式的过程中,系数化为1要用到不等式的基本性质2和不等式的基本性质3,解不等式的时候注意符号方向的改变一、单选题(共5道,每道20分)1.已知,下列不等式一定成立的是()A.B.C.D.答案:C解题思路:由不等式的基本性质三,不等式两边同时乘以一个负数,不等号的方向改变,所以选C易错点:对于不等式的基本性质记忆错误试题难度:一颗星知识点:不等式的性质2.在不等式中,a、b是常数,且.当_时,不等式的解集是;当_时,不等式的解集是()A.a>0,a>0B.a>0,a<0C.a<0,a>0D.a<0,a<0答案:B解题思路:不等式的基本性质2:不等式两边同时乘以一个正数,不等号的方向不变,不等式的基本性质3:不等式两边同时乘以一个负数,不等号的方向改变,易错点:对于不等式的基本性质2和3记忆不牢固试题难度:二颗星知识点:不等式的性质3.解不等式,正确的是()A.x≥8B.x≥4C.x≤4D.x≤5答案:B解题思路:去分母,3(x-2)≥2(7-x),去括号,合并同类项,移项后,得5x≥20,即x≥4易错点:去分母的时候忘记同时乘以6,去括号时没有注意符号试题难度:三颗星知识点:解一元一次不等式4.若,,试确定当x取()时,.A.B.C.D.答案:D解题思路:-x+3<3x-4,解得,-4x<-7,即易错点:系数化为1的过程中,符号错误试题难度:二颗星知识点:一次函数与一元一次不等式5.解不等式组:,正确的是()A.B.x≥4C.D.x≤4答案:B解题思路:解第一个不等式得;解第二个不等式得x≥4,两个不等式的公共部分是x≥4.如图所示易错点:解不等式计算错误,不会求不等式的公共部分试题难度:四颗星知识点:解一元一次不等式组。
八年级数学上册一元一次不等式专题卷(附答案)评卷人得分一、选择题(题型注释)1.如果不等式组无解,那么m 的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤52.不等式组840312xx-⎩≤-⎧⎨>的解集在数轴上表示为()3.如果不等式无解,则b的取值范围是()A.b>﹣2 B.b<﹣2 C.b≥﹣2 D.b≤﹣24.不等式2x﹣6<0的解集是()A.x>3 B.x<3 C.x>﹣3 D.x<﹣35.已知不等式组,其解集在数轴上表示正确的是()6.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2 D.-3≤b<-27.不等式组的解集在数轴上表示为()A. B .C . D.8.在数轴上表示不等式组202(1)1xx x+>⎧⎨-≤+⎩的解集,正确的是()A. B. C . D.9.不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<310.如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤811.已知不等式组1x a x >⎧⎨≥⎩的解集是x ≥1,则a 的取值范围是( ) A .a <1 B .a ≤1 C .a ≥1 D .a >1 评卷人得分二、填空题(题型注释) 12.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对 道题才能达到目标要求.13.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .14.不等式组的解集为 .15.不等式组10241x x x +⎧⎨+-⎩>≥的解集为 . 16.定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 。
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。
一元一次不等式及一元一次不等式组(一)、填空:(每小题2分,共32分)C.b w x<aD. 无解1 1 a b A.> >0 B. >C.-a<-bD.a-b>b-aa bba6. 如果b<a<0,则下列结论中正确的是 ( )7.a<0,b>0,a+b<0,则下列关系中正确是8. 如果a>b,那么下列不等式中正确的是9.若a<0,下列式子不成立的是A.-a+2<3-aB.a+2<a+3C.-<-D.2a>3a10.若 a 、b 、 c 是三角形三边的长,则代数式 A.大于0b 2 3—c 2 — 2ab 的值B. 小于0C. 大于或等于0D.小于或等于1若a>b,则不等式级组的解集是2.在方程组 2x y 2y x 中, x,y 满足x+y>0 , m 的取值范围是A . L . B. C. 一亠T T D.3.下列按要求列出的不等式中错误的是A.m 是非负数,则m> 0B.m 是非正数,则m = 0 D.2倍m 为负数,则2m<04.不等式 11 2 9- x>x+ 的正整数解的个数是 43( A.1B.2C.3) D.42 2 2A.b <abB.b >ab>a2 2C.b <a2 2D.b >a >abA.a>b>-b>-aB. a>-a>b >-bC.-a>b>-b>aD.b>a>-b>-aA.a-2>b+2B.C.ac<bcD.-a+3<-b+3()C.m 不大于-1,则m<-15. 已知a>b>0,那么下列不等式中错误的是()11.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是( )14. 如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足()A.m w -1B.m<-1C.m > 1D.m>1.3x y k 115. 若方程组的解x 、y 满足0 x y 1,则k 的取值范围是()x 3y 3A .4 k 0 B. 1 k 0 C. 0 k 8 D. k 416. 设a 、b 、c 的平均数为 M a 、b 的平均数为N, N 、c 的平均数为P,若a >b >c ,则M 与P 的大小关系是(). A. M = PB. M > PC. M < PD.不确定二、填空:(每小题2.5分,共40分)17. 用不等式表示“ 7与m 的3倍的和是正数“就是 — _____________ _______18. 不等式组3x 2的解集是x 3 119. 当x ____ 时,代数式厘"5的值是非正数,当x —时,代数式3(2 X )的值是非负数4 520. 关于x 的方程3x+2m=x-5的解为正数,则m 的取值范围是 __________________ .21. 关于x 的方程kx+15=6x+13的解为负数,则k 的取值范围是 ___________________ .1 122. 能使代数式 一X (3x-1)的值大于(5x-2)+ —的值的最大整数x 是 ______________________ .A.3>m>]2 12.若方程 竺上=的解是非负数,则a 与b 的关系是 56A.a < 5 b6B.3>m>-C.>m>-1 D.2 21 11 >m>-— 2B.a D.a> 5b2813. 下列不等式中,与不等式 2x+3 < 7有相同解集的是A. 1 +C.3x -2(x 2) 3B. D.1-7x 2 x 2、 -> 2(x+1)2 3x 1 1 x ----- w ------- 3 22 423. 已知x >0,y<0.且x + y <0,那么有理数x ,y,- x ,- y的大小关系为______________________________ .—X 124.若关于x的不等式组3 2 解集为x<2,则a的取值范围是x a 025. 在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于 60分,那么他至少要答对 _________题•26. 已知机器工作时,每小时耗油 9kg,现油箱中存油多于 38 kg 但少超过45 kg ,问这油箱中的油可供这台机器工作时间t 的范围为 ______________ 。
初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。
【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式x>x-1的非负数解的个数是()A.1B.2C.3D.无数个【答案】B.【解析】移项得:x<1,解得:x<,则不等式x>x-1的非负整数解为1,0,共2个.故选B.【考点】一元一次不等式的整数解.3.下列不等式变形正确的是()A.B.C.D.【答案】D【解析】A、若c<0,则A错误;B、由不等式的基本性质1,可知错误;C、若a<0,则C错误;D、由不等式的基本性质3,可知D正确,故选D【考点】不等式的基本性质4.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解5.如果关于x的不等式组无解,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【答案】D.【解析】∵关于x的不等式组无解∴3-m≥m+1解得:m≤1,故选D.【考点】解一元一次不等式组6.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.7.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.8.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.9.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.10.下列不等式一定成立的是()A.4a>3a B.3-x<4-x C.-a>-3a D.【答案】B.【解析】A、当a=0时,4a=3a,故选项错误;B、正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,.故选B【考点】不等式的性质.11.下列不等式变形正确的是()A.由,得B.由,得-2a>-2bC.由,得D.由,得【答案】B【解析】A错误:当c=0时,ac>bc不成立。
压轴题02:一元一次不等式及不等式组综合专练20题(解析版)一、单选题1.已知关于x 的不等式组100x x a ->⎧⎨-≤⎩,有以下说法: ①如果它的解集是1<x ≤4,那么a =4;①当a =1时,它无解;①如果它的整数解只有2,3,4,那么4≤a <5;①如果它有解,那么a ≥2.其中说法正确的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】分别求出每个不等式的解集,再根据各结论中a 的取值情况逐一判断即可.【详解】解:由x ﹣1>0得x >1,由x ﹣a ≤0得x ≤a ,①如果它的解集是1<x ≤4,那么a =4,此结论正确;①当a =1时,它无解,此结论正确;①如果它的整数解只有2,3,4,那么4≤a <5,此结论正确;①如果它有解,那么a >1,此结论错误;故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,例如:[][]1.5122==,,则满足等式的正整数的个数为() A .2B .3C .12D .16【答案】D【分析】利用不等式[x ]≤x 即可求出满足条件的n 的值.【详解】 解:若2n ,3n ,6n 有一个不是整数, 则22n n ⎡⎤⎢⎥⎣⎦<或者33n n ⎡⎤⎢⎥⎣⎦<或者66n n ⎡⎤⎢⎥⎣⎦<, ∴][][236236n n n n n n n ⎡⎤++++=⎢⎥⎣⎦<, ∴2n ,3n ,6n 都是整数,即n 是2,3,6的公倍数,且n <100, ∴n 的值为6,12,18,24,......96,共有16个,故选:D .【点睛】本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x ]≤x <[x ]+1式子的应用,这个式子在取整中经常用到.3.定义,图象与x 轴有两个交点的函数y =24()24()x x m x x m -+≥⎧⎨+<⎩叫做关于直线x =m 的对称函数,它与x 轴负半轴交点记为A ,与x 轴正半轴交点记为B 例如:如图:直线l :x =1,关于直线l 的对称函数y =24(1)24(1)x x x x -+≥⎧⎨+<⎩与该直线l 交于点C ,当直线y =x 与关于直线x =m 的对称函数有两个交点时,则m 的取值范围是( )A .0≤m ≤43B .-2<m ≤43C .-2<m ≤2D .-4<m <0【答案】B【分析】 根据定义x 轴上存在,A B 即可求得22m -<<,根据题意联立,24,y x y x =⎧⎨=+⎩,24,y x y x =⎧⎨=-+⎩即可求得m 的范围,结合定义所求范围即可求解 【详解】①一次函数图象与x 轴最多只有一个交点,且关于m 的对称函数()24,24()x x m y x x m ⎧-+≥=⎨+<⎩,与x 轴有两个交点, ①组成该对称函数的两个一次函数图象的部分图象都与x 轴有交点.①240x ±+=解得2x =或2-①22m -<<.①直线y =x 与关于直线x =m 的对称函数有两个交点,①直线y =x 分别与直线24()y x x m =-+≥和24()y x x m =+<各有一个交点.对于直线y =x 与直线24()y x x m =+<,联立可得,24,y x y x =⎧⎨=+⎩解得4,4x y =-⎧⎨=-⎩, ①直线y =x 与直线24()y x x m =+<必有一交点(4,4)--.对于直线y =x 与直线24()y x x m =-+≥,联立可得,24,y x y x =⎧⎨=-+⎩解得4,343x y ⎧=⎪⎪⎨⎪=⎪⎩, ①22m -<<, ①43x =必须在x m ≥的范围之内才能保证直线y =x 与直线24()y x x m =-+≥有交点. ①43m ≤. ①423m -<≤. ①m 的取值范围是423m -<≤. 故选B【点睛】本题考查了新定义,两直线交点问题,一次函数的性质,掌握一次函数的性质,数形结合是解题的关键.4.如图,长方形ABKL ,延CD 第一次翻折,第二次延ED 翻折,第三次延CD 翻折,这样继续下去,当第五次翻折时,点A 和点B 都落在①CDE =α内部(不包含边界),则α的取值值范围是( )A .3645α︒<≤B .3036α︒<≤C .3645α︒≤<D .3036α︒<<【答案】D【分析】 利用翻折前后角度总和不变,由折叠的性质列代数式求解即可;【详解】解:第一次翻折后2a +①BDE =180°,第二次翻折后3a +①BDC =180°,第三次翻折后4a +①BDE =180°,第四次翻折后5a +①BDC =180°,若能进行第五次翻折,则①BDC ≥0,即180°-5a ≥0,a ≤36°,若不能进行第六次翻折,则①BDC ≤a ,即180°-5a ≤a ,a ≥30°,当a =36°时,点B 落在CD 上,当a =30°时,点B 落在ED 上,①30°<a <36°,故选:D ;【点睛】本题考查了图形的规律,折叠的性质,一元一次不等式的应用;掌握折叠前后角度的变化规律是解题关键.5.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩ 只有5个整数解,则a 的取值范围是( ) A .1162a -<<-B .1162a -≤<-C .1162a -<≤-D .1162a -≤≤- 【答案】C【分析】先解x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩,然后根据整数解的个数确定a 的不等式组,解出取值范围即可. 【详解】 解:不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩, 解得:2032x x a <⎧⎨>-⎩, 不等式组只有5个整数解,即解只能是15x =,16,17,18,19,a ∴的取值范围是:32143215a a -≥⎧⎨-<⎩, 解得:1162a -<≤-. 故选:C .【点睛】 本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解的个数确定关于a 的不等式组.6.若实数a 使得关于x 的不等式组52232x a x x x +≤-⎧⎪⎨--<⎪⎩有且只有2个整数解,且使得关于x 的一次函数()15y a x a =+-+不过第四象限,则符合条件的所有整数a 的和为( )A .7B .9C .12D .14【答案】C【分析】先解不等式组,根据不等式组的解只有2个整数解,列出关于a 的不等式,求出此时a 的取值范围;再根据一次函数的图像不过第四象限,列出关于a 的不等式组,再次求出a 的取值范围,两项综合求出a 最终的取值范围,则问题得解.【详解】 52232x a x x x +≤-⎧⎪⎨--<⎪⎩①② 解不等式①得:24a x +≥, 解不等式①得:4<x ,不等式有解,则解为:244a x +≤<, ①不等式组有两个整数解,则这两个整数解为3,2, ①2124a +≤<,解得26a ≤<; ①一次函数()15y a x a =+-+不过第四象限,①则有1050a a +⎧⎨-+≥⎩>,解得15a -≤<; 综上:25a ≤<①a 的整数值有:3,4,5,则其和为:3+4+5=12,故选:C .【点睛】本题考查了解不等式组和一次函数的图像的性质,根据不等式组只有两个整数解和函数不过第四象限等条件求出a 的取值范围是解答本题的关键.7.对于实数,a b ,定义符号{},min a b 其意义为:当a b ≥时,{},min a b b =;当a b <时,{},min a b a =.例如:21{},1min -=-,若关于x 的函数2{}1,3y min x x =--+,则该函数的最大值是( )A .1B .43C .53D .2【答案】C【分析】根据定义先列不等式:213x x --+和213x x --+,确定其{21y min x =-,3}x -+对应的函数,画图象可知其最大值.【详解】解:由题意得:213y x y x =-⎧⎨=-+⎩,解得:4353x y ⎧=⎪⎪⎨⎪=⎪⎩, 当213x x --+时,43x, ∴当43x 时,{21y min x =-,3}3x x -+=-+,由图象可知:此时该函数的最大值为53; 当213x x --+时,43x, ∴当43x 时,{21y min x =-,3}21x x -+=-, 由图象可知:此时该函数的最大值为53; 综上所述,{21y min x =-,3}x -+的最大值是当43x =所对应的y 的值, 如图所示,当43x =时,53y =,故选:C【点睛】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.8.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组【答案】D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤.所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.二、填空题9.重庆云阳巴阳镇精准化发展枇杷产业切实带动低收入农户增收,成为一大“亮点”——“万亩枇杷,醉美巴阳”成为了重庆云阳的一大名片.今年5月又是一个丰收季,全镇枇杷种植面积达1万余亩,种植了“普通”、“白肉”、“大五星”三个品种的枇杷,其中6000亩用于村民集体采摘,其余部分用于游客自助采摘.这6000亩中种植“白肉”枇杷的面积是“普通”枇杷面积的2倍,“大五星”枇杷面积不超过“白肉”枇杷面积的1.2倍,种植“白肉”的面积不超过2300亩,现在正值采摘季节,若干村民进行采摘,每人每天可以采摘“普通”枇杷1.8亩,或“白肉”枇杷1.2亩,或“大五星”枇杷2亩,这6000亩枇杷预计20天采摘完,则需要村民_______人参与采摘.【答案】191人【分析】设“普通”枇杷面积x 亩,则“白肉”枇杷面积为2x 亩,“大五星”枇杷面积为()60003x -亩,有m 人采摘,采摘“普通”枇杷a 天, “白肉”枇杷为b 天,“大五星”枇杷为()20a b --天,先求解x 的范围,再用含m 的代数式表示x ,再解不等式组即可得到答案.【详解】解:设“普通”枇杷面积x 亩,则“白肉”枇杷面积为2x 亩,“大五星”枇杷面积为()60003x -亩,有m 人采摘,采摘“普通”枇杷a 天, “白肉”枇杷为b 天,“大五星”枇杷为()20a b --天,根据题意得:600032 1.222300x x x -≤⨯⎧⎨≤⎩ 解得:100001150,9x ≤≤同时可得:()1.81.2222060003am x bm xm a b x ⎧=⎪=⎨⎪--=-⎩55,,93am x bm x ∴== 101040224060003,93m ma mb m x x x ∴--=--=- 整理得:36054000,13m x -=∴ 10000360540001150,913m -≤≤ 1300003605400014950,9m ∴≤-≤ 616000360689509m ∴≤≤, 1019190191,8136m ∴≤≤ m 为正整数,∴ 191.m =故答案为:191.【点睛】本题考查不等式组的实际应用,解题的关键是仔细阅读找出题中的等量关系与不等关系列方程与不等式组.10.某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.【答案】购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖【分析】设购买x 块彩色地砖,购买单色地砖y 块,进而由题意得到2x <y <3x ,再根据总费用为1500元,且x 、y 均为正整数,将y 用x 的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x 块彩色地砖,购买单色地砖y 块,则2x <y <3x ,25x +15y =1500, ①1500255100(1)153x y x , 又已知有:23xy x ,①510033510023x x x x ⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x , 又x 为正整数,且30021.414,30027.311,①x =22,23,24,25,26,27;由(1)式中,x y ,均为正整数,①x 必须是3的倍数,①24x =或27x =,当24x =时,单色砖的块数为15002425=6015; 当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖.【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况.11.春暖花开,又到了踏青赏花的好季节,某植物园决定在今年4月份购进一批花苗:绣球花苗、蔷薇花苗、铁线莲花苗和月季花苗.已知每株绣球花苗的价格是每株蔷薇花苗价格的12,每株月季花苗的价格是每株铁线莲花苗价格的3倍.另外,购进的绣球花苗数量是铁线莲花苗数量的2倍,蔷薇花苗的数量是月季花苗数量的3倍,且铁线莲花苗和蔷薇花苗的总数量不超过600株.已知一株绣球花苗和一株铁线莲花苗的价格之和为30元,最后,购进绣球花苗和蔷薇花苗的总费用比铁线莲花苗和月季花苗的总费用多14400元,则今年4月用于购进铁线莲花苗和月季花苗的总费用的最大值为______元.【答案】7200.【分析】根据题意可设蔷薇花苗价格为x 元,每株铁线莲花苗价格为y 元,则绣球花苗价格为12x 元,月季花苗为3y 元,根据已知关系列出不等关系3600a b +,表示购进铁线莲花苗和月季花苗的总费用,利用不等关系求解.【详解】解:设每株蔷薇花苗价格为x 元,每株铁线莲花苗价格为y 元,则绣球花苗价格为12x 元,月季花苗为3y 元,由题意得,1302x y +=①,设购进铁线莲花苗数量为a ,月季花苗数量为b ,则绣球花苗为2a ,蔷薇花苗为3b , 由题意可知,3600a b +,1231440032x a x b a y b y ⨯+⨯-=⋅+⨯, 整理得(3)()14400a b x y +-=,3600a b +, 24x y ∴-①,由①得602x y =-代入①得,60224y y --,解得12y ,用于购进铁线莲花苗和月季花苗的总费用为,3(3)ay by a b y +=+,3600a b +,12y ,∴用于购进铁线莲花苗和月季花苗的总费用的最大值为600127200⨯=(元),故答案为:7200. 【点睛】本题以购买的最大费用为背景考查了一元一次不等式的应用,关键根据数量关系表示未知量,然后根据不等关系求解.12.小李和小张大学毕业后准备合伙开一家工作室创业.他们在某写字楼租了一间空高为3米的房间作办公地点(如图),准备装修后开始办公.小李和小张分别提出两套装修方案(如表格).其中,每平方米木地板的装修费用与每平方米木质吊顶的装修费用之和等于每平方米复合材料墙面的装修费用;每平方米地砖的装修费用与每平方米乳胶漆的装修费用之和等于每平方米木质墙面的装修费用,以上各项装修单价均为整数.每平方米木地板、木质墙面、木质吊顶的装修费用之和不少于600元;每平方米复合材料墙面比木质墙面的装修费用多,且差价不大于90元,不少于80元.经测算,小李方案的总装修费用比小张方案的总装修费用多1260元.若x ,y 均为整数,且满足y<x<2y ,则小张的方案装修总费用最少为________元.【答案】234041401260y y +- 【分析】设每平方米木地板a 元,木制吊顶b 元,地砖m 元,乳胶漆n 元,则复合材料墙面()a b +元,木质墙面m n 元,根据题意列出不等式组,得到340345a b m n +≥⎧⎨+≥⎩,根据“小李方案的总装修费用比小张方案的总装修费用多1260元”列式即可求解. 【详解】解:设每平方米木地板a 元,木制吊顶b 元,地砖m 元,乳胶漆n 元, 则复合材料墙面()a b +元,木质墙面m n 元,根据题意可得6008090a b m n a b m n +++≥⎧⎨≤+--≤⎩,解得340345a b m n +≥⎧⎨+≥⎩,小李的总花费()()()()()2336xya xyb m n y x xy a b m n x y ++++=++++, 小张的总花费()()()()()2336xym xyn a b y x xy m n a b x y ++++=++++, ①()()()()()()661260xy a b m n x y xy m n a b x y ++++-+-++=, ①2y x y <<,①()()()61260xy a b m n x y ++++-()23406345126034041401260y y y y y y ≥⋅⨯+⨯+-=+-, 故答案为:234041401260y y +-. 【点睛】本题考查不等式组的实际应用,根据题意列出不等式是解题的关键.13.如图,设BAC θ∠=(090θ︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.从点1A开始,用等长的小棒依次向右摆放,其中12A A为第一根小棒,且11223341AA A A A A A A====⋅⋅⋅=,若只能摆放4根小棒,则θ的范围为________.【答案】18°≤θ<22.5°.【分析】根据等边对等角可得①BAC=①AA2A1,①A2A1A3=①A2A3A1,①A3A2A4=①A3A4A2,再根据三角形的一个外角等于与它不相邻的两个内角的和可得θ1=2θ,θ2=3θ,θ3=4θ,求出第三根小木棒构成的三角形,然后根据三角形的内角和定理和外角性质列出不等式组求解即可.【详解】解:如图,①小木棒长度都相等,①①BAC=①AA2A1,①A2A1A3=①A2A3A1,①A3A2A4=①A3A4A2,由三角形外角性质得,θ1=2θ,θ2=3θ,θ3=4θ;①只能摆放4根小木棒,①490 590θθ︒︒⎧<⎨≥⎩,解得18°≤θ<22.5°.故答案为:18°≤θ<22.5°.【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,也考查了一元一次不等式组的应用,列出不等式组是解题的关键.14.若不等式231x x x a-+++-≥对一切数x都成立,则a的取值范围是________.【答案】5a ≤ 【分析】要使不等式231x x x a -+++-≥对一切数x 都成立,则a 需小于等于231x x x -+++-的最小值,再分3x <-、31x -≤<、12x ≤<和2x ≥四种情况,分别化简绝对值求出最小值即可得.【详解】要使不等式231x x x a -+++-≥对一切数x 都成立,则a 需小于等于231x x x -+++-的最小值, 由题意,分以下四种情况: (1)当3x <-时,2312313x x x x x x x -+++-=---+-=-,此时39x ->; (2)当31x -≤<时,2312316x x x x x x x -+++-=-+++-=-,此时569x <-≤; (3)当12x ≤<时,2312314x x x x x x x -+++-=-+++-=+,此时546x ≤+<; (4)当2x ≥时,2312313x x x x x x x -+++-=-+++-=,此时36x ≥;综上,231x x x -+++-的最小值为5, 则5a ≤, 故答案为:5a ≤. 【点睛】本题考查了化简绝对值、一元一次不等式组等知识点,将问题转化为求231x x x -+++-的最小值是解题关键.15.已知非负实数x y 、、z 满足123234x y z ---==,记23M x y z =++.则M 的最大值减去最小值的差为________. 【答案】283. 【分析】 设123234x y z k ---===,将x y 、、z 用k 表示出来,由x y 、、z 均为非负实数得关于k 的不等式组,求出k 取值范围,再将23M x y z =++转化为k 的代数式,由k 的范围即可确定M 的最大值和最小值,从而即可求差. 【详解】 设123234x y z k ---===, ①21x k =+,23y k =-,43z k =+, ①0x ≥,0y ≥,0z ≥,①210230430k k k +≥⎧⎪-≥⎨⎪+≥⎩, 解不等式组得1223k -≤≤,①23M x y z =++,①()()()21238142343M k k k k =+++=+-+, ①58108143k ≤+≤,即58103M ≤≤, M 的最大值为583,最小值为10, M 的最大值减去最小值的差58281033=-=, 故答案为:283. 【点睛】本题主要考查了不等式的性质的应用,解题关键是设比例式值为k ,通过已知确定k 的取值范围. 三、解答题16.商店销售10台A 型和20台B 型电脑的利润为40000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. ①求y 关于x 的函数关系式:①该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调()0100m m <<元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1)A 100元,B 150元;(2)①5015000y x =-+;①A 34台,B 66台;(3)当050m <<时,A 34台B 66台;当50m =时,A 34~70内均可;当50100m <<时,A 70台B 30台 【分析】(1)设每台A 型加湿器和B 型加湿器的销售利润分别为a 元,b 元,然后根据题意列出二元一次方程组解答即可;(2)①据题意得即可确定y 关于x 的函数关系式,利用A 型利润与B 型利润即可求出总利润y 与x 的关系,并确定x 的范围即可;①根据一次函数的增减性,解答即可;(3)根据题意列出函数数关系式,分以下三种情况①0<m<50,①m=50,① 50 <m < 100时,m-50 >0结合函数的性质,进行求解即可. 【详解】(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,根据题意得:1020400020103500a b a b +=⎧⎨+=⎩ 解得=100150a b ⎧⎨=⎩ 答:每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①设购进A 型电脑x 台,每台A 型电脑的销售利润为100元,A 型电脑销售利润为100x 元, 每台B 型电脑的销售利润为150元,B 型电脑销售利润为()150100x -元()100150100y x x =+-,即这100台电脑的销售总利润为:5015000y x =-+;1002x x -≤,解得1333x ≥.且x 为正整数,150********y x x ⎛⎫=-+≥ ⎪⎝⎭,其中x 为正整数,①5015000y x =-+中,k=500-<,y ∴随x 的增大而减小.x 为正整数,1333x ≥ ①当34x =时,y 取得最大值,此时10066x -=.答:商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大; (3)根据题意得()()100150100y m x x =++-,即()5015000y m x =-+,其中133703x ≤≤,且x 为正整数.①当050m <<时,k=500m -<,y ∴随x 的增大而减小,①当34x =时,y 取得最大值,即商店购进34台A 型电脑和66台B 型电脑才能获得最大利润; ①当50m =时,k=500m -=,15000y ∴=,即商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;①当50 <m < 100时,k=500m ->,y ∴随x 的增大而增大.①当70x =时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润. 【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,掌握一次函数的增减性是解答本题的关键.17.某市A ,B 两个蔬菜基地得知黄岗C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点,从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨. (1)请填写下表,用含x 的代数式填空,结果要化简:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元()0m >,其余线路的运费不变,试讨论总运费最小的调动方案.【答案】(1)()240x -,()40x -,()300x -;(2)29200w x =+;A →C :200吨,A →D : 0吨,B →C :40吨,B →D :260吨;(3)2m =时,在40240x ≤≤的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案为:A →C :0吨,A →D : 200吨,B →C :240吨,B →D :60吨; 【分析】(1)根据题意,从A 处调运到C 处的数量为(240-x )t ;从A 处调往D 处的数量为[200-(240-x )]t ;则从B 调运到D 处的数量为(300-x )t ;(2)根据调运总费用等于四种调运单价乘以对应的吨数的积的和,易得w 与x 的函数关系,根据调运的数量非负即可不等式组,求得x 的范围,从而可求得总费用的最小的调运方案;(3)由题意可得w 与x 的关系式,根据x 的取值范围不同而有不同的解,分情况讨论:当0<m <2时;当m =2时;当2<m <15时,根据一次函数的性质即可解决. 【详解】 (1)填表如下:故答案为:()240x -,()40x -,()300x -;(2)w 与x 之间的函数关系为:()()()202402540151830029200w x x x x x =-+-++-=+ 由题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩ ①40240x ≤≤①在29200w x =+中,20> ①w 随x 的增大而增大 ①当40x =时,总运费最小此时调运方案为:(3)由题意得()()()()2024025401518300w x x m x x =-+-+-+- 即()29200w m x =-+,其中40240x ≤≤ ①02m <<,(2)中调运方案总费用最小;2m =时,在40240x ≤≤的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案如下:【点睛】本题是一次函数在实际问题中的应用,具有较强的综合性与较大的难度.它考查了一次函数的性质,求一次函数的解析式,解一元一次方程组等知识,用到分类讨论思想.18.如图,在长方形ABCD 中,AB =4,AD =2.P 是BC 的中点,点Q 从点A 出发,以每秒1个单位长度的速度沿A →D →C →B →A 的方向终点A 运动,设点Q 运动的时间为x 秒. (1)点Q 在运动的路线上和点C 之间的距离为1时,x = 秒. (2)若①DPQ 的面积为S ,用含x 的代数式表示S (0≤x <7).(3)若点Q 从A 出发3秒后,点M 以每秒3个单位长度的速度沿A →B →C →D 的方向运动,M 点运动到达D 点后立即沿着原路原速返回到A 点.当M 与Q 在运动的路线上相距不超过2时,请直接写出相应x 的取值范围.【答案】(1)5或7;(2)42(02)11(26)2212(67)x x S x x x x -≤<⎧⎪⎪=-<≤⎨⎪-<<⎪⎩,(3)45x ≤≤或79x ≤≤或1012x ≤≤.【分析】(1)根据题意,点Q 与点C 的距离为1,设Q 运动的路程为a ,则61a -=,根据速度为1,进而求得时间x ;(2)分三种情况讨论,①点Q 在AD 边上运动;①点Q 在CD 边上运动;①点Q 在BC 边上运动;根据情形写出①DPQ 的面积即可;(3)分三种情形讨论,①M 点未到达D 点时,①M 点原路原速返回时,根据情形分相遇和追及问题写出路程差不超过2时,①当M 点回到点A ,当M 与Q 在运动的路线上相距不超过2时,列出不等式组求解即可,注意两点运动的总时间会影响取值范围,即M 点先停止运动. 【详解】 (1)4,2AB AD ==,∴246AD DC +=+=,设Q 运动的路程为a ,依题意则,61a -=, 解得5a =或7a =,速度为每秒1个单位长度,515x ∴=÷=或者717x =÷=,故答案为:5或7;(2)速度为每秒1个单位长度,Q 运动的时间为x 秒. ∴点Q 的路程为1x x ,①点Q 在AD 边上运动;2,4AD CD BC ===,∴2DQ DA AQ x =-=-,11(2)422S DQ DC x ∴=⨯=⨯-⨯42x =-(02x ≤<),①点Q 在CD 边上运动;P 是BC 的中点,112PC BC ∴==,2DQ x AD x =-=-,111(2)11222S DQ CP x x =⨯=-⨯=-(26x <≤), ①点Q 在CP 边上运动,6PQ t AD DC t =--=-,11(6)421222S PQ CD x x ∴=⨯=-⨯=-(67x <<), 综合①①①得:42(02)11(26)2212(67)x x S x x x x -≤<⎧⎪⎪=-<≤⎨⎪-<<⎪⎩,(3)速度为每秒1个单位长度,Q 运动的时间为x秒.∴点Q 的路程为1x x ,设M 的运动时间为t ,根据题意,Q 从A 出发3秒后,M 才出发,则3t x =-,即3x t =+,M 的路程为3t ,Q 点的路程为3t +,42410DC BC AB ++=++=,∴M 点全路程所用时间为2010233⨯÷=秒, 则Q 点的全路程所用时间为12112÷=秒,分三种情形讨论,①M 点未到达D 点时,Q 点出发3秒后,,M Q 共同完成的路程为39AD DC BC AB +++-=根据题意,当M 与Q 在运动的路线上相距不超过2时,则,9(33)2t t -++≤,即9(33)2(33)92t t t t -++≤⎧⎨++-≤⎩, 解得12t ≤≤,45x ∴≤≤,①M 点原路原速返回时,根据题意,当M 与Q 在运动的路线上相距不超过2时,则,(310)2t t --≤,即(310)2(310)2t t t t --≤⎧⎨--≤⎩,解得46t ≤≤,79x ∴≤≤.①当M 点回到点A ,根据题意,当M 与Q 在运动的路线上相距不超过2时,则1012x ≤≤; 综合①①①可得x 的取值范围为45x ≤≤或79x ≤≤或1012x ≤≤.【点睛】本题考查了动点问题,路程问题,一元一次不等式的应用,弄清动点运动的方向和路程是解题的关键. 19.在平面直角坐标系xOy 中,对于M 、N 两点给出如下定义:若点M 到x 、y 轴的距离中的最大值等于点N 到x 、y 轴的距离中的最大值,则称M 、N 两点互为“等距点”,例如:点P (2,2)与Q (-2,-1)到x 轴、y 轴的距离中的最大值都等于2,它们互为“等距点”.已知点A 的坐标为(1,3).(1)在点B (5,3)、C (﹣3,1)、D (﹣2,﹣2)中,点 与点A 互为“等距点”(2)已知直线l :4y kx k =--① 若k =1,点E 在直线l 上,且点E 与点A 互为“等距点”,求点E 的坐标;①若直线l 上存在点F ,使得点F 与点A 互为“等距点”,求k 的取值范围(直接写出结果).【答案】(1)C ;(2)①(2,3)E -或(3,2)-;① 12k ≥或14k ≤-. 【分析】(1)根据新定义“等距点”的定义即可求解; (2)①k=1可得5y x =- 设,5E m m -(), 讨论353m m =-=或 即可,①设(),4F f kf k --,根据点F与点A 互为“等距点”,分两种情况讨论即可:343f kf k ⎧=⎪⎨--≤⎪⎩和343f kf k ⎧≤⎪⎨--=⎪⎩. 【详解】解:(1)①点A (1,3)到x 、y 轴的距离中最大值为3,点C (﹣3,1)到x 、y 轴的距离中最大值为3,①与A 点是“等距点”的点是C .(2)①①直线l :4y kx k =--当k=1时,5y x =- ,①点A (1,3)到x 、y 轴的距离中最大值为3,点E 到点A 互为“等距点”,点E 到坐标轴的最大距离为3,设,5Em m -() , ①EM m =,5EN m =- ①353m m ⎧=⎪⎨-≤⎪⎩或35=3m m ⎧≤⎪⎨-⎪⎩解得:3m =或=2m当3m =时,52m -=-,点E (3,﹣ 2),当=2m 时,53m -=-,点E (2,﹣3),故点E (3,﹣ 2)或E (2,﹣3),① 点F 在直线l :4y kx k =--上,设(),4F f kf k --, ①343f kf k ⎧=⎪⎨--≤⎪⎩①②或343f kf k ⎧≤⎪⎨--=⎪⎩③④ 由①得到:3f =±,当3f =时,243k -≤,解得1722k ≤≤, 当3f =-时,443k --≤,解得7144k -≤≤-, 由①得到:43kf k --=±,当43kf k --=,即7k f k+=时,则73k k +≤, 解得72k ≥或74k ≤-, 当43kf k --=-,即1k f k+=时,则13k k +≤, 解得12k ≥或14k ≤-, 综上所述:12k ≥或14k ≤-. 【点睛】本题考查新定义的应用和点坐标到坐标轴之间的距离,涉及到一元一次不等式,解题的关键是正确理解题意,学会利用分类讨论的思想.20.在平面直角坐标系中,若P 、Q 两点的坐标分别为()11,P x y 和()22,Q x y ,则定12x x -和12y y -中较小的一个(若它们相等,则任取其中一个)为P 、Q 两点的“直角距离小分量”,记为min (,)d P Q .例如:(2,3),(0,2)P Q -,因为12122,0,|20|2x x x x =-=-=--=;12123,2,|32|1y y y y ==-=-=,而|32||20|-<--,所以min (,)|32|1d P Q =-=.(1)请直接写出()3,2A -和()1,1B -的直角距离小分量()min ,d A B =_________;(2)点D 是坐标轴上的一点,它与点()3,1C -的直角距离小分量()min ,2d C D =,求出点D 的坐标; (3)若点(1,22)M m m +-满足以下条件:a )点M 在第一象限;b )点M 与点()5,0N 的直角距离小分量()min ,2d M N <c )45MON ∠>︒,O 为坐标原点.请写出满足条件的整点(横纵坐标都为整数的点)M 的坐标_______.【答案】(1)3;(2)(0,1)D 或(0,3)D -;(3)(5,6)M 或(6,8)【分析】(1)根据新概念求得即可;(2)分两种情况,根据“直角距离小分量”的定义得出即可;(3)根据题意得出10220m m +>⎧⎨->⎩,解出m 的取值范围,再由45MON ∠>︒可推导出2211OM m K m -=>+,解出m 的取值范围,根据横纵坐标都为整数的点取m 的值即可.【详解】解:(1)(3,2)A -,(1,1)B -,|31|4∴+=>|21|3--=,()min ,3d A B ∴=;故答案为3;(2)点D 是坐标轴上的一点,若D 在x 轴上,设(a,0)D ,由于|01|12+=<与题意矛盾,故点D 是在y 轴上的一点,|1|2b ∴+=,解得:1b =或3-,(0,1)D ∴或(0,3)D -;(3)由题意得:10220m m +>⎧⎨->⎩, 解得1m , |15||4|,|220|2|1|m m m m +-=---=-,∴[]222(4)2(1)312m m m ---=-+, 当12m <<时,()min ,2|1|2d M N m =-<,解得:02m <<,当2m ≥时,()min ,|4|2d M N m =-<,解得:26m <<,m ∴的取值范围是:02m <<或26m <<,45MON ∠>︒恰好为OM l 的倾斜角,1OM K ∴>,2211OM m K m -=>+, 解得:1m <-或3m >综上:m 的取值范围是:36m <<,横纵坐标都为整数,4m ∴=和5,(5,6)M ∴或(6,8),故答案为:(5,6)M 或(6,8).【点睛】本题考查了坐标与图形的性质,解一元一次不等式组,解题的关键是根据新概念列出不等式组.。
一元一次不等式及一元一次不等式组(一)一、填空:(每小题2分,共32分) 1.若a>b,则不等式级组x ax b <⎧⎨≤⎩的解集是 ( )A .x ≤b B.x<a C.b ≤x<aD.无解2.在方程组221x y my x -=⎧⎨-=⎩ 中,x,y 满足x+y>0,m 的取值围是 ( )A . B. C. D.3.下列按要求列出的不等式中错误的是 ( ) A.m 是非负数,则m ≥0 B.m 是非正数,则m ≦0 C.m 不大于-1,则m<-1 D.2倍m 为负数,则2m<04.不等式9-114x>x+23的正整数解的个数是 ( ) A.1 B.2C.3D.45.已知a>b>0,那么下列不等式中错误的是 ( ) A.1a >1b >0 B.a b >b aC.-a<-bD.a-b>b-a 6.如果b<a<0,则下列结论中正确的是 ( ) A.b 2<ab B.b 2>ab>a2C.b 2<a2D.b 2>a 2>ab7.a<0,b>0,a+b<0,则下列关系中正确是 ( ) A.a>b>-b>-a B.a>-a>b>-b C.-a>b>-b>a D.b>a>-b>-a 8.如果a>b,那么下列不等式中正确的是 ( ) A.a-2>b+2 B.8a <8bC.ac<bcD.-a+3<-b+3 9.若a<0,下列式子不成立的是 ( ) A.-a+2<3-a B.a+2<a+3 C.-2a <-3aD.2a>3a 10. 若a 、b 、c 是三角形三边的长,则代数式a 2+ b 2—c 2—2ab 的值 ( ). A.大于0 B.小于0 C.大于或等于0 D.小于或等于0 11.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值围是 ( )A.3>m>12 B.3>m>-12 C.112>m>-12 D.12>m>-11212.若方程35x a -=26b x-的解是非负数,则a 与b 的关系是 ( )A.a ≤56bB.a ≥56bC.a ≥-56bD.a ≥528b13.下列不等式中,与不等式2x+3 ≤7有相同解集的是 ( )A. 1+22x -≥3x B. 722x - -23x -≥2(x+1) C. 3x -2(2)3x -≤6 D.1-13x -≤12x- 14.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ( ) A.m ≤-1 B.m<-1 C.m ≥1D.m>1.15.若方程组3133x y k x y +=+⎧⎨+=⎩ 的解x 、y 满足01x y <+<,则k 的取值围是 ( )A .40k -<< B. 10k -<< C.08k << D. 4k >-16.设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P ,若a >b >c ,则M 与P 的大小关系是( ).A. M = PB. M > PC. M < PD. 不确定 二、填空:(每小题2.5分,共40分)17. 用不等式表示“7与m 的3倍的和是正数“就是____ _. 18.不等式组3231x x -≥⎧⎨->⎩的解集是 .19.当x ________ 时,代数式354x -的值是非正数,当x _______时,代数式3(2)5x -的值是非负数.20.关于x 的方程3x+2m=x-5的解为正数,则m 的取值围是 .21.关于x 的方程kx+15=6x+13的解为负数,则k 的取值围是 . 22.能使代数式12×(3x-1)的值大于(5x-2)+14的值的最大整数x 是 . 23. 已知x >0,y <0.且x + y <0,那么有理数x , y ,- x ,- y 的大小关系为 .24.若关于x 的不等式组41320x xx a +⎧>+⎪⎨⎪-<⎩ 解集为x<2,则a 的取值围是 .25. 在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对________题.26.已知机器工作时,每小时耗油9kg,现油箱中存油多于38kg但少超过45kg,问这油箱中的油可供这台机器工作时间t的围为___________ 。
27.若不等式2123x ax b-<⎧⎨->⎩的解集为11x-<<,那么(3)(3)a b-+的值等于 .28. 不等式5121216415x x x-+->-的负整数解的积是 .29. 代数式|x-1|-|x+4|- 5 的最大值为 .30. 不等式3(x+1)≥5 x -2,则|2x-5| =________.31. 若关于x的方程5x-2m=-4-x解在1和10之间,则m的取值为___________.32. 不等式|x|>3的解集为_______________.三、解答题:(各题的分值见题后,共78分)33.解列不等式,并把解集在数轴上表示出来。
(每小题5分,共10分)(1)3812xx--+≥2(10)7x-(2)5723x x--≥1-354x-34.解下列不等式组(每小题6分,共12分)(1)111232(3)3(2)0x xx x⎧->-⎪⎨⎪---<⎩(2)2(3)35(2)121132x xx x+≤--⎧⎪++⎨-<⎪⎩35.当m取何值时,关于x的方程3m-73mx-(2m+1)x=m(x-3)+7的解是负数?(本题10分)36.解不等组:216233312384y yy y-+⎧<⎪⎪⎨+-⎪+≥-⎪⎩并求其整数解。
(本题7分)37.已知方程713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数,求a的取值围。
(本题9分)38.晓华上午10时以每小时8千米的速度从甲地步行到乙地,到达乙地时已经过了下午2点但不到2点30分,你知道甲乙两地距离在什么围吗?(8分)39.有人问一位老师,他所教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学英语,七分之一的学生在学音乐,还剩不足六位同学在操场上踢足球。
”试问这个班有多少学生。
(本题10分)40.某校为了奖励获奖的学生,买了若干本课外读物,如果每人送3本,还余8本;如果前面第人送5本,则最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖,试解(1)用含x 的代数式表示m;(2)求出获奖人数及所买课外读物的本数。
(本题12分)答案:一、选择题:1~5 ABCBA、 6~10 BCDCB、11~16 CCCBAB二、17 . 7+3m>0 , 18. 无解 19. x≤53,x≤2, 20.m<-52, 21.k>622. 0 , 23. –y>x>-x>y 24. a<2 , 25. 19 , 26.385 9t<≤,27.-2 , 28. 2 , 29.0 , 30. 5-2x 31.5<x<32 , 32.x>3或x<-3三、33.图略(1) x≤10, (2)x≤1 534.(1)解:60x x >-⎧⎨>⎩ ∴x>0 (2)174x x ≤⎧⎪⎨>-⎪⎩ ∴714x -<≤。
35.解:x-(2m+1)x=m(x-3)+7 x-2mx-x=mx-3m+7 整理得:-3mx=-3m+7 ∴x= 3m-73m∵x<0 ,∴3m-73m<0 (1) 当m<0时,有3m-7>0,即m>73,无解。
(2) 当m>0时,有3m-7<0,即 m<73, 则:0<m<73.答:(略)36.解:15475y y ⎧<⎪⎪⎨⎪>⎪⎩∴71554y << ∴它的整数解是:2、3.37.解:713x y a x y a +=--⎧⎨-=+⎩ 得:324x a y a =-⎧⎨=--⎩ ∵ 00x y ≤⎧⎨<⎩ ∴ 30240a a -≤⎧⎨--<⎩解得:23a -<≤.38.解:设甲乙两地距离为x 千米 根据题意有:484.58xx ⎧>⎪⎪⎨⎪<⎪⎩ 解得:32<x<36 答:(略)39.解:设该班有x 个学生。
根据题意有:11106247x x x x <---<, 得:056x << 又∵x 是整数,且是2、4、7、的公倍数, ∴x=28 答:(略)40.解:(1)依题意有:m=3x+8(2) 385(1)35(1)0m x m x m x =+⎧⎪--<⎨⎪-->⎩解得:1352x << ,∵6x x ∴=是整数 ∴m=26答:(略一元一次不等式与一元一次不等式组(二)1.(2012年)已知a >b ,c 为任意实数,则下列不等式中总是成立的是( ) A .a +c <b +c B .a -c >b -c C .ac <bc D .ac >bc 2.(2012年)下列说法中,错误的是( )A .不等式x <2的正整数解中有一个B .-2是不等式2x -1<1的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个3.(2012年六盘水)已知不等式x -1≥0,此不等式的解集在数轴上表示为( )4.(2012年荆州)已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值围在数轴上表示正确的是( )5.(2012年滨州)不等式⎩⎪⎨⎪⎧2x -1≥x +1,x +8≤4x -1的解集是( )A .x ≥3B .x ≥2C .2≤x ≤3D .空集6.(2012年)不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x >0的解集在数轴上表示为( )7.(2012年)如图2-2-2,数轴上表示的是下列哪个不等式组的解集( )图2-2-2A.⎩⎪⎨⎪⎧ x ≥-5,x >-3B.⎩⎪⎨⎪⎧ x >-5,x ≥-3C.⎩⎪⎨⎪⎧ x <5,x <-3D.⎩⎪⎨⎪⎧x <5,x >-3 8.(2012年日照)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人9.(2012年)不等式x +2>6的解集为______.10.(2012年)不等式2x -1>12x 的解是______.11.(2012年)不等式组⎩⎪⎨⎪⎧x +12≤1,1-2x <4的整数解是______.12.(2012年)小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买______瓶甲饮料.13.(2011年)解不等式:4x -6<x ,并在数轴上表示出解集.14.(2012年)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市想要至少获得20%的利润,那么这种水果的售价在进价的基础上至少提高( )A .40%B .33.4%C .33.3%D .30%15.解不等式组,并把解集在如图2-2-3所示的数轴上表示出来. ⎩⎪⎨⎪⎧x -3(x -2)≤4, ①1+2x3>x -1. ②图2-2-316.(2010年)试确定实数a 的取值围,使不等式组⎩⎨⎧x 2+x +13>0,x +5a +43>43(x +1)+a 恰有两个整数解.17.若不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为-1<x <1, 那么(a +1)(b -1)=__________.18.(2011年)某养鸡场计划购买甲、乙两种小鸡苗共2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只? (2)若购买这批小鸡苗的钱不超过4 700元,问:应选购甲种小鸡苗至少多少只?(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡苗的总费用最小,问:应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?答案1.B 2.C 3.C 4.A5.A 解析:⎩⎪⎨⎪⎧2x -1≥x +1,①x +8≤4x -1,②解①,得x ≥2,解②,得x ≥3.则不等式组的解集是x ≥3. 6.D 7.B 8.B9.x >4 10.x >2311.-1,0,1 12.3 13.解:4x -6<x .移项、合并同类项,得3x <6, 系数化为1,得x <2.不等式的解集在数轴上表示如图D2.图D214.C15.解:由①,得x ≥1.由②,得x <4 .∴原不等式组的解集是1≤x <4,如图D3.图D316.解:不等式组⎩⎨⎧x 2+x +13>0, ①x +5a +43>43(x +1)+a . ②解不等式①,得x >-25.解不等式②,得x <2a . 所以不等式组的解集为-25<x <2a , 因为不等式组恰有两个整数解,则1<2a ≤2,即12<a ≤1. 17.-6 解析:不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为 2b +3<x <a +12,∴2b +3=-1, a +12=1. ∴a =1,b =-2.∴(a +1)(b -1)=-6.18.解:设购买甲种小鸡苗x 只,那么乙种小鸡苗为(2 000-x )只.(1)根据题意列方程,得2x +3(2 000-x )=4 500.解这个方程,得x =1 500.∴2 000-x =2 000-1 500=500,即购买甲种小鸡苗1 500只,乙种小鸡苗500只.(2)根据题意,得2x +3(2 000-x )≤4 700,解得x ≥1 300,即选购甲种小鸡苗至少为1 300只.(3)设购买这批小鸡苗总费用为y 元,根据题意,得y =2x +3(2 000-x )=-x +6 000.又由题意,得94%x +99%(2 000-x )≥2 000×96%.解得x≤1 200.因为购买这批小鸡苗的总费用y随x增大而减小,所以当x=1 200时,总费用y最小.乙种小鸡为2 000-1 200=800(只),即购买甲种小鸡苗为1 200只,乙种小鸡苗为800只时,总费用y最小,最小费用为4 800元.。