卡西欧杯全国高中青年教师优秀课观摩与评比活动教案
- 格式:doc
- 大小:150.00 KB
- 文档页数:17
函数()0,0)sin(>>+=ωϕωA x A y的图象教学设计教学目标1.知识与技能(1)结合物理中的简谐振动,了解()0,0)sin(>>+=ωϕωA x A y 的实际意义;(2)用“五点法”作出()0,0)sin(>>+=ωϕωA x A y 的图象, 并借助图形计算器动态演示三角函数图象,研究参数ϕω,,A 对函数图象变化的影响,让学生进一步了解三角函数图象各种变换的实质和内在规律. (3)考察参数A 、ϕ、ω对()0,0)sin(>>+=ωϕωA x A y 图象影响的过程中认识到函数x y sin =与()0,0)sin(>>+=ωϕωA x A y 的联系.2.过程与方法(1)经历x y sin =到()0,0)sin(>>+=ωϕωA x A y 图象变换探究的过程,培养学生的数学发现能力和概括总结能力.(2)让学生经历三角函数图象各种变换的探求和运用,体验各种变换的内在联系,提高学生的推理能力、分析问题和解决问题的能力.(3)在研究各种变换的过程中,让学生体验由简单到复杂、由特殊到一般的化归思想,渗透数形结合的思想.3.情感、态度、价值观(1)通过三角函数图象各种变换的探求,培养学生的探索能力、钻研精神和科学态度.(2)通过合作学习,探求三角函数图象各种变换,培养学生团结协作的精神.教学重点与难点教学重点:函数()0,0)sin(>>+=ωϕωA x A y 的图象以及参数ϕω,,A 对图象变换的影响.函数x y sin =的图象与函数()0,0)sin(>>+=ωϕωA x A y 的图象之间的变换关系.教学难点:函数()0,0)sin(>>+=ωϕωA x A y 的图象与函数x y sin =的图象与之间的变换关系.教学方法与技术支持问题教学法、合作学习法,多媒体课件,卡西欧图形计算器. 教学过程: 课前准备:用“五点法”在同一坐标系用不同颜色的线画出下列几组函数的图象(要求有列表过程):(1)x y sin =,y=2sin x ,y=21sin x(2)x y sin =,y=sin(x +3π),y=sin(x -4π)(3)x y sin =,y=sin2x ,y=sin21x[设计意图]通过作三组不同函数的图象,进一步体会“五点法”作函数图象的基本方法,同时为本节课的图象变换做好准备. 一.创设情境,引出问题 1.借助PPT 演示物理实例:简谐振动中,位移与时间的关系()0,0)sin(>>+=ωϕωA x A y 2.介绍其中几个量的物理意义A 是物体振动时离开平衡位置的最大距离,称为振动的振幅;ωπ=2T 是往复振动一次所需的时间,称为振动的周期;πω==2T1f 是单位时间内往复振动的次数,称为振动的频率;ϕω+x 称为相位,x =0的相位ϕ称为初相.问题: 函数xysin =就是()0,0)sin(>>+=ωϕωA x A y 在A=1,0,1==ϕω时的特殊情况,在0,1,1≠≠≠ϕωA 时函数()0,0)s i n (>>+=ωϕωA x A y 的图象与xy s i n =的图象有何关系?[设计意图]结合生活中简谐振动创设问题情境,加强数学与物理学科的联系,让学生体会到数学的应用价值.xy sin =为()0,0)sin(>>+=ωϕωA x A y 的特殊情况引起学生的探究兴趣,通过设置问题,引起认知冲突,激发求知欲望.二.互助探究,感受规律(分组讨论,寻求一般规律,每组选派代表汇报“研究成果”)问题1 A 对图象的影响: 寻找函数x y sin =,xy sin 2=,xysin 21=三者图象之间的联系.学生活动(1)组织学生交流讨论,鼓励学生大胆猜想,通过操作图形计算器进行验证,并探求理性解释.(2)借助图形计算器的动态演示图象的功能,让学生感受x A y sin =)0(>A 的变化过程.通过学生合作探究,交流展示,概括总结振幅变换的一般规律:一般地,函数)1,0(sin ≠>=A A x A y 的图象,可以看做是将函数x y sin =图象上所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍(横坐标不变)而得到的.易知,函数函数x A y sin =的值域为],[A A -. 问题2:ϕ对图象的影响寻找函数x y sin =,⎪⎭⎫⎝⎛+=3sin πx y ,⎪⎭⎫ ⎝⎛-=4sin πx y ,三者图象之间的联系. 学生活动(1) 组织学生交流讨论,鼓励学生大胆猜想,通过操作图形计算器进行验证,并探求理性解释.(2)引导学生借助图象上的对应变化点横坐标之间的对应关系理解图象平移变换的实质(3)借助图形计算器的动态演示图象的功能,让学生感受)sin(ϕ+=x y 的变化过程.通过学生合作探究,交流展示,概括总结振幅变换的一般规律:一般地,函数)sin(ϕ+=x y 的图象,可以看做是将函数x y sin =图象上所有点向左(0>ϕ)或向右(0<ϕ)平移ϕ个单位而得到的. 问题3 ω对图象的影响:寻找函数三者x y sin =,y=sin2x ,y=sin 21x 图象之间的联系.学生活动(1) 组织学生交流讨论,鼓励学生大胆猜想,通过操作图形计算器进行验证,并探求理性解释.(2)引导学生借助图象上对应变化点的坐标之间对应关系,理解图象周期变换的实质:(3)借助图形计算器的动态演示图象的功能,让学生感受x y ωsin =的变化过程.通过学生合作探究,交流展示,概括总结振幅变换的一般规律:一般地,函数)10(sin ≠>=ωωω且x y 的图象,可以看做是将函数x y sin =图象上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变)而得到的.[设计意图]将ϕω,,A 对图象变换的影响进行分解,问题提出后,教师不急于讲解,而是有学生合作解决,教师适当引导.在探究过程中注重借助图形计算器辅助思维,并通过前后坐标的变化理解图象变换的实质. 问题4(难点突破)(1)函数x y 2sin =通过怎样变换可以得到函数)32sin(π+=x y 的图象?(2) 将函数y=sin(2x +3π)的图象向右平移3π个单位,所得到的图象的函数解析式为(3)一般地,函数()0,0)s i n (≠>+=ϕωϕωx y 的图象,可以看做是将函数x y ωsin =图象上所有点 (0>ϕ)或 (0<ϕ)平移 个单位而得到的.(4)函数)3sin(π+=x y 的图象通过怎样的变换可以得到函数)32sin(π+=x y 的图象?[设计意图]周期变换和相位变换的不同顺序对图象的影响是本课的难点. 不能广而告之, 鼓励学生在提出猜想的基础上,充分经历图象变换过程,共同发现规律,总结一般性结论,自然流畅,易于接受理解,从而突破难点. 三.典例分析,形成能力 例 若函数)32sin(3π-=x y ,x ∈R 表示一个振动量:(1)求这个振动的振幅,周期,初相;(2)不用计算机和图形计算器,画出该函数的图象. 解:(1) 函数)32sin(3π-=x y 的振幅为3,初相为3π-,周期为π.(2)方法一“五点法”周期T=π,令X=2x -3π则x =6223ππ+=+x X列表方法二(先周期后相位)作出正弦曲线,并将曲线上每一点的横坐标变为原来的21倍(纵坐标不变),得到函数x y 2sin =的图象;再将函数x y 2sin =的图象向右平移6π个单位长度,得到函数)32sin(π-=x y 的图象;再将函数)32sin(π-=x y 的图象上每一点的纵坐标变为原来的3倍(横坐标不变),即可得到函数)32sin(3π-=x y 的图象.)32sin(3)32sin(2sin sin ππ-=→-=→=→=x y x y x y x y方法三(先相位后周期) 作出正弦曲线,并将其向右平移3π个单位长度,得到函数)3sin(π-=x y 的图象;再将函数)3sin(π-=x y 图象上每一点的横坐标变为原来的21倍(纵坐标不变),得到函数)32sin(π-=x y 的图象;再将函数)32sin(π-=x y 图象上每一点的纵坐标变为原来的3倍(横坐标不变),即可得到函数)32sin(3π-=x y 的图象.)32sin(3)32sin()3sin(sin πππ-=→-=→-=→=x y x y x y x y[设计意图]互动探究部分将ϕω,,A 三元素对图象变换的影响进行分解,本环节通过例题让学生体会三者结合对图象变化的作用,并着重分析先周期后相位与先相位后周期在图象变换过程中的注意点. 四.回顾反思,拓展深化 1. “五点法”作图 2.图形变换过程 两种方法殊途同归-总结参数A ,ω,φ函数y =A sin(ωx +φ)的影响.(1)振幅变化,由A 的变化引起; (2)周期变化,由ω的变化引起; (3)相位变化,由ωϕ或ϕ的变化引起.[设计意图]引导学生从知识和方法两个方面进行小结.培养学生及时总结,概括提升的能力,为在课后能继续独立探究思考埋下伏笔. 五.课后研究,突出重点(1)阅读书后链接内容并通过网络了解三角函数知识在简谐运动,波的传播,交流电中的应用;(2)书后习题4,5,6.课后思考:(1)函数x y s i n =的图象通过怎样的变换可以得到函数x x y 3sin 3cos -=的图象?(2)函数)(x f y =的图象经过怎样的变换可以得到)32(+=x f y 的图象?[设计意图]通过阅读让学生了解数学学科与人类社会发展间的相互关系,体会数学的科学价值和应用价值;通过思考题使知识更加完整,落实知识的掌握与思想方法的理解.。
《从位移、速度、力到向量》教学设计本节课的内容是北师大版数学必修4,第二章《平面向量》的引言和第一节《从位移、速度、力到向量》两部分,所需课时为1课时。
一、教材分析向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。
向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。
向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。
本课是“平面向量”的起始课,具有“统领全局”的作用。
本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力。
二、学情分析在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。
三、目标定位根据以上的分析,本节课的教学目标定位:1)、知识目标⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;⑶理解零向量、单位向量、相等向量、平行向量的含义。
2)、能力目标⑴培养用联系的观点,类比的方法研究向量;⑵获得研究数学新问题的基本思路,学会概念思维;3)、情感目标⑴运用实例,激发爱国热情;⑵使学生自然的、水到渠成的实现“概念的形成”;⑶让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。
重难点:重点:向量概念、向量的几何表示、以及相等向量概念;难点:让学生感受向量、平行或共线向量等概念形成过程;四、教学过程概述:4.1 向量概念的形成4.1.1 让学生感受引入概念的必要性引子:在世博园内,有位同学在参观完了中国馆后将要去德国馆参观,由位置的变化引出位移。
《三角函数模型的简单应用》教学设计(人教A版高中课标教材数学必修4第一章1.6节)授课教师:陈刚天津市经济技术开发区国际学校指导教师:傅剑天津市实验中学沈婕天津市中小学教育教学研究室赵杨天津市经济技术开发区国际学校2010年10月三角函数模型的简单应用授课教师:天津经济技术开发区国际学校陈刚一、内容和内容解析本节课是普通高中新课程标准实验教科书《数学》(必修4)中第一章《三角函数》第六节“三角函数模型的简单应用”的第二课时.“三角函数模型的简单应用”一节教材共设置了4个例题,循序渐进地从四个层次来介绍三角函数模型的应用.教学共分两个课时:第一课时介绍前3个例题,分别是用已知的三角函数模型解决问题;将复杂的函数模型转化为sin等基本初等函数模型;根据问题情y x境建立精确的三角函数模型解决问题.通过第一课时的学习,学生已经初步掌握了由函数图象建立解析式的方法,这为第二课时的学习做好了知识上的铺垫.第二课时介绍第4个例题,即给出潮起潮落的变化数据,通过作散点图,选择函数模型,建立函数模型,并用得到的函数模型解决有关问题.这一课时的内容是一个比较完整的建立三角函数模型解决实际问题的例子,可以让学生经历运用三角函数模型描述周期现象、解决实际问题的全过程.教科书《三角函数》这章专门设置“三角函数模型的简单应用”一节,目的是让学生感受到三角函数在解决具有周期变化规律的问题中的作用,体验三角函数与日常生活和其他学科的联系.以使学生体会三角函数的价值和作用,增强应用意识,同时还使学生加深对有关知识的理解.通过例4的教学,可以使学生经历用三角函数模型刻画周期现象的全过程,掌握从实际问题抽象出数学模型的一般方法,进一步体会三角函数是刻画周期变化规律的重要模型.三角函数模型的建立和应用,蕴含着丰富的数学思想.首先,是函数建模思想.本节内容需要对给出的数据细心观察,寻找规律,发现表格中的数量关系;画出散点图,用曲线拟合这些数据,并找出恰当的函数模型,求其解析式;最后利用所求得的函数模型解决实际问题.这体现了数学建模的思想.其次,是数形结合思想.在用代数方法处理一些问题遇到困难时,常通过对图象的分析,采用数形结合的思想,使问题得以解决.三角函数模型其本身就是“数”与“形”的统一体.就本节所涉及的实际问题,根据所提供的数据很难一目了然地观察到其变化的规律,而画出它的散点图,可直观地反映出数据的周期性变化规律,这样将“数”与“形”结合,使得模型“形”的建立水到渠成.虽然“数形结合”的思想在之前学习分段函数、指数函数、对数函数等具体函数模型时,学生已经接触过,但结合本课内容,发挥从“数”和“形”两个方面共同分析解决问题的优势,可以进一步加强对数形结合思想方法的理解.此外,在运用三角函数模型解决数学问题的过程中,“函数与方程”的数学思想也得到了体现.三角函数模型是在学习了分段函数、指数函数、对数函数等具体函数模型之后学习的又一具体函数模型,在知识的形成过程中,突出体现了建立模型和应用模型两个核心环节.因此,本节的教学重点是:用三角函数模型解决一些具有周期性变化规律的实际问题;从实际问题中发现周期变化的规律,并将所发现的规律抽象为恰当的三角函数模型.二、教学问题诊断分析在学习了分段函数、指数函数、对数函数等基本函数模型后,学生已经历过观察散点图,抽象成函数模型,分析图象的特征,运用图形计算器等信息技术手段求解的数学建模过程,部分学生对模型的建立和应用往往还停留在操作层面上,对其中的数学意义和蕴含的数学思想的理解并不深刻;当面对三角函数解决实际问题的陌生背景、复杂的数据处理等,学生会感到困难;尤其是明确问题的实际背景、分析问题的复杂条件,考虑问题的实际意义,及对问题的解的分析等都会有一定的困难.因此在教学时,应重视审题环节,通过有针对性的引导,让学生认真阅读,抓住关键的词和句子,弄清题意;注意帮助学生在分析问题中提取其中的数量关系;借助散点图,引导学生从“形”的特征发现各个量之间的关系及他们的变化规律;同时注意指导学生根据问题的实际意义对问题的解进行具体的分析.教学难点:分析、整理、提取和利用信息,将实际问题抽象转化成三角函数模型,并综合运用相关知识解决实际问题.三、目标和目标解析(一)教学目标1.利用收集到的数据作出散点图,根据散点图进行函数拟合,建立三角函数模型,掌握利用三角函数模型解决实际问题的方法.2.经历由实际问题选择数学模型、研究数学模型、解决实际问题的数学建模过程,感悟“数形结合”、“函数与方程”的数学思想,并能理解应用“数形结合”、“函数与方程”思想解决有关具有周期运动规律的实际问题.3.培养学生的观察、分析、探究、归纳及概括能力以及运用图形计算器等信息技术手段解决实际问题的能力,增强学生的应用意识.(二)目标解析1.学生在学习了分段函数、指数函数、对数函数等函数模型后,对建立函数模型的基本步骤有所了解,但对数据呈现周期性变化规律的数学建模还是初次接触,特别是对如何根据实际背景及问题的条件,注意考虑实际意义,对问题的解进行具体分析,学生的理解并不深刻.因此如何建立和应用数学建模是本节的学习目标之一.2.数学思想的教学一般要经过渗透孕育期、领悟形成期、应用发展期、巩固深化期四个阶段,而非通过简单如“复制与灌输”手段得以实现.所以通过数学建模的过程,让学生领悟到“数学建模思想”、“数形结合思想”、“函数思想”等,并能运用这些数学思想分析三角函数的图象,通过解决一些具有实际背景的综合性问题,培养他们综合应用数学和其他学科知识解决问题的能力.3.通过数学建模的过程,使学生在观察、分析、探究、归纳、概括等思维活动中获取新知,这不仅可以提高学生的思维能力,培养学生运用图形计算器等信息技术手段解决实际问题的能力,同时也可以增强学生的应用意识,促进学生良好思维品质的形成.四、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以图形计算器为平台(本节课使用的是Casio ClassPad 330型图形计算器),绘制三角函数等函数图象,变抽象为直观;同时辅之以图形计算器强大的计算功能,为学生的数学探究与数学思维提供支持.五、教学过程设计(一)开门见山——呈现问题同学们,我们已经学过三角函数的图象与性质,今天我们研究如何建立和应用三角函数模型解决实际问题.我们知道,海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的整点时间与水深(单位:m)关系表:(二)观察数据——建立模型问题1:请同学们仔细观察表格中的数据,从中可以得到一些什么信息?师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充,主要从变量间的关系、水深的最值、水深随时间变化有无规律等方面去研究.【设计意图】通过观察表格中的数据,先发现水深有变化,尽可能发现或猜想这种变化呈现一种周期性变化规律,为用散点图来表示这些数据做好铺垫.问题2:怎么画这些数据的散点图?你能使用图形计算器画出散点图吗?师生活动:教师提问,学生思考、回答,以时间为横轴,水深为纵轴,通过描点法是可以画出这些数据的散点图的.教师引导学生使用图形计算器作散点图,如下图.【设计意图】让学生复习用描点法画出散点图的方法.问题3:如果我们用一条光滑的曲线把这些点连接起来,根据曲线的形状和走势,能用什么样的函数来近似拟合这个图象?师生活动:教师引导学生利用图形计算器的连线功能将散点连接起来,如下图.观察、分析绘出的曲线的形状和特征,思考、判断、选择函数模型.教师根据学生回答的情况加以补充,突出对“周期性”的引导,最后确定可以用形如sin()y A x h ωφ=++的正弦型函数来近似拟合.【设计意图】引导学生根据由散点图连成的曲线呈周期性的特点选择正弦型函数模型,培养学生的观察、分析、推理、判断、抽象概括等能力.问题4:如何求出函数sin()y A x h ωϕ=++中的A ,ω,h ,和φ的值,从而确定函数模型的解析式呢?师生活动:师生通过问答的形式,结合图象,求出A ,ω,φ,h .(1)求振幅A .由图象可以得到最大值是7.5,最小值是2.5,最大值与最小值之差的一半是振幅,A =2.5.(2)求ω.ω的值跟周期有关,从图象可以看到,完成一次往复运动要用12小时,所以周期是12.所以12T =,2π2ππ126T ω===. (3)求h .图象向上平移了5个单位,5h =.(4)求φ.代入一个特殊点,例如(0,5),就可以得到sin 0φ=,从而得到0φ=.学生利用图形计算器统计模块中的函数拟合功能,得出正弦型函数的解析式,如下图.师生共同比较图形计算器得出的解析式和学生自己求出的解析式,得出两个解析式实际是相同的.【设计意图】让学生结合函数图象以及已知表格中的数据,求出sin()y A x h ωϕ=++各参数的值,体会“数形结合”的数学思想,利用图形计算器验证所求结果.问题5:我们已经知道港口在某季节每天的时间与水深关系可以近似用函数模型π2.5sin()56y x =+来刻画,谁能试着总结一下刚才我们建立三角函数模型的过程? 师生活动:学生回顾刚才建模的过程、回答.教师根据学生回答的情况加以补充完善,主要强调(1)根据已知的数据画出散点图; (2)用光滑的曲线连接散点图;(3)根据曲线的变化趋势具有周期性的特点,选择正弦型函数模型;(4)求正弦型函数解析式.【设计意图】及时对建模的过程加以小结,使学生进一步了解各个步骤之间的联系,巩固所学知识,体会其中使用的方法和所蕴含的数学思想.(三)回归现实——提出问题我们已经知道港口在某季节每天的时间与水深关系可以近似用函数模型π2.5sin()56y x =+来刻画,下面利用该模型解决有关货船进出港的一些实际问题. 问题6:(进出港时间问题)一条货船的吃水深度(船底与水面的距离)为4 m ,安全条例规定至少要有1.5 m 的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?师生活动:教师通过以下问题,引导学生探究.(1)货船能够进入港口所需要满足的条件是什么 ?(实际水深≥安全水深)(2)怎样用数学表达式来表述这一条件?(π2.5sin5 5.56x +≥) (3)如何解不等式π2.5sin 5 5.56x +≥? (4)若把不等式两端看成是两个函数,分别作出它们的函数图象,用数形结合的思想解决问题,那么满足我们条件的解是图象的哪部分?(5)在[0,24]内满足条件的解集是什么?(6)结合图象,货船应该选择什么时间进港,什么时间出港?(7)货船在港口能呆多久?(8)如何使用图形计算器帮助我们解决其中的问题?学生利用图形计算器分别画出π2.5sin56x y =+和 5.5y =的图象,找出两图象的交点,通过数形结合得到不等式的解集.【设计意图】通过问题串,帮助学生弄清楚题目的意思,引导学生建立函数模型,借助图形计算器,利用数形结合思想解决问题.得出答案后,通过检验它是否与实际意义相符,对答案的合理性做出解释.过渡语:刚才的问题中,货船从进港、在港口停留,到后来离开港口,货船的吃水深度一直没有改变,也就是说货船的安全深度一直没有改变,但是实际情况往往是货船载满货物进港,在港口卸货,卸完货后离开港口,在卸货的过程中,由物理学的知识我们知道,随着船身自身重量的减小,船身会上浮,那么在这种情况下,我们又该如何选择进出港时间呢?问题7:(卸货时间问题)若某船的吃水深度为4 m,安全间隙为1.5 m,该船在2:00开始卸货,吃水深度以每小时0.3 m的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?师生活动:教师启发学生类比、思考,组织学生讨论如下问题:(1)“必须停止卸货”的含义是什么?你能用一个关系式来表述吗?(2)安全水深如何表示呢?(3)如何解不等式π2.5sin5 5.50.3(2)6xx+≥--?学生在这些问题的引导下思考探究,对于要求解的不等式,学生根据刚才解题的经历,相互讨论寻求解决的途径,利用图形计算器通过两种方法求出不等式的解集.【设计意图】引导学生用函数模型刻画货船安全水深与时间的关系,将实际问题转化为不等式问题.让学生进一步体验“数形结合”思想和“函数与方程”思想在解决数学问题中的作用.问题8:在船的安全水深正好等于港口水深时,停止卸货行吗?为什么?正确的结论是什么?师生活动:在教师的引导下,学生独立思考、讨论,然后给出回答.货船应该在6时30P分左右驶离港口.否则就不能保证货船有足够的时间发动螺旋桨.【设计意图】将所得的数学解释转化为实际问题的解释.(四)课时小结,认识深化问题9:通过这节课的学习,大家有什么收获吗?(师生一起归纳)1. 通过本节课的学习,学会了数据处理的基本方法和步骤:(1)观察收集到的数据,寻找规律,发现数据间的数量关系;(2)根据已知数据绘制散点图;(3)用光滑的曲线连接散点图;(4)通过比较,选择恰当的函数模型拟合数据;(5)求函数模型的解析式.在数据处理的过程中,运用了函数的三种不同的表示方法,分析问题并解决问题.2. 在解决实际问题时运用了“数学建模思想”、“数形结合思想”、“函数与方程思想”等数学思想方法.【设计意图】让学生通过思考和回答问题,归纳总结建立三角函数等数学模型解决实际问题的基本步骤,理清解决实际问题的基本思路,渗透数学思想方法,培养学生的归纳总结能力和语言表达能力.(五)布置作业——延时探究过渡语:在今天我们所研究的实际问题的基础上,同学们课后可以进一步深入研究,请大家看拓展作业.作业1(卸货速度问题):若货船的吃水深度为4米,安全间隙为1.5 m,该船在2:00开始卸货,货物卸空后吃水深度为2 m,为了保证货船进入码头后一次性卸空货物,又能安全驶离码头,那么每小时吃水深度至少要以多少速度减少?【设计意图】让学生利用函数模型解决实际问题,理清解决问题的基本思路,培养分析和探究能力.这是本节内容的一个提高与拓展.作业2:以下是同学们在互联网上得到的北京每月15日日出时间的数据:(2)如果你准备在国庆节去北京天安门广场看升旗,你最好在什么时间到达天安门广场?【设计意图】通过训练,巩固课堂所学内容,让学生进一步熟练三角函数应用问题的解决方法.把数学的学术形态转化为生活服务的教育形态.。
《独立性检验的基本思想及其初步应用》教学设计一、教学内容与内容解析1.内容:独立性检验的基本思想及实施步骤2.内容解析:本节课是人教A版(选修)2—3第三章第二单元第二课时的内容.在本课之前,学生已经学习过事件的相互独立性、正态分布及回归分析的基本思想及初步应用。
本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要课节。
在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。
在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。
独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。
因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。
学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。
这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。
教学重点:理解独立性检验的基本思想及实施步骤.二、教学目标与目标解析1.目标:①知识与技能目标通过生活中新闻案例的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。
②过程与方法目标通过探究“玩电脑游戏与注意力集中是否有关系”引出独立性检验的问题,借助样本数据的列联表分析独立性检验的实施步骤。
利用上节课所学已经由数据直观判断出玩电脑游戏与注意力集中可能有关系。
这一直觉来自于观测数据,即样本。
2021年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案2021年第五届全国高中青年数学教师优秀课观摩与评选活动交流材料人教版全日制普通高级中学教科书(必修)第二册椭圆及其标准方程教学设计云南省玉溪市第一中学姚艳萍2021年第五届全国高中数学青年教师参观与评选活动精品教案椭圆及其标准方程一、教学目标1.知识目标:掌握椭圆的定义,能正确推导椭圆的标准方程.2.能力目标:通过鼓励学生亲自动手尝试画椭圆,使学生辨认出椭圆的构成过程进而概括出来椭圆的定义,培育学生的动手能力、合作自学能力以及运用所学科学知识化解实际问题的能力.3.情感目标(1)通过椭圆定义的获得培养学生探索数学的兴趣.(2)通过椭圆标准方程的推论培育学生谋珍意识并能够懂观赏数学的“简约美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.二、重点、难点重点:掌控椭圆的定义及标准方程,认知座标法的基本思想.难点:椭圆标准方程的推论与化简.三.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四.教具准备工作:多媒体课件和自造教具:呼啦圈,绘图板、图钉、细绳.五、教学过程(一)创设情境,认识椭圆.材料1:对椭圆的感性认识.通过模拟课前准备工作的生活中有关椭圆的实物和图片,让学生从感性上认识椭圆.材料2:“嫦娥一号”演示轨道图.2021年10月24日,我国第一颗探月卫星“嫦娥一号”发射成功,开始了举世瞩目的太空之旅,流传了几千年的飞天神话,变成了现实,这标志着我国航天事业又上了一个新台阶,这是中国人的骄傲.请问:“嫦娥一号”绕地球飞行的运行轨道是什么?(课件演示轨道图)引入课题:椭圆及其标准方程.2021年第五届全国高中数学青年教师参观与评选活动精品教案(设计意图:利用多媒体,展示学生常见的椭圆形状的物品,让学生从感性上认识椭圆:通过“嫦娥一号”的轨道录像,让学生感受现实,激发学生的学习兴趣,培养爱国思想.)(二)动手实验,亲身体会.1.教师演示,引出研究思路.教师将一圆形的呼啦圈朝一方向用力甩或扎,变为一椭圆形状的呼啦圈,以表明圆和椭圆的密切关系,代普雷可以像是自学圆一样去自学椭圆.思考:在上一章圆的学习中我们知道:平面内到一定点的距离为定长的点的轨迹是圆.那么,到两定点距离之和等于常数的点的轨迹又是什么呢?(设计意图:对于生活中、数学中的圆,学生已经存有一定的重新认识和研究,但对椭圆,学生只逗留在直观体会,基于它俩的关系,鼓励学生用上一章所学,去研究椭圆.)2.学生分组试验.(1)取一条细绳;(2)把细绳的两端用图钉紧固在板上的两点f1、f2;(3)用铅笔尖(m)把细绳拉紧,在板上慢慢移动观察画出的图形是什么?(教师巡视指导,展示学生成果)3.分析实验,得出规律.(1)在图画出来一个椭圆的过程中,细绳的两端的边线就是紧固的还是运动的?(2)在画椭圆的过程中,绳子的长度变小了没?说明了什么?(3)在画椭圆的过程中,绳子长度与两定点距离大小存有怎样的关系?(4)发生改变绳子长度与两定点距离的大小,轨迹又就是什么?学生总结规律:|mf1|+|mf2|>|f1f2|轨迹为椭圆;|1ff||mf轨迹为线段;1|+|mf2=|2|mf1|+|mf2|(设计意图:在本环节中并不是急于向学生交代椭圆的定义,而是设计一个实验,一来就是为了给学生一个动手实验的机会,使学生体会椭圆上点的运动规律;二就是通过课堂教学思索,为进一步下降至理论搞准备工作.)2021年第五届全国高中数学青年教师观摩与评比活动精品教案(三)总结概括,构成概念.定义:平面内,至两个定点f1、f2的距离之和等同于常数(大于f1f2)的点的轨迹叫作椭圆.(在概括椭圆定义的过程中,教师根据学生提问的情况,不断鼓励他们逐步增进认知并健全椭圆的定义,在鼓励中注重彰显“常数”及“常数”的范围等关键词与适当的特征.)问:椭圆定义还可以用子集语言如何则表示?mf1?mf2?2a(2a?2c).(设计意图:通过学生观测、思索、探讨,归纳出来椭圆的定义,使学生全程参予概念的探究过程,增进认知,提升归纳能力和数学语言的表达能力.)(四)合理建系,推论方程.1.备考谋曲线的方程的基本步骤:⑴建系;⑵设点;⑶列式;⑷化简;(5)证明(可以省略)(由学生提问,不恰当的教师给与制止.)2.如何挑选出坐标系?【学情预设】学生可能会建系如下几种情况:方案一:把f1、f2座落在x轴上,以f1f2的中点为原点;方案二:把f1、f2座落在x轴上,以f1为原点;方案三:把f1、f2座落在x轴上,以f1f2与x轴的左交点为原点;方案四:把f1、f2座落在y轴上,以f1f2的中点为原点;教师八折椭圆,学生观测椭圆的几何特征(对称性),如何建系能够并使方程更简约?学生探讨,经过比较确认方案一.(设计意图:积极主动引导学生用相同建系方法,使他们充份曝露自然思维,通过比较,得出结论最简约的方案,而不是被动地拒绝接受教材或老师让渡给的方法.)3.推论标准方程.挑选出建系方案,使学生动手,尝试推论.按方案一:以过f1、f2的直线为x轴,线段f1f2的垂直平分或线为y轴,创建平面直角坐标系则.设f1f2?2c(c?0),点m(x,y)为椭圆上任一一点,则p??mmf1?mf2?2a?(表示此式为几何条件),∴得xc2y2xc2y22a(实现集合条件代数化),2021年第五届全国高中数学青年教师观摩与评比活动精品教案(想一想:下面怎样化简?)(1)教师为突破难点,进行引导设问:我们怎么化简拎根式的式子?对于本式就是轻易平方不好还是整理后再平方不好呢?化简,得(a2?c2)x2?a2y2?a2(a2?c2).y(2)b的引入.由椭圆的定义可知,2a?2c,∴a2?c2?0.f1bma0cf2x让点m运动到y 轴正半轴上(如图2),由学生观察图形直观获得a,c的几何意义,进而自然引进b,此时设图2b2?a2?c2,于是得b2x2?a2y2?a2b2,两边同时除以a2b2,得到方程:x2y2.??1?a?b?0?(称为椭圆的标准方程)a2b2(3)建立焦点在y轴上的椭圆的标准方程.要建立焦点在y轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何做?方法1:按步骤列出方程,利用两方程结构的异同(结构相同,只是字母x,,直接得到方程.y交换了位置)方法2:(视情况决定讲与否(预设))借助于化归思想,抓住图1(前面方程推导时用过)与图3的联系(关于直线y?x对称)即可化未知为已知,将已知的焦点在x轴上的椭圆的标准方程转化为焦点在y轴上的椭圆的标准方程.只需将图1沿直线y?x翻折即可转化成图3;。
椭圆及其标准方程(第一课时)教学设计甘肃省张掖市实验中学雒淑英一、教材及学情分析本节课是《全日制普通高级中学教科书(必修)·数学》(人民教育出版社中学数学室编著)第二册(上)第八章第一节《椭圆及其标准方程》第一课时。
用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线。
圆锥曲线的发现与研究始于古希腊,当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广。
17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线。
在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想。
解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。
在第七章中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,在第八章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。
由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用。
本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等。
因此,教学时应重视体现数学的思想方法及价值。
根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用动态作图优势为学生的数学探究与数学思维提供支持。
二、教学目标分析按照教学大纲的要求,根据教材分析和学情分析,确定如下教学目标:1.知识与技能目标:①理解椭圆的定义。
②掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。
2.过程与方法目标:①经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。
几何概型高中数学必修3第三章第3节第一课时福建师大附中孙舒萌一、教材分析教材的地位和作用“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。
《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。
教学重点与难点重点:掌握几何概型的判断及几何概型中概率的计算公式。
难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
通过数学建模解决实际问题。
[理论依据]本课是一节概念新授课,因此把掌握几何概型的判断及几何概型中概率的计算公式作为教学重点。
教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
此外,学生通过数学建模解决实际问题也较为困难,因此也是本节课的难点。
二、教学目标[知识与技能目标](1)体会几何概型的意义。
(2)了解几何概型的概率计算公式[过程与方法目标]通过古典概型的例子,稍加变化后成为几何概型,从有限个等可能结果推广到无限个等可能结果,让学生经历概念的建构这一过程,感受数学的拓广过程。
通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法。
[情感与态度目标]体会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培养其积极探索的精神。
三、教学方法,教学模式,教学手段本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学。
四、学法指导通过合作交流,类比联想,归纳化归,总结提升,让学生在学习中学会怎样发现问题、分析问题、解决问题。
教学环节教学内容设计意图以境激情,形成概念[情境一]情境一:飞镖游戏:如图所示,规定射中红色区域表示中奖问题:各个圆盘的中奖概率各是多少?(1)(2)(3)对课本通过等分猜想引入几何概型的改造,通过学生猜想依次得到概率。
《同角三角函数的基本关系》教学设计云南省云大附中 王泽娟一、教学目标1.知识与技能目标(1)能根据三角函数的几何、代数定义导出同角三角函数的基本关系式;(2)掌握同角三角函数的两个基本关系式,并能够根据一个角的三角函数值,求这个角的其他三角函数值.2.过程与方法目标(1)牢固掌握同角三角函数关系式,并能灵活解题,提高学生分析、解决三角函数的思维能力;(2)探究同角三角函数关系式时,体会数形结合的思想;已知一个角的三角函数值,求这个角的其他三角函数值时,进一步树立分类思想;解题时,注重化归的思想,将新题目化归到已经掌握的知识点上;(3)通过对知识的探究,掌握自主学习的方法,通过学习中的交流,形成合作学习的习惯.3.情感、态度、价值观目标通过教学,使学生学习运用观察、类比、数形结合、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力.二、教学重点和难点教学重点:公式1cos sin 22=α+α和α=ααtan cos sin 的推导及其应用 教学难点:同角三角函数的基本关系式的变式应用三、教学流程(一) 提问引入1、 提出问题:已知53sin -=α,求αcos 、αtan 的值. 2、 在解题过程中,让学生自己探索同角的三角函数关系.(二)探究新知1. 探究对同角三角函数基本关系(1) 根据学生探究出的结果,得出结论.引导学生注意“正弦的平方”的表示方法是“a 2sin ”,而不是:“2sin a ”,进而得到符号表达式:22sincos 1αα+=;开方计算时,注意“分类”的思想在象限角正负号问题处理时的应用.(2) 探究正弦、余弦和正切函数三者的关系:αααtan cos sin =. 以上的探究由学生自由完成,可以从图形角度,也可以从定义角度加以探究,让学生体会图形语言与符号语言之间的转换关系,体会两种语言的区别于联系.为了让学生及时熟悉公式,同时为后续学生归纳“同角”作铺垫,要求学生完成以下的课堂练习:(1) =+οο30cos 30sin 22_______________;(2) =+++)4(cos )4(sin 22ππx x ________________;(3) ︒︒45cos 45sin =_______________(4) =+οο45cos 30sin 22.(3) 学生交流、讨论,最终在教师的引导下得到上述两个公式中应该注意的问题:①注意“同角”指相同的角,例如:145cos 30sin 22≠+οο、12cos 2sin 22=+αα、12cos 2sin 22=+αα;②注意这些关系式都是对于使它们有意义的角而言的,如α=ααtan cos sin 中0cos ≠α,且αtan 需有意义等.(三)架构迁移(1)探究上述两个关系式的等价变形式教师点明:由等价变形式αα22cos 1sin -=已知余弦值可以求正弦值;由等价变形式 αα22sin 1cos -=已知余弦值可以求正弦值,学生可能得到:αα2cos 1sin -±=的结论,此时,应该向学生说明:αcos 、αsin 的符号受所在象限的限制,不是无条件的,不同于“由12=x 可以推出1±=x ”这种情形,此情况类似于“⎪⎩⎪⎨⎧<-≥=)0()0(||a a a a a ”而不是“a a ±=||”.等价变形式αααcos tan sin =可以将分式可以化为整式例1 已知锐角α满足3tan =α,求(1)ααααcos 2sin 5cos 4sin +-;(2)αααcos sin 2sin 2+. 让学生探究第一小题的解法,注意αsin 、αcos 、αtan 之间的关系的应用,学生的解题方法可能有很多种,注意每种解法后对数学思想方法的归纳.然后让学生尝试解决第二小题.第二小题较第一小题难度有所增加,可以让学生采取合作学习的办法,分小组讨论,探究其解题方法.再与第一小题比较,寻找其可借鉴之处.体会类比、化归思想,化未知为已知. 例2 化简αα22cos )tan 1(+.本例在时间允许的情况下进行,否则放到下节课解决.若时间允许,则进行强化练习:练习1:已知54cos -=α,且α为第三象限角,求αsin 、αtan 的值.该题与引例配套. 练习2:已知ααcos 5sin =,求ααααcos 2sin cos sin -+的值.该题与例2配套. (四)反思升华:由学生自己反思:“本节课你有些什么收获?”让学生自己总结本节课所学内容,教师从知识层面和思想方法层面帮助学生整理本节课的小节。
正弦、余弦函数的周期性教案一、教材分析:《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.本节课是学生学习了诱导公式和正弦、余弦函数的图象之后,对三角函数知识的又一深入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力、推理论证能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.所以本课既是前期知识的发展,又是后续有关知识研究的前驱,起着承前启后的作用.二、教学目标:学情分析:学生在知识上已经掌握了诱导公式、正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.本课的教学目标:(一)知识与技能1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期.(二)过程与方法从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x 图形的比较、概括抽象出周期函数的概念.运用数形结合方法研究正弦函数y=sin x的周期性,通过类比研究余弦函数y=cosx的周期性.(三)情感、态度与价值观让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.三、教学重点:周期函数的定义和正弦、余弦函数的周期性.四、教学难点:周期函数定义及运用定义求函数的周期.五、教学准备:三角板、多媒体课件六、教学流程:课外作业:求下列函数的周期: (1)3sin4x y =,x R ∈;(2)sin()10y x π=+,x R ∈; (3)cos(2)3y x π=+,x R ∈(4)1sin()24y x π-,x R ∈课外思考:1. 求函数()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+(其中,,A ωϕ为常数,且0,0A ω≠>)的周期.2.求下列函数的周期:(1)|sin |x y =,x R ∈;(2)|2cos |x y =,x R ∈附:板书设计附:1.本节课预计学生建构周期函数概念时有困难,特别是“正弦函数图象的周而复始变化实际上是函数值的周而复始变化” 的本质学生理解有一定困难.为了突破这个难点,借助了几何画板来帮助学生从形象思维过渡到抽象思维.2.预计部分学生对周期函数定义的自变量的任意性的理解有困难,为了突破这个难点,设计了三道判断题让学生分组讨论交流,通过学生思维碰撞来体会数学概念的严谨,通过学生互动建构自己对周期函数概念的认识.3.预计部分学生运用周期函数定义求函数周期有一定困难,为了解决这个困难,在设计中,例1第1问由师生共同完成,完成后小结解题的思路方法.再由学生完成第2问和第3问,再由师生共同点评.教案设计说明广东省东莞中学松山湖学校彭科《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.本课的重点为周期函数的定义和正弦、余弦函数的周期性,难点为周期函数定义及运用定义求函数的周期.本课的教学设计分为六个部分,包括:教材分析,目标分析(含学情分析),教学重难点,教学准备,教学流程,教学过程.设计反映了由学生熟悉的生活的周期现象出发,通过概括、抽象,并结合正弦函数的图象引导学生感受周期函数概念的形成过程,这是设计的数学本质基础;设计中结合本班学生的学习的实际情况,从而确定了教学活动的环节.以这些分析为基础从而确定教学目标,而过程设计则针对目标从九个环节进行具体的设计.教学过程设计自始至终贯穿数形结合思想.下面从如下几个方面进行详细说明.一、教学内容的数学本质及教学目标定位本节课主要内容是周期函数的概念及正弦、余弦函数的周期性.通过对正弦函数图象“周而复始”的变化规律特征的感知,使学生建立比较牢固的理解周期性的认知基础,然后再引导学生了解用代数表达式刻画图象“周而复始”的变化规律.本节课要探究的周期函数的概念的数学本质是从形和数两个方面去刻画“周而复始”的变化规律.学生在知识上已经学习了函数概念与基本初等函数等知识,已经掌握了三角函数图象的画法及五点法作图;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经接触过数形结合、类比、特殊到一般等数学思想.另外,我还对我班学生的具体情况做了如下分析:我班学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题,但是部分学生处理抽象问题的能力还有待进一步提高.于是,结合以上的学情分析,我从“知识与技能”、“过程与方法”和“情感态度与价值观”设定目标.其中知识与技能目标为:理解周期函数的概念及正弦、余弦函数的周期性,会求一些简单三角函数的周期.过程与方法则是:从学生实际中的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念. 运用数形结合方法研究正弦函数y=sin x的周期性,通过类比研究余弦函数y=cosx的周期性.并且在过程中渗透了本课的情感态度目标:让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.以上是对教学目标定位的说明.二、教学流程三、学习基础及作用本节课是学生学习了诱导公式和正弦、余弦函数的图象之后,对三角函数知识的又一深入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.正弦函数、余弦函数的周期性,与后面高中物理研究的《单摆运动》、《简谐运动》、《机械波》等知识有着密切相关的联系.在数学和其它领域(物理学、生物学、医学等)中具有重要的作用,所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁.四、教学诊断分析1.学习正弦、余弦函数的周期性时,用图象法求周期学生容易理解;建构周期函数概念时学生有困难,特别是“正弦函数图象的周而复始的变化实际上是函数值的周而复始的变化”的本质学生感到有一定困难. 我首先让学生回顾如何利用正弦线画正弦函数y=sin x图象(动画演示),通过动画演示,让学生感知正弦函数图象“周而复始”的变化规律,再引导学生用代数表达式刻画图象“周而复始”的变化规律.2.部分学生对周期函数定义中的任意性理解容易出现错误,需要在教学中反复强调.3.本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去.五、教法特点及预期效果分析结合教学目标以及学生的实际情况,我采用了启发引导与小组合作交流相结合的教学方式,而在知识构建过程中,在教师引导下,使学生经历了直观感知、观察发现、抽象概括等思维活动,提高数学思维能力;注重信息技术与数学课程的整合,提倡利用信息技术呈现以往教学中难以呈现的课程内容,鼓励学生运用信息技术进行探索和发现.本节课遵循学生的认知规律,通过典型具体例子的分析和学生自主地观察、探索活动,使学生理解周期概念的形成过程,体会蕴含在其中的数形结合的思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,教学内容利用生活中的问题和课本上已有的知识创设情境,使教学内容不仅贴近生活,并且来源于旧知识,设计内容一环扣一环,使学生对周期函数的概念理解和应用步步深入.在教学方法上运用多种方法,如观察、分析、归纳、讨论;在知识的学习过程中,重视知识的形成过程和概括过程.在解决问题中,引导学生分析、归纳方法,注意优化学生的思维品质;在教学手段上采用多媒体和黑板重点板书结合的教学方法.通过本节课学习,我力求达到:1 、形成学生主动参与,自主探究,合作交流的课堂气氛.2、学生进一步了解数学来源于生活,理解周期函数和周期的定义.3、让学生体会从感性到理性的思维过程,体会数形结合思想,让学生领悟问题探究的学习方法.由于本课内容不多,难度不大,相信大多数学生都能掌握本课知识,实现预期的目标.。
芯衣州星海市涌泉学校古典概型教学设计一中冯钰雯2021年4月一、教材分析本节课是A版高中数学3〔必修〕第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最根本的概率模型,在概率论中占有相当重要的地位。
学好古典概型可以为其它概率的学习奠定根底,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
二、教学目的1.知识与技能(1)理解根本领件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的根本领件数及事件发生的概率。
2.过程与方法根据本节课的内容和学生的实际程度,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,表达了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观概率教学的核心问题是让学生理解随机现象与概率的意义,加强与实际生活的联络,以科学的态度评价身边的一些随机现象。
适当地增加学生学习交流的时机,尽量地让学生自己举出生活和学习中与古典概型有关的实例。
使得学生在体会概率意义的同时,感受与别人的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
三、重点、难点重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的根本领件的个数和试验中根本领件的总数。
四、教学过程研探论证观点来分析问题的一种方法。
3.例1.从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些根本领件?分析:为理解根本领件,我们可以用列举法把所有可能的结果都列出来。
画树状图是列举法的根本方法,一般分布完成的结果(两步或者者两步以上)可以用树状图进展列举。
普通高中课程标准实验教科书
数学必修1
授课教师:
第九中学
指数函数的图象与性质教学设计
(二)发 现 问 题,
深 化 概 念
(三)
动 手 操 作,
画 出 图 像
(四)观 察 图 像, 探 究 性 质
强
化
训
巩
固
双
基
时,.
归 纳 总 结, 拓 展 深 化
(七) 布 置 作 业,
提 高 升 华
普通高中课程标准实验教科书
数学必修1
《指数函数及其性质》
教学设计说明
授课教师:张燕
新疆乌鲁木齐市第九中学
2010年9月14日
指数函数及其性质教学设计说明新课标指出:学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础
上,建构新的知识体系。
我将以此为基础对教学设计加以说
明。
一、数学本质:
探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。
通过分类讨论,通过
研究两个具体的指数函数引导学生通过观察图象发现指数函数的图
象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探
究过程。
引导学生探究出指数函数的一般性质,从而对指数函数进行
较为系统的研究。
二、教材的地位和作用:
本节课本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1 .2节的内容,研究指数函数的定义,图像及性质。
是在学生
已经较系统地学习了函数的概念,将指数扩充到实数范围之后学习
的一个重要的基本初等函数。
它既是对函数的概念进一步深化,又
是今后学习对数函数与幂函数的基础。
因此,在教材中占有极其
重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中
的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
三、教学目标分析:
根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的基础上掌握指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发现过程。
为此,特制定以下的教学目标:
1)知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决基本的比较大小的问题.
2)能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,增强学生识图用图的能力。
3)情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,用联系的观点看问题。
体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。
引导学生发现数学中的对称美、简洁美。
善于探索的思维品质。
三、教学问题诊断分析:
学生知识储备:
通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构。
学情分析:
由于我所教学生数学的理解能力、运算能力、思维能力等方面有一部分是较好的,但整体是水平参差不齐。
高一这个年龄段的学生思维活跃,求知欲强,能够勇于表现自我,展现自我,愿意合作交流。
但在思维习惯上与方法上还有待教师引导。
可能存在的问题与策略:
问题1.
学生能够从具体的问题中抽象出数学的模型但对于指数函数的定义中底数的取值范围和指数函数形式的判断有困难。
教学策略:
类比着二次函数,对于底数的范围的取值,引导学生回顾指数幂中当指数为全体实数时,底数怎样取值才能一直有意义,以问题的形式引发学生思考底数能否取负数、正数、0、1?从而得到底数的范围。
学生对: 1)y=-3x2)y=31/x 3) y=31+x
4) y=(-3)x 5) y=3-x=(1/3) x
几种形式的函数的判断,加强对指数函数形解析式的理解和辨别:
问题2.
学生初中阶段就接触过函数,但对于学生而言,指数函数是完全陌生的函数。
学生列表时,数值的选取上可能会少取或是数值的选取不能照顾到全体实数,画图时,又容易受以前学过的函数图像的影响,把指数函数的图像画成已经学过的图像的形象。
教学策略:在列表格时自变量的取值以及如何画出指数函数的图像的问题上,采用启发式教学法,类比学过的函数图形的画法,引导学生画图,画完图后,又利用实物投影仪展示一位同学的图像,由全班同学进行提出意见纠错来补充画图的不足。
另外为了让学生增强识图、用图的能力可以让学生根据观察到的指数函数的图像,来画出底数不同取值范围内的的草图,以便于探究性质。
问题3.
函数定义给出后,底数a如何分类讨论的情况学生难以做到,如果处理不好,这对于指数函数质探究时的分类讨论有很重要的意义。
教学策略:在定义中对于底数的取值范围的讨论后,得出了底数a>0且a≠1。
此时,在数轴上把a的范围表示出来,这样学生很容易从数轴上的区间图看出底数分为两类情况进行讨论。
这样为指数函数质探究时的分类讨论埋下了伏笔。
问题4 .
通过两个具体的特殊的指数函数图像,来探究得出指数函数的性质。
如何使学生能经历从特殊到一般的过程,这种由特殊到一般再到特殊的思想的领会,如何完成?
教学策略:教师利用几何画板分别画出了底数大于1的和底数在0到1之间的若干个不同的指数函数的图像,展现不同的底数的变化时图像的不同情况,从而让学生经历由特殊到一般的过程。
问题5.
指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,学生可能找不到研究问题的方法和方向.
教学策略:在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数。
问题6.
学生得到的性质特点可能是杂乱的,如何梳理突出主要的性质?
教学策略:在学生识图、用图、合作探究的过程后,利用两个表格的填写,让学生感受由图象特征来得到函数的性质的过程。
表格主要呈现五个方面的性质与特点。
五、教法分析:
为充分贯彻新课程理念,使教学过程真正成为学生学习过程,让学生体验数学发现和创造的历程,本节课拟采用直观教学法、启发发现法、课堂讨论法等教学方法。
以多媒体演示为载体,启发学生观察思考,分析讨论为主,教师适当引导点拨,以动手操作、合作交流,自主探究的方式来让学生始终处在教学活动的中心。
六、预期效果分析:
1、教学环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的生成和发展过程,使学生对知识的理解逐步深入。
2、简单实例的引入,顺利完成了知识的迁移,从得出指数函
数的模型,符合学生认知规律的最近发展区。
3、而作业中完成指数函数性质的探究报告,弥补课堂时间
有限探究和展示的局限性,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。
4、在整个教学过程中,由于学生是自觉主动地发现结果,对所学知识应该能够较快接受。
因此,我认为可以达到预定的教学目标。