浙江专用2021版新高考数学一轮复习第九章平面解析几何3第3讲圆的方程高效演练分层突破
- 格式:doc
- 大小:154.47 KB
- 文档页数:7
2019高考数学一轮复习第9章平面解析几何第3讲圆的方程分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第9章平面解析几何第3讲圆的方程分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第9章平面解析几何第3讲圆的方程分层演练文的全部内容。
第3讲圆的方程一、选择题1.方程y=错误!表示的曲线是()A.上半圆B.下半圆C.圆D.抛物线解析:选A.由方程可得x2+y2=1(y≥0),即此曲线为圆x2+y2=1的上半圆.2.以M(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是() A.(x-1)2+y2=8 B.(x+1)2+y2=8C.(x-1)2+y2=16 D.(x+1)2+y2=16解析:选A.因为所求圆与直线x-y+3=0相切,所以圆心M(1,0)到直线x-y+3=0的距离即为该圆的半径r,即r=错误!=2错误!.所以所求圆的方程为:(x-1)2+y2=8.故选A.3.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x+2)2+(y-2)2=1 B.(x-2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x-2)2+(y-2)2=1解析:选B.圆C1的圆心坐标为(-1,1),半径为1,设圆C2的圆心坐标为(a,b),由题意得错误!解得错误!所以圆C2的圆心坐标为(2,-2),又两圆的半径相等,故圆C2的方程为(x-2)2+(y+2)2=1.4.已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x-1)2+(y+1)2=2解析:选D.由题意知x-y=0和x-y-4=0之间的距离为错误!=2错误!,所以r=2.又因为x+y=0与x-y=0,x-y-4=0均垂直,所以由y=-x和x-y=0联立得交点坐标为(0,0),由x+y=0和x-y-4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C的标准方程为(x-1)2+(y+1)2=2.5.在平面直角坐标系xOy中,已知A(-1,0),B(0,1),则满足|PA|2-|PB|2=4且在圆x2+y2=4上的点P的个数为()A.0 B.1C.2 D.3解析:选C.设P(x,y),则由|PA|2-|PB|2=4,得(x+1)2+y2-x2-(y-1)2=4,所以x+y-2=0.求满足条件的点P的个数即为求直线与圆的交点个数,圆心到直线的距离为错误!=错误!<2=r,所以直线与圆相交,交点个数为2.故满足条件的点P有2个,选C.6.已知P(x,y)是圆x2+(y-3)2=a2(a>0)上的动点,定点A(2,0),B(-2,0),△PAB的面积的最大值为8,则a的值为()A.1 B.2C.3 D.4解析:选A.要使△PAB的面积最大,只要点P到直线AB的距离最大.由于AB的方程为y=0,圆心(0,3)到直线AB的距离为d=3,故P到直线AB的距离的最大值为3+a.再根据AB=4,可得△PAB面积的最大值为错误!·AB·(3+a)=2(3+a)=8,所以a=1,故选A.二、填空题7.已知动点M(x,y)到点O(0,0)与点A(6,0)的距离之比为2,则动点M的轨迹所围成的区域的面积是________.解析:依题意可知错误!=2,即错误!=2,化简整理得(x-8)2+y2=16,即动点M的轨迹是以(8,0)为圆心,半径为4的圆.所以其面积为S=πR2=16π.答案:16π8.当方程x2+y2+kx+2y+k2=0所表示的圆的面积取最大值时,直线y =(k-1)x+2的倾斜角α=________.解析:由题意知,圆的半径r=12错误!=错误!错误!≤1,当半径r取最大值时,圆的面积最大,此时k=0,r=1,所以直线方程为y=-x+2,则有tan α=-1,又α∈[0,π),故α=错误!.答案:错误!9.已知平面区域错误!恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为________.解析:由题意知,此平面区域表示的是以O(0,0),P(4,0),Q(0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ为直角三角形,所以圆心为斜边PQ的中点(2,1),半径r=错误!=错误!,因此圆C的方程为(x-2)2+(y-1)2=5.答案:(x-2)2+(y-1)2=510.设命题p:错误!(x,y,k∈R且k〉0);命题q:(x-3)2+y2≤25(x,y ∈R).若p是q的充分不必要条件,则k的取值范围是________.解析:如图所示:命题p表示的范围是图中△ABC的内部(含边界),命题q表示的范围是以点(3,0)为圆心,5为半径的圆及圆内部分,p是q的充分不必要条件.实际上只需A,B,C三点都在圆内(或圆上)即可.由题知B错误!,则错误!解得0〈k≤6.答案:(0,6]三、解答题11.已知以点P为圆心的圆经过A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=410.(1)求直线CD的方程;(2)求圆P的方程.解:(1)由题意知,直线AB的斜率k=1,中点坐标为(1,2).则直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由点P在CD上得a+b-3=0.①又因为直径|CD|=4错误!,所以|PA|=2错误!,所以(a+1)2+b2=40.②由①②解得错误!或错误!所以圆心P(-3,6)或P(5,-2).所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.12.已知M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求m+2n的最大值;(2)求错误!的最大值和最小值.解:将圆C化为标准方程可得(x-2)2+(y-7)2=8,所以圆心C(2,7),半径r=2错误!.(1)设m+2n=b,则b可看作是直线n=-12m+错误!在y轴上截距的2倍,故当直线m+2n=b与圆C相切时,b有最大或最小值.所以错误!=2错误!,所以b=16+2错误!(b=16-2错误!舍去),所以m+2n的最大值为16+2错误!.(2)设错误!=k ,则k 可看作点(m ,n )与点(-2,3)所在直线的斜率, 所以当直线n -3=k (m +2)与圆C 相切时,k 有最大、最小值,所以错误!=2错误!,解得k =2+3或k =2-错误!.所以错误!的最大值为2+错误!,最小值为2-错误!.1.已知方程x 2+y 2-2x -4y +m =0.(1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)由D 2+E 2-4F >0得(-2)2+(-4)2-4m >0,解得m <5.(2)设M (x 1,y 1),N (x 2,y 2),由x +2y -4=0得x =4-2y ;将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,所以y 1+y 2=165,y 1y 2=错误!.因为OM ⊥ON ,所以错误!·错误!=-1,即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m )-8×错误!+16=0,解得m =错误!.(3)设圆心C 的坐标为(a ,b ),则a =错误!(x 1+x 2)=错误!,b =错误!(y 1+y 2)=错误!,半径r =|OC |=错误!,所以所求圆的方程为错误!错误!+错误!2=错误!.2.在△OAB 中,已知O (0,0),A (8,0),B (0,6),△OAB 的内切圆的方程为(x -2)2+(y -2)2=4,P 是圆上一点.(1)求点P 到直线l :4x +3y +11=0的距离的最大值和最小值; (2)若S =|PO |2+|PA |2+|PB |2,求S 的最大值和最小值. 解:(1)由题意得圆心(2,2)到直线l :4x +3y +11=0的距离d =错误!=错误!=5〉2,故点P 到直线l 的距离的最大值为5+2=7,最小值为5-2=3.(2)设点P的坐标为(x,y),则S=x2+y2+(x-8)2+y2+x2+(y-6)2=3(x2+y2-4x-4y)-4x+100=-4x+88,而(x-2)2≤4,所以-2≤x-2≤2,即0≤x≤4,所以-16≤-4x≤0,所以72≤S≤88,即当x=4时,S min=72,当x=0时,S max=88.。
§9.3 圆的方程圆的定义与方程概念方法微思考1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么?提示 ⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.2.已知⊙C :x 2+y 2+Dx +Ey +F =0,则“E =F =0且D <0”是“⊙C 与y 轴相切于原点”的什么条件?提示 由题意可知,⊙C 与y 轴相切于原点时,圆心坐标为⎝ ⎛⎭⎪⎫-D2,0,而D 可以大于0,所以“E =F =0且D <0”是“⊙C 与y 轴相切于原点”的充分不必要条件.3.如何确定圆的方程?其步骤是怎样的?提示确定圆的方程的主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.4.点与圆的位置关系有几种?如何判断?提示点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.( √)(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √)(3)方程x2+2ax+y2=0一定表示圆.( ×)(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.( √)(5)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.( ×)题组二教材改编2.[P124A组T2]圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案 D解析因为圆心为(1,1)且过原点,所以该圆的半径r=12+12=2,则该圆的方程为(x -1)2+(y-1)2=2.3.[P132A组T3]以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是( )A.(x-3)2+(y+1)2=1B.(x -3)2+(y -1)2=1 C.(x +3)2+(y -1)2=1 D.(x +3)2+(y +1)2=1 答案 A4.[P124A 组T4]圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为C (a ,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0),半径|CA |=(2+1)2+1=10, ∴圆C 的方程为(x -2)2+y 2=10. 题组三 易错自纠5.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(-∞,-22)∪(22,+∞) C.(-∞,-3)∪(3,+∞) D.(-∞,-23)∪(23,+∞) 答案 B解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2.由其表示圆可得m 24-2>0,解得m <-22或m >2 2.6.(2018·浙江诸暨中学期中)点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( ) A.|a |<1 B.a <113C.|a |<15D.|a |<113答案 D解析 由圆(x -1)2+y 2=1, 得圆心坐标为(1,0),半径r =1,由点P 在圆(x -1)2+y 2=1内部得(5a +1-1)2+(12a )2<1,解得|a |<113.7.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A.(x -2)2+(y -1)2=1 B.(x -2)2+(y +1)2=1 C.(x +2)2+(y -1)2=1 D.(x -3)2+(y -1)2=1 答案 A解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a ,1)(a >0),又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去). ∴圆的标准方程为(x -2)2+(y -1)2=1.故选A.题型一 圆的方程例1 (1)已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝ ⎛⎭⎪⎫x -322+y 2=254B.⎝ ⎛⎭⎪⎫x +342+y 2=2516C.⎝ ⎛⎭⎪⎫x -342+y 2=2516D.⎝ ⎛⎭⎪⎫x -342+y 2=254答案 C解析 方法一 (待定系数法)根据题意,设圆E 的圆心坐标为(a ,0)(a >0),半径为r , 则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎪⎨⎪⎧a =34,r 2=2516,所以圆E 的标准方程为⎝ ⎛⎭⎪⎫x -342+y 2=2516.方法二 (待定系数法)设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝ ⎛⎭⎪⎫x -342+y 2=2516.方法三 (几何法)因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上,所以圆E 的圆心坐标为⎝ ⎛⎭⎪⎫34,0. 则圆E 的半径为|EB |=⎝ ⎛⎭⎪⎫2-342+(0-0)2=54, 所以圆E 的标准方程为⎝ ⎛⎭⎪⎫x -342+y 2=2516.(2)已知圆C 的圆心在直线x +y =0上,圆C 与直线x -y =0相切,且在直线x -y -3=0上截得的弦长为6,则圆C 的方程为________________________. 答案 (x -1)2+(y +1)2=2解析 方法一 所求圆的圆心在直线x +y =0上, ∴设所求圆的圆心为(a ,-a ). 又∵所求圆与直线x -y =0相切, ∴半径r =2|a |2=2|a |.又所求圆在直线x -y -3=0上截得的弦长为6,圆心(a ,-a )到直线x -y -3=0的距离d =|2a -3|2,∴d 2+⎝ ⎛⎭⎪⎫622=r 2,即(2a -3)22+32=2a 2,解得a =1,∴圆C 的方程为(x -1)2+(y +1)2=2. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则圆心(a ,b )到直线x -y -3=0的距离d =|a -b -3|2,∴r 2=(a -b -3)22+32,即2r 2=(a -b -3)2+3.①由于所求圆与直线x -y =0相切,∴(a -b )2=2r 2.② 又∵圆心在直线x +y =0上,∴a +b =0.③联立①②③,解得⎩⎨⎧a =1,b=-1,r =2,故圆C 的方程为(x -1)2+(y +1)2=2.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =12D 2+E 2-4F ,∵圆心在直线x +y =0上, ∴-D 2-E2=0,即D +E =0,①又∵圆C 与直线x -y =0相切,∴⎪⎪⎪⎪⎪⎪-D 2+E 22=12D 2+E 2-4F ,即(D -E )2=2(D 2+E 2-4F ), ∴D 2+E 2+2DE -8F =0.②又知圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线x -y -3=0的距离d =⎪⎪⎪⎪⎪⎪-D 2+E 2-32,由已知得d 2+⎝⎛⎭⎪⎫622=r 2, ∴(D -E +6)2+12=2(D 2+E 2-4F ),③联立①②③,解得⎩⎪⎨⎪⎧D =-2,E =2,F =0,故所求圆的方程为x 2+y 2-2x +2y =0, 即(x -1)2+(y +1)2=2.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练1 一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________. 答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0 解析 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27,圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 题型二 与圆有关的轨迹问题例2 已知Rt△ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在,所以k AC ·k BC =-1, 又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练2 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2, 线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285,不符合题意,舍去,所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.题型三 与圆有关的最值问题例3 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值.解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1,解得t =2-1或t =-2-1. ∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求y x的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法. ①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题.跟踪训练3 已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). (1)求|MQ |的最大值和最小值; (2)求y -3x +2的最大值和最小值;(3)求y -x 的最大值和最小值.解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=42, ∴|MQ |max =42+22=62, |MQ |min =42-22=2 2. (2)可知y -3x +2表示直线MQ 的斜率k . 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线MQ 与圆C 有交点, ∴|2k -7+2k +3|1+k2≤22,可得2-3≤k ≤2+3, ∴y -3x +2的最大值为2+3,最小值为2- 3. (3)设y -x =b ,则x -y +b =0.当直线y =x +b 与圆C 相切时,截距b 取到最值, ∴|2-7+b |12+(-1)2=22,∴b =9或b =1.∴y -x 的最大值为9,最小值为1.1.若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A.0B.1C.2D.3 答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay+2a 2+a -1=0表示圆,故选B.2.已知圆C :x 2+y 2-2x +4y +1=0,那么与圆C 有相同的圆心,且经过点(-2,2)的圆的方程是( )A.(x -1)2+(y +2)2=5 B.(x -1)2+(y +2)2=25 C.(x +1)2+(y -2)2=5 D.(x +1)2+(y -2)2=25答案 B解析 圆C 的标准方程为(x -1)2+(y +2)2=4,圆心C (1,-2),故排除C ,D ,代入(-2,2)点,只有B 项经过此点.也可以设出要求的圆的方程为(x -1)2+(y +2)2=r 2,再代入点(-2,2),可以求得圆的半径为5.故选B.3.(2018·浙江诸暨中学期中)已知直线l 为圆x 2+y 2=4在点(2,2)处的切线,点P 为直线l 上一动点,点Q 为圆(x +1)2+y 2=1上一动点,则|PQ |的最小值为( ) A. 2 B.22+1 C.1+ 2 D.23-1答案 B解析 由题意可得,直线l 为y -2=-(x -2), 即x +y -22=0,圆心(-1,0)到直线l 的距离为d =|-1+0-22|2=2+22,∴|PQ |的最小值为2+22-1=22+1. 4.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A.x 2+y 2+10y =0 B.x 2+y 2-10y =0 C.x 2+y 2+10x =0 D.x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0. 5.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A.(x -3)2+(y -1)2=4 B.(x -2)2+(y -2)2=4 C.x 2+(y -2)2=4 D.(x -1)2+(y -3)2=4答案 D解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ), 则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.6.如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是( )A.(-3,-1)∪(1,3)B.(-3,3)C.[-1,1]D.[-3,-1]∪[1,3]答案 D解析 圆(x -a )2+(y -a )2=8的圆心(a ,a )到原点的距离为|2a |,半径r =22,由圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,得22-2≤|2a |≤22+2,∴1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1. ∴实数a 的取值范围是[-3,-1]∪[1,3].故选D.7.(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是____________,半径是________. 答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆.8.(2019·杭州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为__________. 答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时,圆C 的面积最大,此时圆心C 的坐标为(0,-1).9.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解得m =-32.所以圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.10.(2018·嘉兴测试)已知直角坐标系中A (-2,0),B (2,0),动点P 满足|PA |=2|PB |,则点P 的轨迹方程是____________;轨迹为__________. 答案 x 2+y 2-12x +4=0 一个圆解析 设P (x ,y ),由|PA |=2|PB |可知|PA |2=2|PB |2,由两点间的距离公式得(x +2)2+y 2=2[(x -2)2+y 2],整理得x 2+y 2-12x +4=0,显然其对应的轨迹是一个圆. 11.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上. (1)求y x的最大值和最小值; (2)求x +y 的最大值和最小值.解 方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4,则圆C 的半径为2.(1)(转化为斜率的最值问题求解)yx表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆C 相切时,斜率最大或最小,如图所示.设切线方程为y =kx ,即kx -y =0,由圆心C (3,3)到切线的距离等于圆C 的半径, 可得|3k -3|k 2+1=2,解得k =9±2145.所以y x 的最大值为9+2145,最小值为9-2145.(2)(转化为截距的最值问题求解)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆C 相切时,b 取得最大值或最小值,如图所示.由圆心C (3,3)到切线x +y =b 的距离等于圆C 的半径,可得|3+3-b |12+12=2, 即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r , 则y 2+2=r 2,x 2+3=r 2. ∴y 2+2=x 2+3,即y 2-x 2=1. ∴P 点的轨迹方程为y 2-x 2=1. (2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3.∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|PA |2,其中A (0,1),B (0,-1),则d 的最大值为________. 答案 74解析 设P (x 0,y 0),d =|PB |2+|PA |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74. 14.已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,则圆C 的方程为__________________________. 答案 (x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2解析 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |.由题意可知⎩⎪⎨⎪⎧r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.15.(2018·浙江省温州市高考适应性考试)已知点P 是圆x 2+y 2=1上的任意一点,A (-5,0),B (b ,0)(b ≠-5),若|PA ||PB |=λ(λ为定值),则λb =________.答案 -1解析 设点P (x P ,y P ),∵|PA |=λ|PB |,A (-5,0),B (b ,0), ∴(x P +5)2+y 2P =λ2[(x P -b )2+y 2P ], ∴x 2P +y 2P +10x P +25=λ2(x 2P +y 2P -2bx P +b 2). ∵P 在圆x 2+y 2=1上,∴x 2P +y 2P =1, ∴10x P +26=λ2(1-2bx P +b 2), ∴(10+2b λ2)x P =λ2+b 2λ2-26,①要使①式对x P ∈[-1,1]恒成立,需⎩⎪⎨⎪⎧10+2b λ2=0,λ2+b 2λ2-26=0,得⎩⎪⎨⎪⎧b =-15,λ2=25或⎩⎪⎨⎪⎧b =-5,λ2=1(不符合题意,舍去).∵λ>0,∴λ=5,∴b λ=-1.16.(2018·浙江省绍兴诊断)已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,求x 2+y 2的最大值. 解x 2+y 2表示曲线上的任意一点(x ,y )到原点的距离.当x ≥0,y ≥0时,x 2+y 2-2x -2y =0化为()x -12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y <0时,x 2+y 2+2x +2y =0化为()x +12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x ≥0,y <0时,x 2+y 2-2x +2y =0化为()x -12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y ≥0时,x 2+y 2+2x -2y =0化为()x +12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=2 2.综上可知,x 2+y 2的最大值为2 2.精美句子1、善思则能“从无字句处读书”。
圆的方程【考纲解读】【知识清单】1 求圆的方程1.圆的定义:在平面内,到定点的距离等于定长的点的轨迹叫做圆.2.圆的标准方程(1) 若圆的圆心为C(a,b),半径为r,则该圆的标准方程为:.(2) 方程表示圆心为C(a,b),半径为r的圆.3.圆的一般方程(1)任意一个圆的方程都可化为:.这个方程就叫做圆的一般方程.(2) 对方程:.①若,则方程表示以,为圆心,为半径的圆;②若,则方程只表示一个点,;③若,则方程不表示任何图形.4.点与⊙C的位置关系(1)|AC|<r⇔点A在圆内⇔;(2)|AC|=r⇔点A在圆上⇔;(3)|AC|>r⇔点A在圆外⇔.2 圆的方程综合应用1. 圆的标准方程为:2.圆的一般方程.:().3.点到直线的距离:.【重点难点突破】考点1 求圆的方程【1-1】【2016高考天津文数】已知圆C的圆心在x轴的正半轴上,点在圆C上,且圆心到直线的距离为,则圆C的方程为__________.【答案】【解析】设,则,故圆C的方程为【1-2】已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程.【答案】【解析】【1-3】的三个顶点的坐标是求它的外接圆的方程.【答案】【解析】设所求圆的方程为:,则,解之得.所以所求圆的标准方程为:.【领悟技法】1.求圆的方程,采用待定系数法:①若已知条件与圆的圆心和半径有关,可设圆的标准方程.②若已知条件没有明确给出圆的圆心和半径,可选择圆的一般方程.2.在求圆的方程时,常用到圆的以下几何性质:①圆心在过切点且与切线垂直的直线上;②圆心在任一弦的垂直平分线上.【触类旁通】【变式一】【2018届黑龙江省伊春市第二中学高三上第一次月考】已知圆:,圆与圆关于直线对称,则圆的方程为()A. B.C. D.【答案】B【解析】圆:,圆心为(-1,1)半径为1,圆与圆关于直线对称,则先找(-1,1)关于直线的对称点为(2,-2),所以圆的圆心为(2,-2),半径为1,所以圆为,故选B.【变式二】【2016高考浙江文数】已知,方程表示圆,则圆心坐标是_____,半径是______.【答案】;5.【综合点评】求圆的标准方程,可用待定系数法,也可直接求出圆心坐标和半径,然后直接写出圆的标准方程;求圆的一般方程,一般都用待定系数法.考点2 圆的方程综合应用【2-1】【2018年全国卷Ⅲ理】直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( )A. B. C. D.【答案】A【解析】直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.【2-2】在圆上移动,试求的最小值.【答案】.【解析】由已知得,则,即()min所以的最小值为.【2-3】设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.【答案】或【领悟技法】1.确定圆的方程常用待定系数法,其步骤为:一根据题意选择标准方程或一般方程;二是根据题设条件列出方程组;三是由方程组求出待定的系数,代入所设的圆的方程;2.在求圆的方程时,常用到圆的以下几个性质:一是圆心在过切点且与切线垂直的直线上;二是圆心在任一弦的中垂线上;3.解方程组时,把所求的值代入检验一下是否正确.【触类旁通】【变式一】【2018届吉林省长春市普通高中一模】已知圆的圆心坐标为,则()A. 8B. 16C. 12D. 13【答案】D【解析】由圆的标准方程可知圆心为,即. 故选D.【变式二】在圆x2+y2=5x内,过点有n条弦的长度成等差数列,最小弦长为数列的首项a1,最大弦长为a n,若公差,那么n的取值集合为A. {4,5,6,7} B. {4,5,6}C. {3,4,5,6} D. {3,4,5}【答案】A【解析】【变式三】一束光线从点出发,经x轴反射到圆上的最短路径是 .【答案】【解析】先作出已知圆关于轴对称的圆,问题转化为求点到圆上的点的最短路径.结合图形可知,最短距离为点到圆心的距离与半径之差,即.【综合点评】在圆的综合性问题中,往往需要利用圆的方程来确定圆心坐标和半径,根据图形应用圆的几何性质.应用距离公式及基本不等式等,解决最值问题.【易错试题常警惕】易错典例:一条直线过点,且圆的圆心到该直线的距离为3,则该直线的方程为()A.B.C.D.易错分析:忽视斜率不存在而致误.温馨提醒:求解过定点的直线问题,首先要检验斜率不存在的直线是否符合题意,这是非常容易遗漏的问题.在处理相关问题时,也可根据图形判断所求直线的条数,进而避免此类失误.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想数形结合是一种重要的数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围. 在解答三视图、直观图问题中,主要是通过图形的恰当转化,明确几何元素的数量关系,进行准确的计算.如:【典例1】【四川省宜宾县第二中学校2018届高考适应性】若动点在直线上,动点Q在直线上,记线段的中点为,且,则的取值范围为 ________.【答案】学¥%&科网【解析】【典例2】已知圆方程.(1)求的取值范围;(2)若圆与直线相交于两点,且(为坐标原点),求的值;(3)在(2)的条件下,求以为直径的圆的方程.【答案】(1);(2) ;(3).【解析】试题分析: (1)圆的方程化为标准方程,利用半径大于,可得的取值范围;(2)直线方程与圆方程联立,利用韦达定理及,建立方程,可求的值;(3)写出以为直径的圆的方程,代入条件可得结论.。
§9。
3 圆的方程最新考纲考情考向分析1.掌握确定圆的几何要素。
2.掌握圆的标准方程与一般方程.以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以选择、填空题为主,要求相对较低,但内容很重要,有时也会在解答题中出现。
圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准式(x-a)2+(y-b)2=r2(r>0)圆心为(a,b)半径为r一般式x2+y2+Dx+Ey+F=0充要条件:D2+E2-4F>0圆心坐标:错误!半径r=错误!错误!概念方法微思考1。
二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是什么?提示错误!2.点与圆的位置关系有几种?如何判断?提示点和圆的位置关系有三种。
已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0),(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2〈r2。
题组一思考辨析1.判断下列结论是否正确(请在括号中打“√"或“×")(1)确定圆的几何要素是圆心与半径.( √)(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √)(3)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x2,0+y错误!+Dx0+Ey0+F〉0.(√)(4)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆。
( ×)题组二教材改编2.圆心为(1,1)且过原点的圆的方程是( )A。
(x-1)2+(y-1)2=1B。
(x+1)2+(y+1)2=1C。
(x+1)2+(y+1)2=2D。
(x-1)2+(y-1)2=2答案D解析因为圆心为(1,1)且过原点,所以该圆的半径r=错误!=错误!,则该圆的方程为(x-1)2+(y-1)2=2.3。
第3讲 圆的方程[基础题组练]1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1解析:选A.设圆心为(0,a ), 则(1-0)2+(2-a )2=1,解得a =2,故圆的方程为x 2+(y -2)2=1.故选A. 2.方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆D .两个半圆解析:选 D.由题意得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎪⎨⎪⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎪⎨⎪⎧(x +1)2+(y -1)2=1,x ≤-1.故原方程表示两个半圆.3.(2020·金华十校联考)已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0解析:选D.直线x -2y +3=0的斜率为12,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y +1=-2(x -2),即2x +y -3=0.故选D.4.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A.直线x -y +1=0与x 轴的交点为⎩⎪⎨⎪⎧y =0,x -y +1=0,即(-1,0).根据题意,圆心为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离,即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.故选A.5.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22D .2+2 2解析:选A.将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1,选A.6.(2020·杭州八校联考)圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b的最小值是( )A .2 3 B.203 C .4D.163解析:选D.由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9,因为圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,所以该直线经过圆心(-1,3),即-a -3b +3=0,所以a +3b =3(a >0,b >0).所以1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b =13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥13⎝ ⎛⎭⎪⎫10+23a b ·3b a =163,当且仅当3b a =3a b ,即a =b 时取等号,故选D.7.圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3), 若M (m ,6)在圆C 内,则m 的取值范围为________.解析:设圆心为C (a ,0),由|CA |=|CB |得 (a +1)2+12=(a -1)2+32,所以a =2. 半径r =|CA |=(2+1)2+12=10. 故圆C 的方程为(x -2)2+y 2=10.由题意知(m -2)2+(6)2<10,解得0<m <4. 答案:(0,4)8.已知点P (-2,-3),圆C :(x -4)2+(y -2)2=9,过点P 作圆C 的两条切线,切点为A ,B ,则过P 、A 、B 三点的圆的方程为________________.解析:易知圆C 的圆心为C (4,2),连接AC 、BC , 由题意知PA ⊥AC ,PB ⊥BC ,所以P ,A ,B ,C 四点共圆,连接PC ,则所求圆的圆心O ′为PC 的中点,所以O ′⎝ ⎛⎭⎪⎫1,-12, 所以所求圆的半径r ′=(1+2)2+⎝ ⎛⎭⎪⎫-12+32=614. 所以过P ,A ,B 三点的圆的方程为(x -1)2+⎝ ⎛⎭⎪⎫y +122=614.答案:(x -1)2+⎝ ⎛⎭⎪⎫y +122=6149.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,则点M 的轨迹方程为________________.解析:圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0. 即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以点M 的轨迹方程是(x -1)2+(y -3)2=2. 答案:(x -1)2+(y -3)2=210.已知圆O :x 2+y 2=8,点A (2,0),动点M 在圆上,则∠OMA 的最大值为________. 解析:设|MA |=a ,因为|OM |=22,|OA |=2,由余弦定理知cos ∠OMA =|OM |2+|MA |2-|OA |22|OM |·|MA |=(22)2+a 2-222×22a =142·⎝ ⎛⎭⎪⎫4a +a ≥142·24a·a =22,当且仅当a =2时等号成立.所以∠OMA ≤π4,即∠OMA 的最大值为π4.答案:π411.求适合下列条件的圆的方程.(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).解:(1)法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧b =-4a ,(3-a )2+(-2-b )2=r 2,|a +b -1|2=r ,解得a =1,b =-4,r =2 2.所以圆的方程为(x -1)2+(y +4)2=8.法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(1-3)2+(-4+2)2=22, 所以所求圆的方程为(x -1)2+(y +4)2=8.(2)设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0. 解得D =-2,E =-4,F =-95.所以所求圆的方程为x 2+y 2-2x -4y -95=0.12.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上, 得a +b -3=0.①又因为直径|CD |=410,所以|PA |=210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2). 所以圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.[综合题组练]1.(2020·台州市书生中学高三模拟)在△ABC 中,BC =6,AB =2AC ,则△ABC 面积的最大值为( )A .10B .11C .12D .14解析:选C.以B 为原点,BC 所在的直线为x 轴,建立直角坐标系(图略),则C (6,0).设A (x ,y ).由AB =2AC 得x 2+y 2=4[(6-x )2+y 2],即(x -8)2+y 2=16.则A 的轨迹是以(8,0)为圆心,半径为4的圆(除去(12,0)和(4,0)),所以A 到BC 的距离的最大值为4.所以△ABC 面积的最大值为S =12BC ×4=12.故选C.2.已知实数x ,y 满足x 2+y 2=4(y ≥0),则m =3x +y 的取值范围是( ) A .(-23,4) B .[-23,4] C .[-4,4]D .[-4,23]解析:选B.由于y ≥0,所以x 2+y 2=4(y ≥0)为上半圆.3x +y -m =0是直线(如图),且斜率为-3,在y 轴上截距为m ,又当直线过点(-2,0)时,m =-23,设圆心O到直线3x +y -m =0的距离为d ,所以⎩⎨⎧m ≥-23,d ≤r ,即⎩⎪⎨⎪⎧m ≥-23,|-m |2≤2,解得m ∈[-23,4].3.设命题p :⎩⎪⎨⎪⎧4x +3y -12≥0,k -x ≥0,x +3y ≤12(x ,y ,k ∈R 且k >0);命题q :(x -3)2+y 2≤25(x ,y ∈R ).若p 是q 的充分不必要条件,则k 的取值范围是________.解析:如图所示:命题p 表示的范围是图中△ABC 的内部(含边界),命题q 表示的范围是以点(3,0)为圆心,5为半径的圆及圆内部分,p 是q 的充分不必要条件,实际上只需A ,B ,C 三点都在圆内(或圆上)即可.由题知B ⎝ ⎛⎭⎪⎫k ,4-43k ,则⎩⎪⎨⎪⎧k >0,(k -3)2+169(3-k )2≤25, 解得0<k ≤6. 答案:(0,6]4.(2020·宁波镇海中学高考模拟)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则m =________; |MP |=________.解析:因为圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称, 所以直线l :x +my +1=0过圆心C (1,2), 所以1+2m +1=0.解得m =-1.圆C :x 2+y 2-2x -4y +1=0,可化为(x -1)2+(y -2)2=4,圆心(1,2),半径r =2,因为经过点M (m ,m )作圆C 的切线,切点为P , 所以|MP |=(1+1)2+(2+1)2-4=3. 答案:-1 35.已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)由D 2+E 2-4F >0得(-2)2+(-4)2-4m >0,解得m <5.(2)设M (x 1,y 1),N (x 2,y 2),由x +2y -4=0得x =4-2y ;将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,所以y 1+y 2=165,y 1y 2=8+m 5.因为OM ⊥ON ,所以y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m )-8×165+16=0,解得m =85.(3)设圆心C 的坐标为(a ,b ),则a =12(x 1+x 2)=45,b =12(y 1+y 2)=85,半径r =|OC |=455,所以所求圆的方程为⎝ ⎛⎭⎪⎫x -452+⎝ ⎛⎭⎪⎫y -852=165.6.已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O和点B ,其中O 为坐标原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. 解:(1)证明:因为圆C 过原点O ,所以OC 2=t 2+4t2.设圆C 的方程是 (x -t )2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,所以S △OAB =12OA ·OB =12×|2t |×|4t |=4,即△OAB 的面积为定值. (2)因为OM =ON ,CM =CN , 因为OC 垂直平分线段MN .因为k MN =-2,所以k OC =12.所以2t =12t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC =5, 此时,C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点. 符合题意,此时,圆的方程为(x -2)2+(y -1)2=5.当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去. 综上圆C 的方程为(x -2)2+(y -1)2=5.。