2008年广州中考数学试卷word版无答案
- 格式:doc
- 大小:198.00 KB
- 文档页数:6
★机密·启用前2008年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑.1.(2008•广东•1•3′)||的值是()A.B.C.﹣2 D.22.(2008•广东•2•3′)2008年5月7日北京奥运会火炬接力传递活动在广州举行,整个火炬传递路线全长约40 820米,用科学记数法表示火炬传递路程是()A.408.2×102米B.40.82×103米C.4.082×104米D.0.4082×105米3.(2008•广东•3•3′)下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2 C.a2﹣2b+b2D.a2+2a+14.(2008•广东•4•3′)下列图形中是轴对称图形的是()A.B.C.D.5.(2008•广东•5•3′)下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A.28 B.28.5 C.29 D.29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答卷相应的位置上.6.(2008•广东•6•4′)-2的相反数是.7.(2008•广东•7•4′)经过点A(1,2)的反比例函数解析式是.8.(2008•广东•8•4′)已知等边三角形ABC的边长为3+,则△ABC的周长是.9.(2008•广东•9•4′)如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,则∠ANM= °.10.(2008•广东•10•4′)如图,已知AB是⊙O的直径,BC为弦,∠ABC=30度.过圆心O作OD⊥BC交BC于点D,连接DC,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(2008•广东•11•6′)计算:cos60°+2-1+(2008﹣π)0.12.(2008•广东•12•6′)解不等式4x﹣6<x,并在数轴上表示出解集.13.(2008•广东•13•6′)如图,在△ABC中,AB=AC=10,BC=8.用尺规作图作BC边上的中线AD(保留作图痕迹,不要求写作法和证明),并求AD的长.14.(2008•广东•14•6′)已知直线l1:y=﹣4x+5和直线l2:y=x﹣4,求两条直线l1和l2的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(2008•广东•15•6′)如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2008•广东•16•7′)在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.17.(2008•广东•17•7′)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是,你认为对吗?请你用列表或画树状图的方法说明理由.18.(2008•广东•18•7′)如图.在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F,点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为6,求△ABD的面积.19.(2008•广东•19•7′)如图,梯形ABCD是拦水坝的横断面图,(图中i=1:是指坡面的铅直高度DE与水平宽度CE的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD的面积.(结果保留三位有效数字.参考数据:≈1.732,≈1.414)五、解答题(三)(本大题3小题,每小题9分,共27分)2021.(2008•广东•21•9′)(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.22.(2008•广东•22•9′)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.(1)填空:如图1,AC= ,BD= ;四边形ABCD是梯形;(2)请写出图1中所有的相似三角形;(不含全等三角形)(3)如图2,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图2的平面直角坐标系,保持△ABD 不动,将△ABC向x轴的正方向平移到△FGH的位置,FH与BD相交于点P,设AF=t,△FBP面积为S,求S与t之间的函数关系式,并写出t的取值范围.★机密·启用前2008年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑.1.(2008•广东•1•3′)||的值是()A.B.C.﹣2 D.2考点:绝对值。
2008广州市初中毕业生学业考试化 学本试卷分为选择题和非选择题两部分,第一部分1至4页,第二部5至8页,共8页,满分100分。
考试时间80分钟。
可能用到的相对原子质量: H 1 O 16 Mg 24 S 32第一部分 选择题(共40分)一、选择题(本题包括20小题,每小题2分,共40分)注意:每道选择题有四个选项,其中只有一项符合题意。
请用铅笔在答题卡上作答。
选错、不选、多选或涂改不清的,均不给分。
1.下列过程中发生了化学变化的是A .水通电后分解成氢气和氧气B .湿衣服晾晒后变干C .玻璃敲击后变碎D .冷水加热后沸腾2.下列关于空气的说法正确的是A .空气由空气分子组成B .空气中的氮气没有任何用途C .空气中二氧化碳含量的增加对环境没有任何影响D .空气中含有氮气、氧气、二氧化碳等分子3.在原子核里,质子数等于A .核外电子数B .中子数C .中子数和电子数之差D .中子数和电子数之和4.下列原子属于非金属元素的是.D 、A 、B 、C 、5.如图所示的实验中,小烧杯①盛的是紫色石蕊试液, ②盛的是浓盐酸。
片刻后,可以观察到烧杯①中液体的颜色是A .紫色B .红色C .无色D .蓝色6.下列事实与液态二氧化碳的灭火原理无关..的是 A .液态二氧化碳气化时能降低其周围的温度B .二氧化碳的密度比空气大,能将燃烧物与空气隔绝C .二氧化碳是无色无味的气体D .二氧化碳不能燃烧,也不支持燃烧7.分析下表数据,下列关于广东省城市降水酸碱性的说法正确的是A .2006年和2005年降水总体都偏碱性B .2005年降水的碱性比2006年更强C .2006年酸雨污染程度比2005年减缓D .2006年酸雨污染程度比2005年严重8.下列物质能与CuCl 2溶液发生置换反应的是A .H 2SO 4B .NaOHC .AgD .Fe9.俗话说“酒香不怕巷子深”,从化学的角度来解释是由于A .分子在不断地运动B .分子间有间隔C .分子是由原子构成的D .分子在化学变化中发生了变化10.下列图示实验操作正确的是11.从2008年6月1日开始,超市禁止为顾客无偿提供塑料袋,目的是减少废弃塑料带来的“白色污染”。
2008年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位 数是A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°, 则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cos π-++-.12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根一、选择题(本大题5小题,每小题3分,共15分)1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递路线全长约40820米,用科学计数法表示火炬传递路程是A .2102.408⨯米B .31082.40⨯米C .410082.4⨯米D .5104082.0⨯米3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是__________;8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.A M NBC OB DC A 图2三、解答题(一)(本大题5小题,每小题6分,共30分)11.(本题满分6分)计算 :01)2008(260cos π-++- .12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
2008年广州市中考数学试卷一、选择题(共10小题;共50分)1. 计算所得结果是B. D.2. 将图按顺时针方向旋转后得到的是A. B.C. D.3. 下列四个图形中,是三棱柱的平面展开图的是A. B.C. D.4. 若与互为相反数,则下列式子成立的是A. B. C. D.5. 方程的根是A. B. C. , D. ,6. 一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列说法正确的是A. “明天降雨的概率是”表示明天有的时间降雨B. “抛一枚硬币正面朝上的概率是”表示每抛硬币次就有次出现正面朝上C. “彩票中奖的概率是”表示买张彩票一定会中奖D. “抛一枚正方体骰子朝上面的数为奇数的概率是“表示如果这个骰子抛很多很多次,那么平均每次就有次出现朝上面的数为奇数8. 把下列每个字母都看成一个图形,那么中心对称图形有O L Y M P I CA. 个B. 个C. 个D. 个9. 如图,每个小正方形的边长为,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是A. B. C. D.10. 四个小朋友玩跷跷板,他们的体重分别为,,,,如图所示,则他们的体重大小关系是A. B. C. D.二、填空题(共6小题;共30分)11. 的倒数是.12. 如图,,若,则度.13. 函数中的自变量的取值范围是.14. 将线段平移,得到线段,则点到点的距离是.15. 命题“圆的直径所对的圆周角是直角”是命题.(填“真”或“假”)16. 对于平面内任意一个凸四边形,现从以下四个关系式①;②;③;④中任取两个作为条件,能够得出这个四边形是平行四边形的概率是.三、解答题(共9小题;共117分)17. 分解因式:18. 小青在九年级上学期的数学成绩如下表所示:(1)计算该学期平时的平均成绩;(2)如果学期的总评成绩是根据图所示的权重计算,请计算出小青该学期的总评成绩.19. 实数,在数轴上的位置如图所示,化简:.20. 如图,在菱形中,,过点作且与的延长线交于点.求证:四边形是等腰梯形.21. 如图,一次函数的图象与反比例函数的图象相交于,两点.(1)根据图象,分别写出,的坐标;(2)求出两函数的解析式;(3)根据图象回答:当为何值时,一次函数的函数值大于反比例函数的函数值.22. 年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到千米远的郊区进行抢修.维修工骑摩托车先走,分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的倍,求两种车的速度.23. 如图,射线交一圆于点,,射线交该圆于点,,且.(1)求证:;(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.24. 如图,扇形的半径,圆心角,点是上异于,的动点,过点作于点,作于点,连接,点,在线段上,且.(1)求证:四边形是平行四边形;(2)当点在上运动时,在,,中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:是定值.25. 如图,在梯形中,,,,在等腰中,,底边,点,,,在同一直线上,且,两点重合,如果等腰以秒的速度沿直线箭头所示方向匀速运动,秒时梯形与等腰重合部分的面积记为平方厘米.(1)当时,求的值;(2)当,求与的函数关系式,并求出的最大值.答案第一部分1. C2. A3. B4. C5. C6. B 【解析】一次函数的图象是由正比例函数向下平移得到,所以经过第一、三、四象限.7. D8. B9. C10. D第二部分11.12.13.14.15. 真【解析】共有种等可能结果:①②,①③,①④,②③,②④,③④;其中①②,①③,③④能够证明四边形是平行四边形,其概率为第三部分17. 原式18. (1);(2).19. , ..20. 四边形是菱形,,,不平行于,四边形是梯形,四边形是菱形,,,又,,梯形是等腰梯形.21. (1)由图象得,.(2)一次函数的解析式为,();把,点的坐标代入得解得一次函数的解析式为,反比例函数的解析式为,把点坐标代入得,解得,反比例函数的解析式为.(3)当或时,一次函数的值大于反比例函数的值.22. 设摩托车的速度为千米/时,则抢修车的速度为千米 /时.根据题意得:即即经检验,是原分式方程的根且符合题意..答:摩托车的速度为千米/时,抢修车的速度为千米/ 时.23. (1)作于点,于点,连接,,,易得,,,,,,在和中,,.在和中,,.,.(2),..由于是的垂直平分线,..因此平分.24. (1)连接交于.因为,,,所以四边形为矩形,所以,.因为,所以,所以,所以四边形是平行四边形.(2)不变.在矩形中,因为,所以.(3)设,则.过作于.由得,所以.所以.所以.所以.25. (1)当时,,过点作于点,过点作于点,如图,所以,因为,,,所以,所以,在和中,所以,所以,因为,,所以,所以点与点重合,所以;(2)当时,在线段上,作于点,过点作于点,如图,因为,,所以,所以,所以,因为,,所以,所以,所以,所以同理:,所以因为,开口向下,所以有最大值,当时,最大值为;当时,在线段的延长线上,如图,因为,,所以,所以,,所以,,所以当,所以时,最大值为;综上,时,最大值为.。
2008年河南省中考化学临考必背知识总结速查1.怎样才能减少“白色污染”?①少使用塑料②回收利用③研制可分解塑料2.怎样检验某人是否患糖尿病?取尿样少量加入新制Cu(OH)2并加热,如果产生红色沉淀,证明某人患糖尿病。
3.为什么煮沸的方法可以消毒医疗器械?细菌的生命基础是蛋白质,煮沸可以使蛋白质凝固,失去生理活性。
4.聚乙烯塑料和聚氯乙烯塑料怎样鉴别?分别取一块点燃,有刺激性气味的是聚氯乙烯塑料,无刺激性气味是聚乙烯塑料。
5.某学生做实验时,不小心将稀硫酸溅到衣服上,他认为不是浓硫酸没有大问题,但不久发现衣服上出现几个小洞,这是为什么?稀硫酸中水蒸发,变成浓硫酸,浓硫酸具有脱水性,所以使衣服出现几个小洞。
6.避免水污染的措施有哪些?①工业“三废”经过处理后再排放②农业上合理使用农药和化肥③生活污水经处理后再排放(或加强对水质监侧)……7.写出鉴别下列物质的方法,现象和结论(1) 硬水和软水分别取少量两种液体于两支试管中,加入适量的肥皂水,如果无泡沫、产生沉淀的是硬水,无沉淀产生,泡沫多的是软水。
(2) 葡萄糖溶液和淀粉溶液方法一:各取少量分别放入两支试管中,再分别加入碘水,出现蓝色沉淀是淀粉溶液。
方法二:各取少量分别放入两支试管中,再分别加入新制Cu(OH)2并加热,有红色沉淀产生的是葡萄糖溶液。
8.我国有许多盐碱湖,湖中溶有大量氯化钠和纯碱,那里的农民冬天捞纯碱,夏天晒盐.试用所学知识说明:(1)冬天捞纯碱的道理.碳酸钠溶解度随温度的升高而增大,冬天温度低,碳酸钠溶解度减小,所以从盐湖中析出来。
(2)夏天晒盐的道理氯化钠溶解度随温度变化不大,夏天水分不断蒸发,氯化钠将析出来。
※该题必须把碳酸钠、氯化钠溶解度随温度变化规律答出来,然后再加以分析。
9. 1989年世界卫生组织确认,长期或大量摄入铝元素对人体神经系统将造成损害,建议限制导致人体摄入铝元素的各种应用。
根据你的经验,举出二例受限制的应用。
秘密★启用前2008年广州市初中毕业生学业考试物理本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1到3页,第二部分4至8页,共8页。
总分100分。
考试时间80分钟。
注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号;再用2B铅笔把对应该两号码的标号涂黑。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3.非选择题答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域;除作图题可用2B 铅笔作图外,其他各题必须用黑色字迹钢笔或签字笔作答.不准使用涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将本试卷和答题卡一并交回。
5.全卷共六大题,请考生检查题数。
第一部分(选择题共36分)一、选择题(每小题3分,共36分)每小题给出的四个选项中,只有一个是正确的,请把正确的答案选出来.1.人能分辨出二胡和小提琴发出的声音.主要因为这两种乐器发出的声音A.响度不同B.音色不同C.音调不同D.振幅不同2. 如图1所示,用导线把灯泡、电池和四种物品分别相连,灯泡一定不发光...的是3.把两种不同的金属片插入柠檬,制成“水果电池”.用电压表测量水果电池的电压,如图2所示.下列说法正确的是A.金属片B 是水果电池的正极B.水果电池把化学能转化为电能C.水果电池把内能转化为电能D. 水果电池把电能转化为化学能4. 如图3,钢珠沿竖直平面上的光滑轨道abcd 从a 点运动到d 点,钢珠 A. 通过d 时的速度比通过c 时大 B. 在c 点比在b 点的重力势能小C. 从a 运动到b 的过程中,动能转化为重力势能D.从b 运动到c 的过程中,机械能转化为重力势能5. 如图4所示为内燃机的能量流向图,热机效率(η)等于 A .10041⨯E E % B .⨯14E E 100% C .⨯+143E E E 100% D .⨯++++543214E E E E E E 100%图1ABCD6. 嫦娥一号卫星的微波探测仪可探测“月壤”发出的频率3.0GHz 、7.8GHz 、19.35GHz 和37.0GHz 的微波辐射.下列说法正确的是 A. 微波属于电磁波 B. 微波是可见光C. 这四种微波在真空中波长一样D. 这四种微波在真空中传播速度不同7. 把高2cm 的发光棒立于焦距为5cm 的凸透镜前, 在凸透镜后的光屏上成了4cm 高的像,物体离凸透镜的距离可能是A.7.5cmB.12.5cmC.4.5cmD.10cm 8. 下列说法正确的是 A .物体不受力,一定静止 B .作用在运动物体的力一定不平衡 C .物体受到力的作用,速度大小一定改变 D .物体运动方向发生改变,则一定受到力的作用9. 如图5所示,升降机以1m/s 的速度匀速上升时,升降机对人的支持力为500N,下列说法正确的是A.升降机静止在十楼时对人的支持力小于500NB. 升降机以1.5m/s 的速度匀速上升时对人的支持力大于500NC. 升降机以2m/s 的速度匀速下降时对人的支持力等于500ND. 升降机以1m/s 的速度匀速下降时对人的支持力小于500N10. 如图6所示,绳子OO ′悬吊着质量忽略不计的杆,在杆的a 点挂上重物G , 在O 右侧某点b 处挂上钩码.重物G 的质量及a 到O 的距离不变,要使杆保持水平, b处挂的钩码个数(各个钩码质量相同)和b到O点的距离的关系是图7中哪一幅图11.两个相同的容器里分别装了质量相同的两种液体,用同一热源分别加热,液体温度与加热时间关系如图8所示. 根据图线可知A. 甲液体的比热容大于乙液体的比热容B. 如果升高相同的温度,两种液体吸收的热量相同C. 加热时间相同,甲液体吸收的热量大于乙液体吸收的热量D. 加热时间相同,甲液体温度升高比乙液体温度升高得多12.图9所示是某同学连接的电铃电路,开关闭合后,电路中始终有电流,但电铃只响一声就不再响了,原因是A.电磁铁始终没有磁性B.衔铁没有向下运动C.衔铁一直被电磁铁吸着不能回弹D.电池正、负极接反了第二部分(非选择题共64分)二、填空题(每小题4分,共16分)13.(1)电冰箱里的食物容易变干和相互“窜味”,请你从物理角度分析,食物“窜味”属于___________现象,电冰箱里的食物主要是通过______或_____方式失去水分的.(2)小明触摸电冰箱门时感到手“麻”,下表列出小明对造成手“麻”原因的四种猜想,你认为其中的______猜想是合理的(填写序号).14. 据报道:“一男子陷在泥沼里, 他挣扎着力图把一只脚拔出来,结果下陷得更快更深.抢救队员在泥沼上铺上木板,从木板上靠近该男子,把绳索递给他.大家合力把他拉出后,让他平躺在泥沼上以蛙泳姿势移离泥沼. ”(1)报道中描述________________的过程对泥沼的压强增大;图11 (2) )报道中描述________________和_____________的过程对泥沼的压强减小,你判断的依据是:_______________________.15.电动机车利用电动机产生动力以200km/h 高速行驶,电动机把_______能转化为__________能. 由于______________,所以行驶的列车在动力消失后不能立即停下.当高速运行的列车开始制动时,电动机变成发电机,将动能转化为电能实现减速,发电机应用______________物理现象工作.16.小明用天平、大杯、小杯和密度为ρ的水测一石块的密度. (1)天平平衡时如图10所示,石块的质量m =__________. (2)小明测量石块体积的操作步骤如下: a.测出空小杯的质量m 1b.把装了水的大杯和空的小杯如图11放置c.把石块缓缓放入大杯中,大杯中部分水溢进小杯d.测出承接了溢出水的小杯总质量m 2请你指出步骤b 错误之处:__________________;(3) 用本题中出现过的物理量符号表示石块体积为__________________;石块密度为______________(设步骤b 中的错误已改正) . 三、作图题(9分)17.(1)(1分)在图12中用线代表绳子,将两个滑轮连成省力的滑轮组,要求人用力往下拉绳使重物升起.(2)(3分)在图13画出小球受力的示意图.18.(2分)图14所示的a 、b 是经平面镜反射后的反射光线,画出对应的入射光线. 19.(3分) 在方框中画灯泡L 1和灯泡L 2并联,电流表测灯泡L 1电流的电路图,并在图15上连接实物图.图13图10四、计算题(15分)解答应写出必要的文字说明、公式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,演算过程及结果都要在数字的后面写上正确的单位.20.(8分)小明要设计一个照明电路,现有两盏规格为“12V 12W”的灯泡和一个12V 的太阳能电池.(1) 一盏“12V 12W”的灯泡正常发光,10h 消耗多少千瓦时的电能? (2)若这两灯泡串联接在太阳能电池上,总功率是多少? (3)若这两灯泡并联接在太阳能电池上,总功率是多少?(4)要提高照明效果,两灯泡应该串联还是并联接入电路.为什么?21.(7分)距离传感器发出的超声波遇到物体后反射回传感器.传感器收到信号后自动计算出物体与传感器的距离,并显示物体的距离(s )-时间(t )图象.超声波在空气中的速度是340m/s.(1)若传感器在发出信号后0.01s 收到从物体反射回来的信号. 物体距传感器多远? (2)若显示物体的s -t 图象如图16,物体在0至15s 的运动情况如何.(3)如图17所示,一物体在F =10N 的水平拉力作用下,沿水平地面做直线运动.传感器显示物体的s -t 图象如图18. 求: 在0至15s 内物体受到的摩擦力多大?拉力的功率多大? 五、问答题(5分)22. 如图19所示, 小纸条靠近水龙头流下的稳定的水流.你预测小纸条的运动情况是怎样的,物理依据是什么?图15六、实验、探究题(共19分)23.(6分) (1)在实验室里,三组同学测得水的沸点分别为97℃、93℃、102℃;有同学猜想导致这种现象的原因是各组用的温度计有偏差.请你设计一个简单的方法验证这猜想:____________________.(2)小明要自制一支能测水沸点的温度计,现有表中所列的两种物质,他应选用表中______做测温物质,原因是____________.在一个大气压下,把温度计先后放入冰水混合物和沸水中,分别标出温度计中液柱达到的位置A 和B .将该温度计放在刻度尺旁,如图20所示,图中刻度尺的分度值是:_______,此时温度计显示的温度是:_________.24.(6分)某同学希望通过比较电路中不同位置电流表的读数来研究串联电路的电流规律.所接电路图如图21所示,闭合开关后,两电流表指针偏转情况如图22.(1)电流表A 2的读数是 。
秘密★启用前2008年广州市普通高中毕业班综合测试(一)数 学(理科)2008.3本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再将答案填写在对应题号的横线上。
漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+. 如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅.如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中恰好发生k 次的概率()()C 1n kkkn n P k pp -=-.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{}22A x x =-<<,{}220B x x x =-≤,则AB =A.()0,2B.(]0,2C.[)0,2D.[]0,22.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比 赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员的中位数分别为 A.19、13 B.13、19C.20、18D.18、20图13.已知函数2log ,0,()2,0.x x x f x x >⎧=⎨≤⎩若1()2f a =,则a = A.1-C.1-D.1或4.直线20ax y a -+=与圆229x y +=的位置关系是A.相离B.相交C.相切D.不确定 5.在区间[]0,1上任取两个数,a b ,方程220x ax b ++=的两根均为实数的概率为A.18 B.14 C.12 D.346.已知a ∈R ,则“2a >”是“22a a >”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.抽气机每次抽出容器内空气的60%,要使容器内剩下的空气少于原来的0.1%,则至少要抽(参考数据:lg 20.3010=,lg30.4771=)A.15次B.14次C.9次D.8次8.在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=,则PBC ∆与ABC ∆的面积之比是 A.13 B.12 C.23 D.34二、填空题:本大题共7小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12题是必做题,每道试题考生都必须做答.9.若复数()()2563i z m m m =-++-是实数,则实数m = . 10.已知3cos 5α=,则cos 2α= . 11.根据定积分的几何意义,计算x =⎰.12.按如图2所示的程序框图运算. 若输入8x =,则输出k = ;若输出2k =,则输入x 的取值范围是 .(注:“1=A ”也可写成“1:=A ”或“1←A ”,均表示赋值语句)(二)选做题:第13、14、15题是选做题,考生只能选做二题,三题全答的,只计算前两题的得分.13.(坐标系与参数方程选做题)在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是 .14.(不等式选讲选做题)若a 、b 、c ∈R ,且222236a b c ++=,则a b c ++的最小值是 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在边AB 上,且:1:2AE EB =,DE 与AC 交于点F ,若AEF ∆的面积为62cm ,则ABC ∆的面积为 2cm .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos f x a x b x =+的图象经过点,03π⎛⎫⎪⎝⎭和,12π⎛⎫ ⎪⎝⎭. (1)求实数a 和b 的值;(2)当x 为何值时,()f x 取得最大值.17.(本小题满分12分)某计算机程序每运行一次都随机出现一个二进制的六位数123456N n n n n n n =,其中N 的各位数中,161n n ==,k n (k =2,3,4,5)出现0的概率为23,出现1的概率为13,记123456n n n n n n ξ=+++++,当该计算机程序运行一次时,求随机变量ξ的分布列和数学期望(即均值).18.(本小题满分14分)如图3所示,在边长为12的正方形11AA A A ''中,点,B C 在线段AA '上,且3AB =,4BC =,作1BB 1AA ,分别交11A A '、1AA '于点1B 、P ,作1CC 1AA ,分别交11A A '、1AA '于点1C 、Q ,将该正方形沿1BB 、1CC 折叠,使得1A A ''与1AA 重合,构成如图4所示的三棱柱111ABC A B C -.(1)在三棱柱111ABC A B C -中,求证:AB ⊥平面11BCC B ;(2)求平面APQ 将三棱柱111ABC A B C -分成上、下两部分几何体的体积之比; (3)在三棱柱111ABC A B C -中,求直线AP 与直线1AQ 所成角的余弦值.19.(本小题满分14分)已知数列}{n a 中,51=a 且1221n n n a a -=+-(2n ≥且*n ∈N ). (1)若数列2n na λ+⎧⎫⎨⎬⎩⎭为等差数列,求实数λ的值; (2)求数列}{n a 的前n 项和n S .20.(本小题满分14分)已知函数()x f x e x =-(e 为自然对数的底数). (1)求函数()f x 的最小值;(2)若*n ∈N ,证明:1211n nn nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.21.(本小题满分14分)已知抛物线L :22x py =和点()2,2M ,若抛物线L 上存在不同两点A 、B 满足AM BM +=0.(1)求实数p 的取值范围;(2)当2p =时,抛物线L 上是否存在异于A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线,若存在,求出点C 的坐标,若不存在,请说明理由.2008年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.8.由PA PB PC AB ++=,得PA PB BA PC +++=0,即2PC AP=,所以点P 是CA 边上的第二个三等分 点,如图所示.故23PBC ABC S BC PC S BC AC ∆∆⋅==⋅.二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,每小题5分,满分30分.其中第12题第一个空2分,第二个空3分.9.3 10.725-11.3π 12.4;(]28,57 13.cos 2ρθ= 14. 15.72三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查特殊角的三角函数、三角函数的性质等基础知识,考查运算求解能力) 解:(1)∵函数()sin cos f x ax b x =+的图象经过点,03π⎛⎫⎪⎝⎭和,12π⎛⎫ ⎪⎝⎭, ∴sin cos 0,33sin cos 1.22a b a b ππππ⎧+=⎪⎪⎨⎪+=⎪⎩即10,21.b a +=⎪=⎩解得1,a b =⎧⎪⎨=⎪⎩.(2)由(1)得()sin f x x x =12sin 2x x ⎛⎫= ⎪ ⎪⎝⎭2sin 3x π⎛⎫=- ⎪⎝⎭.∴当sin 13x π⎛⎫-= ⎪⎝⎭,即232x k πππ-=+, 即526x k ππ=+()k ∈Z 时,()f x 取得最大值2.17.(本小题满分12分)(本小题主要考查随机变量的分布列及其数学期望等基础知识,考查运算求解能力等) 解:ξ的可能取值是2,3,4,5,6.∵161n n ==,∴()4042162C 381P ξ⎛⎫===⎪⎝⎭, ()31412323C 3381P ξ⎛⎫==⋅= ⎪⎝⎭,()22241284C 3327P ξ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭, ()3341285C 3381P ξ⎛⎫==⋅= ⎪⎝⎭, ()444116C 381P ξ⎛⎫=== ⎪⎝⎭.∴ξ的分布列为∴ξ的数学期望为16322481102345681818181813E ξ=⨯+⨯+⨯+⨯+⨯=.18.(本小题满分14分)(本小题主要考查空间几何体中线面的位置关系,面积与体积,空间向量等基础知识,考查空间想象能力和运算求解能力)(1)证明:在正方形11AA A A''中,∵5A C AA AB BC ''=--=, ∴三棱柱111ABC A B C -的底面三角形ABC 的边5AC =.∵3AB =,4BC =,∴222AB BC AC +=,则AB BC ⊥.∵四边形11AA A A''为正方形,11AA BB ,∴1AB BB ⊥,而1BCBB B =,∴AB ⊥平面11BCC B . (2)解:∵AB ⊥平面11BCC B ,∴AB 为四棱锥A BCQP -的高.∵四边形BCQP 为直角梯形,且3BP AB ==,7CQ AB BC =+=,∴梯形BCQP 的面积为()1202BCQP S BP CQ BC =+⨯=, ∴四棱锥A BCQP -的体积1203A BCQP BCPQ V S AB -=⨯=,由(1)知1B B AB ⊥,1B B BC ⊥,且AB BC B =,∴1B B ⊥平面ABC .∴三棱柱111ABC A B C -为直棱柱,∴三棱柱111ABC A B C -的体积为111172ABC A B C ABC V S BB -∆=⋅=. 故平面APQ 将三棱柱111ABC A B C -分成上、下两部分的体积之比为722013205-=. (3)解:由(1)、(2)可知,AB ,BC ,1BB 两两互相垂直.以B 为原点,建立如图所示的空间直角坐标系B xyz -,则()3,0,0A ,()13,0,12A ,()0,0,3P ,()0,4,7Q , ∴(3,0,3)AP =-,1(3,4,5)AQ =--, ∴1111cos ,5AP AQ AP AQ AP AQ ⋅<>==-,∵异面直线所成角的范围为0,2π⎛⎤⎥⎝⎦, ∴直线AP 与1AQ 所成角的余弦值为15.19.(本小题满分14分)(本小题主要考查等比数列、递推数列等基础知识,考查综合运用知识分析问题和解决问题的能力)解:(1)方法1:∵51=a ,∴22122113a a =+-=,33222133a a =+-=. 设2n n na b λ+=,由}{n b 为等差数列,则有3122b b b +=. ∴321232222a a a λλλ+++⨯=+. ∴13533228λλλ+++=+. 解得 1λ=-.事实上,1111122n n n n nn a a b b +++---=-()111212n n n a a ++=-+⎡⎤⎣⎦()1112112n n ++⎡⎤=-+⎣⎦1=,综上可知,当1λ=-时,数列2n na λ+⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. 方法2:∵数列2n na λ+⎧⎫⎨⎬⎩⎭为等差数列, 设2n n na b λ+=,由}{n b 为等差数列,则有122n n n b b b ++=+(*n ∈N ). ∴12122222n n n n n n a a a λλλ+++++++⨯=+.∴1244n n n a a a λ++=--()()121222n n n n a a a a +++=---()()12221211n n ++=---=-.综上可知,当1λ=-时,数列2n na λ+⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. (2)由(1)知,()1111122n na a n --=+-⨯, ∴()121n n a n =+⋅+.∴()()()()12122132121121n nn S n n -⎡⎤=⋅++⋅+++⋅+++⋅+⎣⎦.即()1212232212n n n S n n n -=⋅+⋅++⋅++⋅+.令()1212232212n n n T n n -=⋅+⋅++⋅++⋅, ① 则()23122232212n n n T n n +=⋅+⋅++⋅++⋅. ②②-①,得()()12312222212n n n T n +=-⋅-+++++⋅12n n +=⋅.∴()11221n n n S n n n ++=⋅+=⋅+.20.(本小题满分14分)(本小题主要考查函数的导数、最值、等比数列等基础知识,考查分析问题和解决问题的能力、以及创新意识)(1)解:∵()x f x e x =-,∴()1xf x e '=-.令()0f x '=,得0x =.∴当0x >时,()0f x '>,当0x <时,()0f x '<.∴函数()x f x e x =-在区间(),0-∞上单调递减,在区间()0,+∞上单调递增. ∴当0x =时,()f x 有最小值1.(2)证明:由(1)知,对任意实数x 均有1xe x -≥,即1xx e +≤.令k x n=-(*,1,2,,1n k n ∈=-N ),则01k n ke n-<-≤,∴1(1,2,,1)nnkkn k e e k n n --⎛⎫⎛⎫-≤==- ⎪ ⎪⎝⎭⎝⎭.即(1,2,,1)nk n k e k n n --⎛⎫≤=- ⎪⎝⎭.∵1,nn n ⎛⎫= ⎪⎝⎭∴(1)(2)211211n nn nn n n n e e e e n n n n -------⎛⎫⎛⎫⎛⎫⎛⎫++++≤+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.∵(1)(2)2111111111n n n e eeee e e e e ----------+++++=<=---,∴ 1211n nn nn n e n n n n e -⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.21.(本小题满分14分)(本小题主要考查直线与圆锥曲线等基础知识,考查数形结合的数学思想方法,以及推理论证能力、运算求解能力)解法1:(1)不妨设A 211,2x x p ⎛⎫ ⎪⎝⎭,B 222,2x x p ⎛⎫ ⎪⎝⎭,且12x x <,∵AM BM +=0,∴2212122,22,222x x x x p p ⎛⎫⎛⎫--+--= ⎪ ⎪⎝⎭⎝⎭0.∴124x x +=,22128x x p +=.∵()21222122x x x x ++>(12x x ≠),即88p >,∴1p >,即p 的取值范围为()1,+∞.(2)当2p =时,由(1)求得A 、B 的坐标分别为()0,0、()4,4.假设抛物线L 上存在点2,4t C t ⎛⎫⎪⎝⎭(0t ≠且4t ≠),使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.设经过A 、B 、C 三点的圆的方程为220x y Dx Ey F ++++=,则2420,4432,1641616.F D E F tD t E F t t ⎧=⎪++=-⎨⎪++=--⎩整理得 ()()3441680t E t E ++-+=. ①∵函数24x y =的导数为2x y '=, ∴抛物线L 在点2,4t C t ⎛⎫ ⎪⎝⎭处的切线的斜率为2t , ∴经过A 、B 、C 三点的圆N 在点2,4t C t ⎛⎫ ⎪⎝⎭处的切线斜率为2t . ∵0t ≠,∴直线NC 的斜率存在.∵圆心N 的坐标为,22D E ⎛⎫-- ⎪⎝⎭, ∴242122t E t D t +⨯=-+,即()()324480t E t E ++-+=. ② ∵0t ≠,由①、②消去E ,得326320t t -+=.即()()2420t t -+=.∵4t ≠,∴2t =-.故满足题设的点C 存在,其坐标为()2,1-.解法2:(1)设A ,B 两点的坐标为1122()()A x y B x y ,,,,且12x x <。
2008年某某市初中毕业升学考试数学试题一、用心填一填:本大题共12小题,每小题2分,共24分1、如果向东走3米记作+3米,那么向西走5米记作米。
103、温家宝总理在十一届全国人大一次会议上的政府工作报告指出,今年中央财政用于教育投入将达到1562亿元,用科学记数法表示为亿元。
4、已知△ABC 中,BC =10CM ,D 、E 分别为AB 、AC 中点,则DE =CM 。
5数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 。
6如图,∠ACD =1550,∠B =350,则∠A =度。
7、函数x 2+的自变量x 的取值X 围是。
8、某物业公司对本小区七户居民2007年全年用电量进行统计,每户每月平均用电量(单位:度)分别是:56、58、60、56、56、68、74。
这七户居民每户每月平均用电量的众数是度 9、一元二次方程2x 2x 1=0--的根为。
10、两同心圆,大圆半径为3,小圆半径为1,则阴影部分面积为11、如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为。
12、如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是。
二、仔细选一选:本大题共8小题,每小题3分,共24分13、在下列实数中,无理数是( )A 5 22、0.1 B、 C、-4 D、 714、左图是由四个相同的小立方体组成的立体图形,它的左视图是( )15、已知下列命题:①若A >0,B >0,则AB >0; ②平行四边形的对角线互相垂直平分;③若∣x ∣=2,则x =2; ④圆的切线经过垂直于切点的直径,其中真命题是( ) A 、①④B 、①③C 、②④D 、①②16、已知圆锥的侧面积为8πCM 2, 侧面展开图的圆心角为450,则该圆锥的母线长为( ) A 、64CMB 、8CMC、 D17、2008年5月12日,某某汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S(千米)与行进时间t (小时)的函数大致图像,你认为正确的是( )A B C D第14题图18、如图,在Rt △ABC 中,∠C =900,∠A =300,E 为AB 上一点且AE :EB =4:1 ,EF ⊥AC 于F ,连结FB ,则t AN ∠CFB 的值等于( )3235353A 、 、、 、BCD19、在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
2008年广州市数学中考试题
一、选择题(每小题3分,共30分) 1、(2008广州)计算3(2)-所得结果是( ) A 6- B 6 C 8- D 8
2、(2008广州)将图1按顺时针方向旋转90°后得到的是( )
3、(2008广州)下面四个图形中,是三棱柱的平面展开图的是( )
4、(2008广州)若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-
5、(2008广州)方程(2)0x x +=的根是( )
A 2x =
B 0x =
C 120,2x x ==-
D 120,2x x ==
6、(2008广州)一次函数34y x =-的图象不经过( )
A 第一象限
B 第二象限
C 第三象限
D 第四象限 7、(2008广州)下列说法正确的是( )
A “明天降雨的概率是80%”表示明天有80%的时间降雨
B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上
C “彩票中奖的概率是1%”表示买100张彩票一定会中奖
D “抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数
8、(2008广州)把下列每个字母都看成一个图形,那么中心对成图形有( ) O L Y M P I C A 1个 B 2个 C 3个 D 4个 9、(2008广州)如图2,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) A
B 2
C
D 10、(2008广州)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )
A P R S Q >>>
B Q S P R >>>
C S P Q R >>>
D S P R Q >>>
二、填空题(每小题3分,共18分) 11、(2008
的倒数是
12、(2008广州)如图4,∠1=70°,若m ∥n ,则∠2= 13、(2008广州)函数1
x
y x =
-自变量x 的取值范围是 14、(2008广州)将线段AB 平移1cm ,得到线段A ’B ’,则点A 到点A ’的距离是
15、(2008广州)命题“圆的直径所对的圆周角是直角”是 命题(填“真”或“假”)
16、(2008广州)对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①
图2
图3
图4
AB=CD ;
②AD=BC ;③AB ∥CD ;④∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是
三、解答题(共102分)
17、(2008广州)(9分)分解因式32a ab -
18、(2008广州)(9分)小青在九年级上学期的数学成绩如下表所示
(1)计算该学期的平时平均成绩;
(2)如果学期的总评成绩是根据图5所示的权重计算, 请计算出小青该学期的总评成绩。
19、(2008广州)(10分)如图6,实数a 、b 在数轴上的位置,
化简
20、(2008广州)(10分)如图7,在菱形ABCD 中,∠DAB=60°,过点C 作CE ⊥AC 且与AB 的延长线交于点E ,求证:四边形AECD 是等腰梯形
图5
图6
图7
21、(2008广州)(12分)如图8,一次函数y kx b =+的图象与反比例函数m
y x
=的图象相交于A 、B 两点
(1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式; (3)根据图象回答:当x 为何值时, 一次函数的函数值大于反比例函数的函数值
22、(2008广州)(12分)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30千米远的郊区进行抢修。
维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点。
已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度。
23、(2008广州)(12分)如图9,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,
且»»BC
DE = (1)求证:AC=AE
(2)利用尺规作图,分别作线段CE 的垂直平分线与∠MCE 的平分线,两线交于点F (保留
图8
作图痕迹,不写作法)求证:EF 平分∠CEN
24、(2008广州)(14分)如图10,扇形OAB 的半径OA=3,圆心角∠AOB=90°,点C 是»AB 上异于A 、B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连结DE ,点G 、H 在线段DE 上,且DG=GH=HE
(1)求证:四边形OGCH 是平行四边形 (2)当点C 在»AB 上运动时,在CD 、CG 、DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度
(3)求证:223CD CH +是定值
25、(2008广州)(14分)如图11,在梯形ABCD 中,AD ∥BC ,AB=AD=DC=2cm ,BC=4cm ,在等腰△PQR 中,∠QPR=120°,底边QR=6cm ,点B 、C 、Q 、R 在同一直线l 上,且C 、Q 两点重合,如果等腰△PQR 以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S 平方厘米
(1)当t=4时,求S 的值
(2)当4t ≤≤10,求S 与t 的函数关系式,并求出S 的最大值
图9
图10
图11。