武汉长江大桥设计风速值的研究
- 格式:pdf
- 大小:418.24 KB
- 文档页数:10
中国桥梁结构抗风研究进展摘要:随着科学技术的发展,随着桥梁设计和施工水平的不断提高,桥梁的跨度也在不断增加,现代桥梁的跨度纪录不断被刷新。
进入21世纪后,桥梁跨度将突破2000米,甚至可能达到5000米。
而在桥梁跨度增加的同时,结构免不了采取措施减轻自重,也使得桥梁结构对于风的作用更加敏感,风也成为了桥梁设计中不可避免的问题,因此桥梁结构的抗风研究也愈来愈被人们重视。
本文将对中国桥梁结构抗风研究的现状与进展做出简要概述。
1.引言21世纪中国的桥梁工程取得了巨大的成就。
2008年6月30日,世界第一大跨径斜拉桥——苏通长江大桥正式通车;2008年5月1日,世界第一跨海大桥——杭州湾大桥正式通车;2003年6月28日,世界第一钢拱桥——上海卢浦大桥正式通车;2007年10月29日,世界第一座公路轻轨两用桥——重庆菜园坝长江大桥正式通车;2003年8月29日,世界上最大的跨径V撑梁式大桥——广州琶洲大桥正式通车……而不论是世界第一大跨径的斜拉桥亦或是世界第一跨海大桥,风力作用都是一个很严峻的问题,也是不可不考虑的因素,这就对我国的桥梁抗风研究有了很大的要求,而为了建成更长的桥、更稳固的桥,也要求桥梁的抗风研究取得更大的进展。
2.中国桥梁结构抗风研究进展2.1概述风对桥梁结构的作用机理十分复杂,是一种时间、空间变化的作用。
它受到风的特性、结构的动力特性和风与结构的相互作用三方面的制约。
2.2静力作用对桥梁的影响如结构刚度较大因而几乎不振动,或结构虽有轻微振动。
但不显著影响气流经过桥梁的绕流形态,因而不影响气流对桥梁的作用力,则风对桥梁的作用可近似地看作为一种静力荷载。
桥梁在风的静力作用下有可能发生强度、刚度和稳定性问题。
对于强度和刚度问题,如现行桥规中所规定的那样,主要需考虑桥梁在侧向风载作用下的应力和变形。
另外,对于静升力较大的情况,也需要考虑竖向升力对结构的作用。
对于柔性较大的特大跨度桥梁,则还需要考虑侧向风荷载作用下王梁整体的横向屈曲,其发生机制类似于桥梁的侧向整体失稳问题及在静力扭转力矩作用下主梁扭转引起的附加转角所产生的气动力距增量超过结构抗力矩时出现的扭转失稳问题。
长江大桥长江源长江是中国第一大河,源自青海唐古拉雪山,流经西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海注入东海,全长6397公里,居世界第三位。
从源头至当曲口(藏语称河为“曲”)称沱沱河,长358公里;当曲口至青海玉树巴塘河口称通天河,长813公里;巴塘河口至四川宜宾岷江口称金沙江,长2308公里;岷江口至入海口约2800余公里,通称长江;其中宜宾至湖北宜昌间称川江(奉节至宜昌间又有“峡江”之称),湖北枝城至湖南城陵矶间称荆江,江苏扬州以下称扬子江。
万里长江第一桥万里长江源头长江源头沱沱河金沙江金沙江按水文、地貌特点把长江干流划分为上、中、下游三段:湖北宜昌以上为上游段,宜昌至江西湖口为中游段,湖口以下为下游段。
万吨级轮船可达南京,三千吨级可抵达汉口,一千吨级可至重庆,五百吨极可通宜宾。
长江三峡长江三峡万里长江上到底有多少条通道(包括桥梁和遂道)?至今没有见到官方的统计资料。
民间统计,金沙江以上河段的桥梁资料难以收集,可查到的资料显示金沙江、通天河、沱沱河建成或在建的大桥有46座左右,加上长江上游31座(11座在建)、长江中下游包括越江遂道共31座(7座在建、2座不贯通长江南北),截至2007年7月1日止,共计有108座长江通道(不含三峡大坝):上海市与江苏省之间1座越江通道(在建) ;江苏省境内8座(1座在建、2座不跨长江南北);安徽省境内3座;江西省与湖北省界之间1座;湖北省境内含隧道18座(其中5座在建);重庆市境内25座(7座在建);四川省境内6座(2座在建)。
另有规划、设计中尚未正式开工的长江大桥13座:京沪高速铁路南京长江大桥、南京长江四桥、南京长江五桥、马鞍山长江大桥、芜湖长江二桥、望江长江大桥、九江长江二桥、黄石长江二大桥、赤壁长江大桥、万州长江三桥、丰都长江二桥、重庆市寸滩长江铁路大桥、江津观音岩长江大桥。
上海至宜宾长江大桥、遂道、大坝一览表(逆江而上顺序排列)(截至2007年06月30日止)大桥(通道)名称开工日期通车日期性质其他崇明越江通道 2004.12.28 公路/遂道/桥梁在建苏通长江大桥 2003.06.27 公路在建江阴长江大桥 1994.11.20 1999.09. 公路扬中长江大桥 1992.05. 1994.10. 公路不连通长江南北两岸扬中长江二桥 2002.09. 2004.10.28 公路不连通长江南北两岸润扬长江大桥 2000.10. 2005.04.30 公路南京长江二桥 1997.10. 2001.03. 公路南京长江大桥 1961.01. 1968.12.29 公路/铁路南京长江三桥 2003.08.29 2005.10.09 公路芜湖长江大桥 1997.03. 2000.09. 公路/铁路铜陵长江大桥 1991.12. 1995.12.26 公路安庆长江大桥 2001.12. 2004.12.26 公路九江长江大桥 1973.12.26 1993.01. 公路/铁路黄石长江大桥 1991.07. 1995.12. 公路鄂黄长江大桥 1999.10. 2002.09.26 公路阳逻长江大桥 2003.11. 公路在建天兴洲长江大桥 2004.09.28 公路/铁路在建武汉长江二桥 1991.05. 1995.06.18 公路武汉长江隧道 2004.12. 公路/遂道在建武汉长江大桥 1955.09. 1957.10. 公路/铁路白沙洲长江大桥 1997.03.28 2000.09. 公路军山长江大桥 1998.12. 2001.12. 公路荆岳长江大桥 2005.12. 公路在建荆州长江大桥 1998.03.28 2002.10.01 公路枝城长江大桥 1965.11.26 1971.09.23 公路/铁路宜昌长江大桥 1997.12. 2001.09. 公路宜万铁路长江大桥 2004.02. 铁路在建葛洲坝三江大桥 1970.12.30 1981.XX. 公路夷陵长江大桥 1998.11. 2001.12. 公路西陵长江大桥 1993.12. 1996.08. 公路巴东长江大桥 2001.04. 2004.07.02 公路巫山长江大桥 2001.12.28 2005.01.08 公路奉节长江大桥 1999.12. 2006.07.01 公路云阳长江大桥 2002.11. 2005.09.28 公路万州长江二桥 2001.10. 2004.09.28 公路万州铁路长江大桥 2002.12. 2005.06.12 铁路等待宜万线全线通车万州长江大桥 1997.XX. 公路忠县长江大桥 1998.09. 2001.09. 公路忠县高速公路长江大桥 2005.06. 公路在建丰都长江大桥 1994.10.18 1997.01.20 公路涪陵李渡长江大桥 2004.02. 公路在建涪陵长江大桥 1994.11. 1997.05. 公路涪陵石板沟长江大桥 2004.12. 公路在建长寿铁路长江大桥 2004.04. 铁路等待渝怀线全线通车长寿长江公路大桥公路在建重庆大佛寺长江大桥 1998.12. 2001.12. 公路重庆朝天门长江大桥 2004.12. 公路在建重庆长江大桥 1977.11. 1980.07. 公路重庆菜园坝长江大桥 2003.02. 公路在建重庆鹅公岩长江大桥 1997.12. 2000.12. 公路重庆李家沱长江大桥 1991.XX. 1996.12. 公路重庆鱼洞长江大桥 2004.12.29 公路在建重庆马桑溪长江大桥 1997.10. 2001.12. 公路白沙沱长江大桥 1959.12.10 铁路地维长江大桥 2002.12. 2004.08.22 公路江津长江大桥 1994.XX. 1997.12. 公路泸州泰安长江大桥 2003.09.29 公路在建泸州铁路长江大桥 2000.11. 2004.02. 铁路等待隆叙线全线通车泸州长江二桥 2000.11. 公路泸州长江大桥 1977.10. 1982.10. 公路江安长江大桥 2003.07. 2007.05.28 公路宜宾长江大桥 2003.01. 公路在建长江中下游(上海市至湖北省境内)包括越江通道共31座:7座在建、2座不贯通长江南北。
文章编号:1003-4722(2009)04-0001-04武汉天兴洲公铁两用长江大桥抗风性能研究郑史雄1,徐 伟2,高宗余2(1.西南交通大学土木工程学院,四川成都610031;2.中铁大桥勘测设计院有限公司,湖北武汉430050)摘 要:针对目前我国最大跨度钢桁梁斜拉桥武汉天兴洲公铁两用长江大桥主桥的抗风性能进行风洞试验及分析研究,包括气动参数测量风洞试验、主梁节段模型风洞试验、施工状态气弹模型风洞试验、斜拉索风雨振动风洞试验及塔梁交汇区风场对行车安全性影响分析等。
研究表明,无论成桥状态或施工状态,其主梁断面具备足够的抗风稳定性,在相应设计风速作用下,其抖振响应性能满足要求,斜拉索虽存在发生风雨振动的可能,但可以通过气动措施或机械措施加以改善,塔梁交汇处风场特性较为特殊,在强风作用下可能会引起驾乘人员不适。
关键词:铁路公路两用桥;斜拉桥;桁梁桥;风洞试验中图分类号:U448.27;U446文献标志码:AStudy of Wind 2R esistant Perform ance of Main B ridge of WuhanTianxingzhou Changjiang River R ail 2cum 2R oad B ridgeZH EN G Shi 2xiong 1,XU Wei 2,GAO Zong 2yu 2(1.School of Civil Engineering ,Southwest Jiaotong University ,Chengdu 610031,China ;2.ChinaZhongtie Major Bridge Reconnaissance &Design Institute Co.,Ltd.,Wuhan 430050,China )Abstract :The wind t unnel test and analytical st udy were made for t he wind 2resistant per 2formance of t he main bridge of Wuhan Tianxingzhou Changjiang River Rail 2cum 2Road Bridge ,currently t he longest span steel t russ girder cable 2stayed bridge in China ,in which t he aerody 2namic parameter measurement test ,t he main girder sectional model test ,t he aeroelastic model test for t he bridge in const ruction state ,t he stay cable rain vibration test as well as t he analysis of influence of t he wind field at junct ure area of t he girder and pylo n on t he safe t raveling of vehicles were included.The result s of t he st udy indicate t hat for t he bridge eit her in t he completion state or const ruction state ,t he section of t he main girder has sufficient stability of wind resistance.U nder t he action of t he corresponding designed wind velocity ,t he buffeting response of t he bridge can satisfy t he required performance.Though t he rain vibration of t he stay cables may oc 2cur ,t he vibration can be imp roved by t he aerodynamic or mechanical measures.The characteris 2tic of t he wind field at junct ure area of t he girder and pylon is rat her special and will po ssibly make t he passengers uncomfortable in case of st rong wind.K ey w ords :rail 2cum 2road bridge ;cable 2stayed bridge ;t russ girder bridge ;wind t unnel test收稿日期:2008-12-04基金项目:铁道部科技研究开发项目(2004G028-D )作者简介:郑史雄(1965-),男,教授,博士生导师,1985年毕业于西南交通大学土木工程学院铁道桥梁专业,工学学士,1988年毕业于西南交通大学土木工程学院桥梁、隧道及结构工程专业,工学硕士,1996年毕业于西南交通大学土木工程学院桥梁及结构工程专业,工学博士(zhengsx @ )。
武汉青山长江公路大桥设计的风参数研究胡昌琼;张雪婷;王必强;方怡;童奇;丁丽丽【摘要】利用黄陂气象站、武汉青山长江公路大桥桥位处新建的测风塔和湖北省农展中心自动气象站风资料,采用极值I型分布法对武汉青山长江公路大桥设计的风参数进行研究,结果表明:(1)桥位区10 m高度年最大、极大风速为分别为17.0 m·s-1、20.9 m·s-1,年均大风日数为5.8 d,年最多风向为NNE;(2)气象站100 a重现期10 m高度10 min平均年最大风速(基本风速)为25.6 m·s-1,桥位处100 a重现期10 m高度10 min平均年最大风速(设计风速)为29.0 m·s-1;(3)风速较大时水平动量的垂直湍流通量较风速小时大、湍流参数较风速小时小、湍流谱密度值较风速小时增大1~2个量级;极大风速发生时1h内的风攻角为0°~3°.【期刊名称】《暴雨灾害》【年(卷),期】2019(038)003【总页数】8页(P276-283)【关键词】长江公路大桥;设计风参数;极值I型分布;大气湍流【作者】胡昌琼;张雪婷;王必强;方怡;童奇;丁丽丽【作者单位】湖北省气象服务中心,武汉430074;湖北省气象服务中心,武汉430074;湖北省气象服务中心,武汉430074;湖北省气象服务中心,武汉430074;武汉市气象局,武汉430042;宜昌市气象局,宜昌443000【正文语种】中文【中图分类】P425.6+5引言风对桥梁影响很大,全球因为风造成桥梁损坏的案例很多,程进等(2002)回顾了1818年以来世界上主要的桥梁风害情况,特别是1940年11月7日,刚刚通车四个月的美国塔科马海峡大桥,由于风引起桥梁振动,发生动力失稳而坍塌。
在我国,桥梁的风害也时有发生,例如广东南海九江公路斜拉桥施工中吊机被大风吹倒,砸坏主梁;江西九江长江公路铁路两用钢拱桥吊杆的涡激共振、上海杨浦斜拉桥缆索的涡振和雨振使索套损坏等。
天堑变通途——武汉长江大桥建桥记武汉长江大桥是新中国成立后在长江“天堑”上修建的第一座公路铁路两用桥梁,对我国的经济、文化和国防建设发挥了长期重要作用。
大桥横跨武昌蛇山和汉阳龟山,总长1670米,其中正桥1156米,北岸引桥303米,南岸引桥211米。
大桥下层铁路为双向车道,上层为4车道公路,桥身为三联连续桥梁,每联3孔,共8墩9孔,每孔跨度为128米。
70年前,为建造这座“万里长江第一桥”,全国人民不遗余力。
从此之后,中国桥梁建设者们凭借扎扎实实的奋斗、自力更生的精神、勇担重任的勇气,让“中国桥”不断迈向新的征程,实现新的跨越。
新中国成立后,京汉铁路和粤汉铁路之间运输全部由往来于武昌和汉口的驳船和轮渡接转。
由于货物运输量剧增,轮渡中转模式已满足不了需求。
1950年,时任铁道部部长的滕代远刚刚接手主持全国铁路工作不久,就根据中央指示,着手筹划修建武汉长江大桥,并进行了初步勘探调查。
1954年1月21日,周恩來听取滕代远关于筹建武汉长江大桥的情况报告,批准了《关于修建武汉长江大桥的决议》。
此后,铁道部向中央提出报告,要求聘请苏联专家组来华支援,也被迅速批准。
1954年7月左右,以康士坦丁·谢尔盖维奇·西林为首的苏联专家陆续抵达大桥工程局并开始工作。
虽有外国专家援助,但具体施工建设、试验和实施都是我国专家慢慢摸索出来的。
1955年7月,大桥正式开始施工。
工程得到了全国各地的支持,湖北省、武汉市数十万干部群众到工地参加义务劳动,从干部到工人,人人争作贡献,个个争当模范,在高空深水、特大洪水等恶劣环境下顽强拼搏。
武汉长江大桥一共有8个桥墩,桥墩是桥梁的基础,民国时期国内外桥梁专家对长江大桥先后开展4次勘探,均因资金、技术问题无功而返。
当时,在深水中建造桥墩主要采取“气压沉箱法”:先将一个大沉箱沉入江底,充入高压空气排出江水,供工人下到江底直接施工。
但这种工艺的安全极限是水下35米,长江武汉段汛期水深超过40米,一年中能施工的时间仅为3个月。
武汉白沙洲长江大桥的技术特点武汉白沙洲长江大桥的技术特点邵长宇(铁道部大桥局设计院)【摘要】武汉白沙洲长江大桥是一座跨越分汊河流的桥梁,桥址处地质条件较差,水文条件复杂,且航运繁忙。
本文着重介绍了桥式方案布设对防洪、通航的考虑,主桥斜拉桥的设计构思及对大型深水主域基础的比选。
【关键词】武汉白沙洲长江大桥技术特点设计构思一、建设背景及主要建设条件1.建设背景武汉白沙洲大桥桥位是武汉市总体交通规划预留的中环线上跨越长江的桥位,位于武汉长江大桥上游约8.6km的白沙洲中部偏上游处,桥址河段水文条件复杂、航运繁忙、地质条件较差,桥梁建设难度较大。
武汉市过江交通虽有一桥、二桥维系,但是,随着国民经济的发展,过江交通仍然十分紧张,修建武汉白沙洲大桥非常紧迫。
因此,大桥的修建必须处理好过江交通与航运、堤防的关系,解决好桥址处特殊水文、地质条件所形成的技术问题,选择合适的桥式方案,为早日建成大桥创造条件。
2.桥址自然条件(1)河道及水文武汉白沙洲大桥位于武汉市的白沙洲河段上,从白沙洲中部偏上游处跨越长江。
本河段中白沙洲、潜洲、荒五里边滩和汉阳也滩,自本世纪初形成至今,平面位置都处于相对稳定状态,河床近期平面变化主要表现在年际年内洲滩的消长,深槽随来水来沙条件上提下移。
深泓纵剖面年际间变化特点是冲淤交替。
桥址附近河段处于相对稳定时期。
武汉河段的整治工程可行性研究已进行多年,其具体内容是封堵白沙洲南汊,以汉阳岸江堤为准,控制河宽在1200~1300m。
从有关模型试验资料看,整治后水流流速普遍增大,河床发生冲刷下切,河床高程普遍降低,其中以深槽下切为主,荒五里边滩及汉阳边滩也相应收缩,对航运极为有利。
(2)航运本桥桥址位于武汉至宜昌航段,高水位时能通行3000t轮船,低水位对能通行l000t轮船。
本桥通航净高按内河航道标准I(2)级考虑。
桥址处仅北汊是通航河道,通过高、中、低水位实船航迹线测量和历年航道调查,桥址处航道覆盖宽约800m。
桥梁风工程研究综述公路桥梁建设己进入了大跨度时代,斜拉桥的主跨已达1088m(苏通长江大桥),悬索桥的主跨己接近2000m的跨度(日本的明石海峡大桥)。
大跨度桥梁有“塔高、跨大、索长、质轻、结构柔、阻尼弱”的特点,因而,风荷载往往是大跨度桥梁设计的控制因素。
桥梁受到风的作用,历史上发生过10多起没有恰当考虑风的作用而“风至桥塌”的事故。
在这些事故中,美国塔科马桥(Tacoma)的垮塌震惊了世界桥梁界,使人们认识到大跨度桥梁设计只考虑静态风荷载还远远不够,一定还存在风致振动机理威胁着桥梁的安全,并由此促成了风工程这一边缘学科的兴起和发展。
1.桥梁结构风振振害当桥梁结构的刚度较大时,结构保持静止不动,这种空气力作用只相当于静力作用;当桥梁结构的刚度较小时,结构振动得到激发,这时空气力不仅具有静力作用,而且具有动力作用。
风的动力作用激发了桥梁风致振动,而振动起来的桥梁又可能反过来改变流场和空气力,形成风与结构的相互作用。
在桥梁设计时,不仅要考虑桥的静风荷载,同时也要考虑风对桥的振动作用。
桥梁结构风致振动可分为两大类:一类为发散性振动,包括经典藕合颤振、分离扭转振动和驰振;另一类为限幅振动,包括涡激振和抖振两种。
发散性振动有造成桥梁空气动力失稳而风毁的危险(上述的塔科马桥即为一例),因而必须避免。
风振的主要振害有:抖振和涡激振是一种频度大、在低风速下发生的有限振动,往往会造成桥梁构件的疲劳损伤或局部破坏;也可能危及行车安全或造成司乘人员的不适。
此外,施工阶段过大的振动会造成施工质量无法保证或停工;驰振是一种发生在单自由度弯曲振动体系横风向的发散振动,主要表现在索结构桥梁的索塔、斜拉索中。
对于索塔,由于其高度大、施工工况多,其动力特性又在不断地变化,驰振抑制主要在施工阶段,对于拉索,驰振形式有二,其一为雨振,即拉索在雨天会发生比晴天更大的风致振动,其二为尾流驰振,即背风拉索会比迎风拉索发生更大的振动。
这两种拉索驰振机理还有待进一步研究;拉索参数振动,即在风速不高的情况下拉索横向局部振动,许多大跨度斜拉桥曾发生过这种振动,如伯劳东纳斜拉桥曾发生拉索相碰事故,由于拉索是斜拉桥的生命线,故拉索参数振动已引起了桥梁界的广泛关注。