辽宁省抚顺市2015年中考第一次模拟数学试题人教版(扫描版)
- 格式:doc
- 大小:32.79 MB
- 文档页数:11
2015年中考模拟试题(一)数学试卷考试时间:120分钟 试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第二部分时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第一部分(客观题)一、选择题(本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只 有一个选项正确)1. 2015的相反数是 A . 2015B . ﹣2015C .20151D .-201512.下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3.下列计算正确的是A .=±2B . 3﹣1=﹣C . (﹣1)2015= -1D . |﹣2|=﹣24.如图,∠1与∠2是A.对顶角B.同位角C.内错角D.同旁内角5.不等式组⎩⎪⎨⎪⎧3x +2>5,5-2x≥1的解在数轴上表示为6.某篮球队12名队员的年龄如下表所示:则这12名队员年龄的众数和平均数分别是A .18,19B .19,19C .18,19.5D .19,19.5 7.三角形在正方形方格纸中的位置如图所示,则cos α的值是A. 34B. 43C. 35D. 458.一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为x,则列方程为A.688(1+x )2=1299B. 1299(1+x )2=688C. 688(1-x )2=1299D. 1299(1-x )2=688 9.△ABC 的周长为30 cm ,把△ABC 的边AC 对折,使顶点C 和点 A 重合,折痕交BC 边于点D ,交AC 边于点E ,连接AD , 若AE =4 cm ,则△ABD 的周长是A .22 cmB .20 cmC .18 cmD .15 cm10.已知二次函数y =ax 2+bx +c(a≠0)的图象如图,则下列结论:①a ,b 同号;②当x =1和x =3时,函数值相等; ③4a +b =0;④当y =-2时,x 的值只能为0, 其中正确的个数是A .1个B .2个C .3个D .4个第二部分(主观题)二、填空题(每小题3分,共24分)11.空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径 小于或等于2.5微米的颗粒物,2.5微米即0.000 002 5米.用科学记数法表示 0.000 002 5为 .12.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是 .13.函数12-+=x x y 中自变量x 的取值范围是 . 14.分解因式:x 3-xy 2=________.15.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮” 各两个,将所有棋子反面朝上放在棋盘中,任取一个不是..士、象、帅的概率是__________.16.在半径为2的圆中,弦AB 的长为2, 则弧的长等于17.如图,过y 轴上任意一点p ,作x 轴的平行线, 分别与反比例函数y =-4x 和y =2x 的图象交于A 点和B 点.若C 为x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 . 18.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,… 都是边长为2的等边三角形,边AO 在y 轴上, 点B 1,B 2,B 3,…都在直线y=x 上,则A 2015的坐标是 . 三、解答题(共96分)19.(10分)先化简,再求值:(1+)•,其中x=+1.20.(12分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期三个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了 名同学,其中C 类女生有 名, D 类男生有 名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一 帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同 学和一位女同学的概率.20.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件, 求该企业捐给甲、乙两所学校的矿泉水各多少件?22.(12分)一艘观光游船从港口A 处以北偏东60°的方向出港观光,航行80海里至 C 处时发生了侧翻沉船事故,立即发出了求救信号.一艘在港口正东方向B 处的 海警船接到求救信号,测得事故船在它的北偏东37°方向。
2015年初中毕业生学业考试模拟试题(一)·数学本试卷包括三道大题,共24小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在1-,0,3(A )1-. (B )0. (C )3. (D. 2.由6个完全相同的小正方体搭成的几何体如右图所示,它的主视图是3.计算32(2)a 的结果是(A )52a . (B )54a (C )62a . (D )64a .4.不等式组20,26x x -≥⎧⎨>⎩的解集为(A )2x ≥. (B )3x >. (C )23x ≤<. (D )2x >. 5.如图,直线a 与直线b 被直线c 所截,b c ⊥,垂足为点A ,170∠=︒.若使直线b 与直线a 平行,则可将直线b 绕着点A 顺时针旋转(A )70︒. (B )50︒. (C )30︒. (D )20︒.6.如图,AB 是O 的直径,点C 在圆周上,点P 是线段OB 上任意一点,连结AC 、CP .若35BAC ∠=︒,则APC ∠的度数不可能...是 (A )90︒. (B )75︒. (C )60︒. (D )50︒.7.如图,在平面直角坐标系中,点(,2)A m 在第一象限.若点A 关于y 轴的对称点B 在反比例函数6y x=-的图象上,则m 的值为 (A )3-. (B )3. (C )6. (D )6-.8.将22⨯的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD 的顶点都在格点上.若直线(0)y kx k =≠与正方形ABCD 有公共点,则k 的取值范围是(A )2k ≤. (B )12k ≥. (C )122k ≤≤. (D )122k <<. 二、填空题(每小题3分,共18分)9= .10.甲、乙二人一起加工零件.甲平均每小时加工a 个零件,加工2小时;乙平均每小时加工b个零件,加工3小时.甲、乙二人共加工零件 个.11.如图,在ABC ∆中,80,60ACB ABC ∠=︒∠=︒.按以下步骤作图:①以点A 为圆心,小于AC 的长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG 交BC 于点D .则ADB ∠的度数为 °.12.如图,在□ABCD 中,AC 与BD 交于点O ,点E 是BC 边的中点,1OE =,则AB 的长是 .(A ) (B ) (C ) (D )(第7题)(第11题) (第12题)O C E B A G FE DCB Aba (第5题) (第6题)(第13题) (第14题)13.如图,正六边形ABCDEF 内接于O ,连结对角线AC AE 、.若O 的半径为2,则图中阴影部分图形的面积和是 (结果保留π).14.如图,在平面直角坐标系中,抛物线2(2)y x =-与x 轴交于点A ,与y 轴交于点B .过点B 作BCx 轴,交抛物线于点C ,过点A 作AD y 轴,交BC 于点D ,点P 在BC 下方的抛物线上(P 不与,B C 重合),连结,PC PD ,则PCD ∆面积的最大值是 . 三、解答题(本大题10小题,共78分)15.(6分)先化简,再求值:22426933a a aa a a a --÷-++++,其中1a =-.16.(6分)甲、乙两个不透明的口袋中各装有3个小球,它们除所标数字不同外其余均相同.甲口袋中小球分别标有数字1,5,7,乙口袋中小球分别标有数字0,1,2.现从甲口袋中随机摸出1个小球,记下标号;再从乙口袋中随机摸出1个小球,记下标号.用画树状图(或列表)的方法,求两次摸出小球的标号之和是偶数的概率. 17.(6分)某市为了在冬季下雪时更好的清扫路面积雪,新购进一批清雪车.每辆新清雪车比每辆旧清雪车每小时多清扫路面2km ,每辆新清雪车清扫路面35km 与每辆旧清雪车清扫路面25km 所用的时间相同,求每辆旧清雪车每小时清扫路面多少km ?18.(7分)如图,甲楼AB 的高度为35m ,经测得,甲楼的底端B 处与乙楼的底端D 处相距105m ,从甲楼顶部A 处看乙楼顶部C 处的仰角CAE ∠的度数为25︒.求乙楼CD 的高度(结果精确到0.1m ).【参考数据:sin 250.42cos250.91tan 250.47︒=︒=︒=,,】19.(7分)我国从2011年1月1日起在公共场所实行“禁烟”,到2015年1月1日,实行了四年.某社区为进一步巩固“禁烟”成果,开展了“你支持哪种戒烟方式”的问卷调查,随机抽样调查了该社区部分居民的意见,并将调查结果整理后绘制成如下统计图. (1)该社区一共随机调查了多少人;(2)此次抽样调查的居民中,支持“替代品戒烟”的居民有 人,并补全条形统计图; (3)若该社区共有居民18000人,则该社区大约有多少人支持“警示戒烟”这种方式.20.(7分)如图,在正方形ABCD 中,以AD 为边作等边三角形ADE ,点E 在正方形内部,将AB 绕着点A 顺时针旋转30︒得到线段AF ,连结EF .求证:四边形ADEF 是菱形.(第19题)戒烟 戒烟 戒烟 戒烟 方式被调查的居民支持哪种戒烟强制 戒烟 40%警示 戒烟药物戒烟 被调查的居民支持哪种戒烟 方式人数的扇形统计图 25°E D CB A (第18题)(第20题)FE D C B A21.(8分)王先生开轿车从A 地出发,前往B 地,路过服务区休息一段时间后,继续以原速度行驶,到达B 地后,又休息了一段时间,然后开轿车按原路返回A 地,速度是原来的1.2倍.王先生距离A 地的路程(km)y 与行驶的时间(h)x 之间的函数图象如图所示. (1)王先生开轿车从A 地行驶到B 地的途中,休息了 h ;(2)求王先生开轿车从B 地返回A 地时y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(3)王先生从B 地返回A 地的途中,再次经过从A 地到B 地时休息的服务区,求此时的x 的值.22.(9分)探究:如图①,ABC ∆是等腰直角三角形,90ACB ∠=︒,AC BC =.点D 在边AB 上(D 不与,A B 重合),连结CD ,过点C 作CE CD ⊥,且C E C D =,连结DE 、AE .求证:BCD ∆≌ACE ∆.应用:如图②,在图①的基础上,点D 在BA 的延长线上,其他条件不变.若14AD AB =,4AB =,求DE 的长.23.(10分)如图,抛物线212y x bx c =-++与直线112y x =+交于A 、B 两点,点A 在x 轴上,点B 的横坐标是2.点P 在直线AB 上方的抛物线上,过点P 分别作PCy 轴、PD x 轴,与直线AB 交于点C D 、,以PC PD 、为边作矩形PCQD ,设点Q 的坐标为(,)m n .(1)点A 的坐标是 ,点B 的坐标是 ;(2)求这条抛物线所对应的函数关系式;(3)求m 与n 之间的函数关系式(不要求写出自变量n(4)请直接写出矩形PCQD 的周长最大时n 的值.24.(12分)如图,在矩形ABCD 中,3cm,4cm AB BC ==,点O 是对角线AC 的中点,连结BO .动点,P Q 从点B 同时出发,点P 沿B C B →→以2cm /s 的速度运动到终点B . 点Q 沿B A →以1cm/s 的速度运动到终点A .以BP BQ 、为边作矩形BPMQ (点M 不与点A 重合).设矩形BPMQ 与OBC ∆重叠部分图形的面积为2(cm )y ,点P 的运动时间为(s)x .(1)当点M 在AC 上时,求x 的值;(2)直接写出点O 在矩形BPMQ 内部时x 的取值范围;(3)当矩形BPMQ 与OBC ∆重叠部分的图形是四边形时,求y 与x 之间的函数关系式. (4)直接写出直线AM 将矩形ABCD 的面积分成1:3的两部分时x 的值.(第23题)(第24题)A BCD PQ OM (备用图)ODCBA (第22题)(图①)BCDE(图②)ECy。
2015年初中一模数学试卷注意:1. 本试卷共6页,满分为150分,考试时间为120分钟.2. 答题前,考生务必将本人的姓名、考试号填写在答题纸相应的位置上.3. 考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.-3的相反数是(▲)1A.-3 B.3 C.-31D.32.刻画一组数据波动大小的统计量是( ▲ ).A.平均数 B.方差 C.众数 D.中位数3.下列图形中,既是轴对称图形,又是中心对称图形的是(▲ )A. B. C. D. 4.如图是由两块长方体叠成的几何体,其主视图是(▲)(第4题图)A .B .C .D .5.下列运算正确的是( ▲ )A .236x x x ⋅=B .3223()()1a a -÷-=C .1122-=D .552332=+ 6.设P 是函数2y x=在第一象限的图像上的任意一点,点P 关于原点的对称点为P ',过P 作PA 平行于y 轴,过P '作P A '平行于x 轴,PA 与P A '交于A 点,则PAP '△的面积( ▲ )A .随P 点的变化而变化B .等于1C .等于2D .等于4二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7. 9的算术平方根是 ▲ .8. H 7N 9型流感病毒变异后的直径为0.00000013米,将这个数写成科学记数法是 ▲ 米.9. 因式分解:4a 2-16= ▲ .10.若一个多边形的内角和是900,则这个多边形的边数为 ▲ .11.把一块矩形直尺与一块直角三角板如图放置,若140∠=°, 则2∠的度数为 ▲ .12.五位女生的体重(单位:kg )分别为38、42、35、45、40,则这五位女生体重的方差为 ▲ kg 2.13. 阳阳的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度为 ▲ m . 14.已知圆锥的侧面积为π8cm 2,侧面展开图的圆心角为60°. 则AOPP 'xy(第6题图)(第12题图)B O Axy该圆锥的母线长为 ▲ cm.15.按一定规律排列的一列数依次为:111,,315351,63,…,按此规律排列下去,这列数中的第7个数是 ▲ .16.如图,在平面直角坐标系中,O 为坐标原点,⊙O 的半径为5,点B 的坐标为(3,0),点A 为⊙O 上一动点,当∠OAB 取最大 值时,点A 的坐标为 ▲ .三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(121()2-+(-1)0-2sin45°;(2)解方程:2220x x --=.18.(本题满分8分)先化简532)224m m m m -+-÷--(,然后在0<2m-1<6的范围内选取一个合适的整数作为m 的值代入求值.19.(本题满分8分)在一个不透明的袋中装有3 个完全相同的小球,上面分别标号为1、2、3,从中随机摸出两个小球,并用球上的数字组成一个两位数. (1)求组成的两位数是奇数的概率;(2)小明和小华做游戏,规则是:若组成的两位数是4的倍数,小明得3分,否则小华得3分,你认为该游戏公平吗?说明理由;若不公平,请修改游戏规则,使游戏公平.20.(本题满分8分)某校全体学生积极参加校团委组织的“献爱心捐款”活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计,绘制了两幅不完整的 统计图(统计图中每组含最小值..., 不含最大值...). 请依据图中信息解答下列问题: (1)求随机抽取的学生人数.捐款人数扇形统计图捐款人数分布统计图(2)填空:(直接填答案)①“20元~25元”部分对应的 圆心角度数为__▲____.②捐款的中位数落在__▲____(填金额范围) .(3)若该校共有学生3500人,请估算全校捐款不少于20元的人数.21.(本题满分10分)如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE ,连接BD 、CE ,两线交于点F .(1)求证:△ABD ≌△ACE ; (2)求证:四边形ABFE 是菱形.22. (本题满分10分)如图,学校打算用材料围建一个面积为18平方米的矩形ABCD 的生物园,用来饲养小兔,其中矩形ABCD 的一边AB 靠墙,墙长为8米,设AD 的长为y 米, CD 的长为x 米.(1)求y 与x 之间的函数表达式;(2)若围成矩形ABCD 的生物园的三边材料总长不超过18米,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.(第22题图)生物园FEABD40°100° (第21题图)23.(本题满分10分)某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB 在同一平地且相距12米的建筑物CD 上的C 处观察,测得某建筑物顶部A 的仰角为30°、底部B 的俯角为45°.求建筑物AB 的高(精确到1米).(可供选用的数据:2≈1.4,3≈1.7).24. (本题满分10分) 如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D. (1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC=3,∠B=30°.①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)45°30°BDCA(第23题图)(第24题图)25. (本题满分12分)如图, 在四边形ABCD 中,AD ∥BC ,∠D=90°,BC=50,AD=36,CD=27. 点E 从C 出发以每秒5个单位长度的速度向B 运动,点F 从A 出发,以每秒4个单位长度的速度向D 运动.两点同时出发,当其中一个动点到达终点时,另一个动点也随之停止运动.过点F 作FG ⊥BC,垂足为G ,连结AC 交FG 于P ,连结EP . (1)点E 、F 中,哪个点最先到达终点?(2)求△PEC 的面积S 与运动时间t 的函数表达式,并写出自变量t 的取值范围. 当t 为何值时,S 的值最大;(3)当△CEP 为锐角三角形时,求运动时间t 的取值范围.26.(本题满分14分)如图,抛物线与y 轴相交于点A (0,2),与x 轴相交于B(4,0)、C (12,0)两点.直线l 经过A 、B 两点. (1)分别求出直线l 和抛物线相应的函数表达式;(2)平行于y 轴的直线x =2交抛物线于点P ,交直线l 于点D.① 直线x =t (0≤t ≤4)与直线l 相交于点E ,与抛物线相交于点F.若EF :DP=3:4, 求t 的值;② 将抛物线沿y 轴上下平移,所得的抛物线与y 轴交于点A ′,与直线x =2交于点P ′.当P ′O 平分∠A ′P ′P 时,求平移后的抛物线相应的函数表达式.(第25题图)GPF BDAC E。
辽宁省抚顺市2015年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..6的绝对值是( ) A.6B.﹣6C.D.﹣2..下列图形是中心对称图形的是( ) A.B.C.D.3..下列运算正确的是( ) A.3a2•a3=3a6B.5x4﹣x2=4x2 C.(2a2)3•(﹣ab)=﹣8a7b D.2x2÷2x2=04..下列一元二次方程有两个相等实数根的是( ) A.x2﹣2x+1=0B.2x2﹣x+1=0C.4x2﹣2x﹣3=0D.x2﹣6x=05..一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A.﹣1<x≤2B.﹣1≤x<2C.﹣1<x<2D.无解6..图中几何体的左视图是( ) A.B.C.D.7..直线y=x+b(b>0)与直线y=kx(k<0)的交点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限8..学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元)5102050人数(人)10131215则学生捐款金额的中位数是( ) A.13人B.12人C.10元D.20元9..如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( ) A.B.C.D.10..如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为( ) A.3B.1.5C.2D.二、填空题(共8小题,每小题3分,满分24分)11..2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为 .12..分解因式:ab3﹣ab= .13..已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为 .14..如图,分别过等边△ABC的顶点A、B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为 .15..如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为 .16..如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为 米.17..如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为 .18..如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为 .三、解答题(共2小题,第19题10分,第20题12分,满分22分)19.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.20.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.(1)△ABC与△A1B1C1的位似比等于 ;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 .四、解答题(共2小题,第21题12分,第22题12分,满分24分)21.某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?22.(12分)(2015•抚顺)电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有 人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是 .五、解答题(共1小题,满分12分)23.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?六、解答题(共1小题,满分12分)24.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.七、解答题(共1小题,满分12)25.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)八、解答题(共1小题,满分14分)26.已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.2015年辽宁省抚顺市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..6的绝对值是( ) A.6B.﹣6C.D.﹣考点:绝对值..分析:根据绝对值的定义求解.解答:解:6是正数,绝对值是它本身6.故选A点评:本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2..下列图形是中心对称图形的是( ) A.B.C.D.考点:中心对称图形..分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念,绕旋转中心旋转180°与原图形重合,可知A、C、D都不是中心对称图形,故是中心对称图形的是B.故选B.点评:本题主要考查中心对称图形的概念,掌握掌握中心对称图形的概念是解题的关键,注意中心对称图形是要寻找对称中心,旋转180度后两部分重合.【链接】中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点3..下列运算正确的是( ) A.3a2•a3=3a6B.5x4﹣x2=4x2 C.(2a2)3•(﹣ab)=﹣8a7b D.2x2÷2x2=0考点:单项式乘单项式;合并同类项;整式的除法..分析:根据整式的各种运算法则逐项分析即可.解答:解:A、3a2•a3=3a5≠3a6,故该选项错误;B、5x4﹣x2不是同类项,所以不能合并,故该选项错误;C、(2a2)3•(﹣ab)=﹣8a7b,计算正确,故该选项正确;D、2x2÷2x2=1≠0,计算错误,故该选项正确;故选C.点评:本题考查了和整式有关的各种运算,解题的关键是熟记整式的各种运算法则.4..下列一元二次方程有两个相等实数根的是( ) A.x2﹣2x+1=0B.2x2﹣x+1=0C.4x2﹣2x﹣3=0D.x2﹣6x=0考点:根的判别式..分析:根据一元二次方程根的判别式判断即可.解答:解:A、∵△=4﹣4=0,∴方程x2﹣2x+1=0有两个相等实数根;B、∵△=1﹣4×2<0,∴方程2x2﹣x+1=0无实数根;C、∵△=4+4×4×3=52>0,∴方程4x2﹣2x﹣3=0有两个不相等实数根;D、∵△=36>0,∴方程x2﹣6x=0有两个不相等实数根;故选A.点评:本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5..一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A.﹣1<x≤2B.﹣1≤x<2C.﹣1<x<2D.无解考点:在数轴上表示不等式的解集..分析:根据数轴上的表示可得﹣1<x≤2,即可得解.解答:解:由图可得,这个不等式组的解集为﹣1<x≤2.故选A.点评:本题考查了在数轴上表示不等式的解集,表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6..图中几何体的左视图是( ) A.B.C.D.考点:简单组合体的三视图..分析:从左面看到3列正方形的个数依次为1,2,1;由此选择答案即可.解答:解:图中几何体的左视图是.故选:B.点评:本题考查了几何体的三视图;得到从各个方向看得到的每列正方形的个数是解决本题的关键. 7..直线y=x+b(b>0)与直线y=kx(k<0)的交点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限考点:两条直线相交或平行问题..分析:根据直线方程作出大致函数图象,根据图象可以直接作出选择.解答:解:直线y=x+b(b>0)与直线y=kx(k<0)的大致图象如图所示:.所以交点A位于第二象限.故选:B.点评:本题考查了两条直线相交或平行问题.解答该题时,需要掌握一次函数y=kx+b的图象与系数的关系.8..学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元)5102050人数(人)10131215则学生捐款金额的中位数是( ) A.13人B.12人C.10元D.20元考点:中位数..分析:根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.解答:解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数,=20(元),∴学生捐款金额的中位数是20元;故选:D.点评:本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.9..如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为( ) A.B.C.D.考点:几何概率;平行四边形的性质..专题:计算题.分析:根据平行四边形的性质易得S△OEH=S△OFG,则S阴影部分=S△AOB=S平行四边形ABCD,然后根据几何概率的意义求解.解答:解:∵四边形ABCD为平行四边形,∴△OEH和△OFG关于点O中心对称,∴S△OEH=S△OFG,∴S阴影部分=S△AOB=S平行四边形ABCD,∴飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率==.故选C.点评:本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.也考查了平行四边形的性质.10..如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD 于点E.若AB=3,则△AEC的面积为( ) A.3B.1.5C.2D.考点:旋转的性质..专题:计算题.分析:根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.解答:解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠B′AD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=,根据勾股定理得:x2=(3﹣x)2+()2,解得:x=2,∴EC=2,则S△AEC=EC•AD=,故选D点评:此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.二、填空题(共8小题,每小题3分,满分24分)11..2014年抚顺市城区植树造林约为2030000株,将2030000这个数用科学记数法表示为 2.03×106 .考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2030000用科学记数法表示为:2.03×106.故答案为:2.03×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12..分解因式:ab3﹣ab= ab(b+1)(b﹣1) .考点:提公因式法与公式法的综合运用..分析:先提取公因式ab,再对余下的多项式利用平方差公式继续分解.解答:解:ab3﹣ab,=ab(b2﹣1),=ab(b+1)(b﹣1).点评:本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13..已知数据:﹣1,4,2,﹣2,x的众数是2,那么这组数据的平均数为 1 .考点:众数;算术平均数..分析:先根据众数的定义求出x的值,然后再求这组数据的平均数.解答:解:数据:﹣1,4,2,﹣2,x的众数是2,即的2次数最多;即x=2.则其平均数为:(﹣1+4+2﹣2+2)÷5=1.故答案是:1.点评:本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.14..如图,分别过等边△ABC的顶点A、B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为 80° .考点:平行线的性质;等边三角形的性质..分析:先根据△ABC是等边三角形得出∠BAC=60°,故可得出∠BAC+∠1的度数,再由平行线的性质即可得出结论.解答:解:∵△ABC是等边三角形,∴∠BAC=60°.∵∠1=40°,∴∠BAC+∠1=100°.∵a∥b,∴∠2=180°﹣(∠BAC+∠1)=180°﹣100°=80°.故答案为:80°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.15..如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为 2π﹣3 .考点:扇形面积的计算;正多边形和圆..分析:此题是考查圆与正多边形结合的基本运算,空白正六边形为六个边长为2的正三角形,利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×.解答:解:∵圆的半径为2,∴面积为12π,∵空白正六边形为六个边长为2的正三角形,∴每个三角形面积为×2××sin60°=3,∴正六边形面积为18,∴阴影面积为(12π﹣18)×=2,故答案为:2.点评:本题主要考查了正多边形和圆的面积公式,注意到阴影面积=(圆的面积﹣正六边形的面积)×是解答此题的关键.16..如图,在A处看建筑物CD的顶端D的仰角为α,且tanα=0.7,向前行进3米到达B处,从B处看D的仰角为45°(图中各点均在同一平面内,A、B、C三点在同一条直线上,CD⊥AC),则建筑物CD的高度为 7 米.考点:解直角三角形的应用-仰角俯角问题..分析:根据∠DBC=45°,得到BC=CD,根据tanα=0.7和正切的概念列出算式,解出算式得到答案.解答:解:∵∠DBC=45°,∴BC=CD,tanα==,则=,解得CD=7.故答案为:7.点评:本题考查的是解直角三角形的知识,掌握锐角三角函数的概念是解题的关键,注意仰角和俯角的概念.17..如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为 6 .考点:反比例函数与一次函数的交点问题;线段垂直平分线的性质..分析:根据题意得到A、B两点关于原点对称,得到点A坐标为(2,﹣m),求得AC=2,由于DE垂直平分AO,得到AD=OD,根据△ACD的周长为5,求出OC=AD+CD=3,得到A(2,3),即可得到结果.解答:解:∵过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,∴A、B两点关于原点对称,∵点B坐标为(﹣2,m),∴点A坐标为(2,﹣m),∵AC⊥y轴于点C,∴AC=2,∵DE垂直平分AO,∴AD=OD,∵△ACD的周长为5,∴AD+CD=5﹣AC=3,∴OC=AD+CD=3,∴A(2,3),∵点A在反比例函数y=(k>0)的图象上,∴k=2×3=6,故答案为:6.点评:本题考查了一次函数与反比例函数的交点问题,线段的垂直平分线的性质,三角形的周长,得出OC=AD+CD是解题的关键.18..如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为 .考点:正方形的性质..专题:规律型.分析:首先在Rt△A1BB1中,由勾股定理可求得正方形A1B1C1D1的面积=,然后再在Rt△A2B1B2中,由勾股定理求得正方形A2B2C2D2的面积=,然后找出其中的规律根据发现的规律即可得出结论.解答:解:在Rt△A1BB1中,由勾股定理可知;==,即正方形A1B1C1D1的面积=;在Rt△A2B1B2中,由勾股定理可知:==;即正方形A2B2C2D2的面积=…∴正方形A n B n C n D n的面积=.点评:本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.三、解答题(共2小题,第19题10分,第20题12分,满分22分)19.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.考点:分式的化简求值..分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:原式=•=,当x=3时,原式==3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.(1)△ABC与△A1B1C1的位似比等于 ;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为 (﹣2x﹣2,2y+2) .考点:作图-位似变换;作图-轴对称变换;作图-平移变换..分析:(1)根据位似图形可得位似比即可;(2)根据轴对称图形的画法画出图形即可;(3)根据△A1B1C1与△A2B2C2的关系过程其变化过程即可;(4)根据三次变换规律得出坐标即可.解答:解:(1))△ABC与△A1B1C1的位似比等于=;(2)如图所示:(3)△A1B1C1是由△A2B2C2沿x轴向左平移2个单位,再沿y轴向上平移2个单位得到;(4)点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为(﹣2x﹣2,2y+2).故答案为:;(﹣2x﹣2,2y+2).点评:此题考查作图问题,关键是根据轴对称图形的画法和位似图形的性质分析.四、解答题(共2小题,第21题12分,第22题12分,满分24分)21某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?考点:分式方程的应用;一元一次不等式的应用..分析:(1)设购买一个乙礼品需要x元,根据“花费600元购买甲礼品和花费360元购买乙礼品的数量相等”列分式方程求解即可;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意列不等式求解即可.解答:解:(1)设购买一个乙礼品需要x元,根据题意得:=,解得:x=60,经检验x=60是原方程的根,∴x+40=100.答:甲礼品100元,乙礼品60元;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意得:100m+60(30﹣m)≤2000,解得:m≤5.答:最多可购买5个甲礼品.点评:此题主要考查了分式方程和不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程和不等式.22.电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有 200 人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是 .考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图..专题:计算题.分析:(1)由喜欢“陈赫”的人数除以占的百分比得出被调查学生总数即可;(2)求出喜欢“李晨”的人数,找出喜欢“Angelababy”与喜欢“黄晓明”占的百分比,补全统计图即可;(3)由喜欢“Angelababy”的百分比乘以2000即可得到结果;(4)列表得出所有等可能的情况数,找出两人都是喜欢“李晨”的情况数,即可求出所求的概率.解答:解:(1)根据题意得:40÷20%=200(人),则本次被调查的学生有200人;(2)喜欢“李晨”的人数为200﹣(40+20+60+30)=50(人),喜欢“Angelababy”的百分比为×100%=10%,喜欢其他的百分比为×100%=30%,补全统计图,如图所示:(3)根据题意得:2000×30%=600(人),则全校喜欢“Angelababy”的人数为600人;(4)列表如下:(B表示喜欢“李晨”,D表示喜欢“Angelababy”)B B B D DB﹣﹣﹣(B,B)(B,B)(D,B)(D,B)B(B,B)﹣﹣﹣(B,B)(D,B)(D,B)B(B,B)(B,B)﹣﹣﹣(D,B)(D,B)D(B,D)(B,D)(B,D)﹣﹣﹣(D,D)D(B,D)(B,D)(B,D)(D,D)﹣﹣﹣所有等可能的情况有20种,其中两人都是喜欢“李晨”的学生有6种,则P==.故答案为:(1)200;(4).点评:此题考查了列表法与树状图法,用样本估计总体,条形统计图,以及扇形统计图,熟练掌握运算法则是解本题的关键.五、解答题(共1小题,满分12分)23.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?考点:二次函数的应用..分析:(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.解答:解:(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得.故y与x的函数关系式为y=﹣x+150;(2)根据题意得(﹣x+150)(x﹣20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(﹣x+150)(x﹣20)=﹣x2+170x﹣3000=﹣(x﹣85)2+4225,∵﹣1<0,∴当x=85时,w值最大,w最大值是4225.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.点评:本题考查二次函数的应用,难度较大,解答本题的关键是根据题意列出方程,另外要注意掌握二次函数的最值的求法.六、解答题(共1小题,满分12分)24.如图,四边形ABCD为矩形,E为BC边中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.(1)求证:CF与⊙O相切;(2)若AD=2,F为AE的中点,求AB的长.考点:切线的判定;勾股定理;矩形的性质..分析:(1)利用平行四边形的判定方法得出四边形OAEC是平行四边形,进而得出△ODC≌△OFC(SAS),求出OF⊥CF,进而得出答案;(2)利用勾股定理得出DC的长,即可得出AB的长,解答:(1)证明:如图所示:连接OF、OC,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ADC=90°,∵E为BC边中点,AO=DO,∴AO=AD,EC=BC,∴AO=EC,AO∥EC,∴四边形OAEC是平行四边形,∴AE∥OC,∴∠DOC=∠OAF,∠FOC=∠OFA,∵OA=OF,∴∠OAF=∠OFA,∴∠DOC=∠FOC,∵在△ODC和△OFC中,∴△ODC≌△OFC(SAS),∴∠OFC=∠ODC=90°,∴OF⊥CF,∴CF与⊙O相切;(2)解:如图所示:连接DE,∵AO=DO,AF=EF,AD=2,∴DE=20F=2,∵E是BC的中点,∴EC=1,在Rt△DCE中,由勾股定理得:DC===,∴AB=CD=.点评:此题主要考查了全等三角形的判定与性质以及勾股定理和平行四边形的判定、切线的判定等知识,得出△ODC≌△OFC是解题关键.七、解答题(共1小题,满分12)25.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)考点:相似三角形的判定与性质;全等三角形的判定与性质..分析:(1)首先过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;(2)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案;(3)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案.解答:(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴=,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.点评:此题主要考查了全等三角形的判定与性质以及相似三角形的判定与性质,得出△EBD∽△AGD是解题关键.八、解答题(共1小题,满分14分)26.(14分)(2015•抚顺)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.考点:二次函数综合题..分析:(1)根据抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),应用待定系数法,求出抛物线的解析式即可.(2)首先作DM⊥抛物线的对称轴于点M,设G点的坐标为(﹣1,n),根据翻折的性质,可得BD=DG;然后分别求出点D、点M的坐标各是多少,以及BC、BD的值各是多少;最后在Rt△GDM中,根据勾股定理,求出n的值,即可求出G点的坐标.(3)根据题意,分三种情况:①当CD∥EF,且点E在x轴的正半轴时;②当CD∥EF,且点E在x轴的负半轴时;③当CE∥DF时;然后根据平行四边形的性质,求出点F的坐标各是多少即可.解答:解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),。
2015中考数学模拟试题 一、选择题1.-4的绝对值是 ( ) A. 41 B. 41- C. 4 D. -4 2.如果分式13-x 有意义,则x 的取值范围是( )A. 全体实数 B.x =1 C. x ≠1 D. x=0 3.下列图形中,不是中心对称图形的是( )DC BA4.如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是( )DCBA31225.如图,直线1l 、2l 被直线3l 、4l 所截,下列条件中,不能判断直线1l ∥2l 的是( ) A.∠1=∠3 B.∠5=∠4 C. ∠5+∠3=180° D.∠4+∠2=180°6.下列计算正确的是( )A. ()2382a a a =÷B. ()ba a ab 22212=⎪⎭⎫ ⎝⎛-- C. ()222b a b a -=- D.41414--=⎪⎭⎫ ⎝⎛--a a 7. 一条直线y=kx+b ,其中k+b=﹣5、kb=6,那么该直线经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限8.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米,设他骑自行车和步行的时间分别为x 、y 分钟,则列出的二元一次方程组是( )A.⎪⎩⎪⎨⎧=+=+33507020031y x y xB. ⎩⎨⎧=+=+33502007020y x y xC.⎪⎩⎪⎨⎧=+=+33502007031y x y x D. ⎩⎨⎧=+=+33507020020y x y x 9.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是41,则随机摸出一个球是篮球的概率是( ) A.31 B.41 C.103D .209 10.如图,等边△OAB 的边OB 在x 轴的负半轴上,双曲线xky =过OA 的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )l 4l 3l 2l 154321A.x y 3=B. xy 3-= C. x y 32= D. x y 32-= 二、填空题11.人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m ,将0.000 000 156用科学记数法表示为 .12.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是20.02=甲S ,16.02=乙S ,则甲、乙两名同学成绩更稳定的是 .13.计算:()()=--⎪⎭⎫ ⎝⎛⨯--0223211π .14.若a 、b 是两个连续整数,且b a <<17,则a+b= .15.从-3、1、-2这三个数中任取两个不同的数,积为正数的概率是 . 16.把直线y=2x-1向上平移2个单位,所得直线的解析式是 .17.若矩形ABCD 的对角线长为10,点E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则。
2015年初中毕业生升学模拟考试(一)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-3的绝对值是 A .3B .-3C .13D .13-2.一个等腰三角形的两边长分别是3和7,则它的周长为 A .17 B .15 C .13D .13或173.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水 300 000吨.将300 000用科学记数法表示应为A .60.310⨯B .5310⨯C .6310⨯D .43010⨯4.如图1,AB ∥CD ,EF ⊥AB 于点E ,EF 交CD 于点F ,已 知∠1=60°,则∠2的度数为 A .20° B .60° C .30°D .45°CDBAE F1 2 图151的值在A .2和3之间B .3和4之间C .4和5之间D .5和6之间6.如图2是某几何体的三视图,该几何体是A .圆锥B .三棱柱C .圆柱D .三棱锥7.下列计算中,正确的是A .x 2+x 4=x 6B .2x +3y =5xyC .(x 3)2=x 6D .x 6÷x 3=x 29.如图3,△ABC 的顶点都在正方形网格的格点上, 则cos C 的值为 A .12B .C .D .10. 方程23+x =11+x 的解为 A .x =54B .x = -21 C .x =-2D .无解图3ABC图211.某篮球队12名队员的年龄如下表所示:则这12名队员年龄的众数和中位数分别是 A .18,19 B .18,19.5C .5,4D .5, 4.512.二次函数()20y ax bx c a =++≠的大致图象如图4所示,关于该二次函数,下列说法错误的是 A .函数有最小值B .对称轴是直线x =21 C .当x <21时,y 随x 的增大而减小 D .当 -1 < x < 2时,y >013.如图5,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半 径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠B =250,则∠ACB 的度数为 A .90° B . 95° C . 100°D . 105°14.如图6是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于 A . 210 B .20 C . 18D . 220图5AB图615.如图7,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使CE =31CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F . 若AB =6,则BF 的长为 A .6B . 7C . 8D . 1016. 已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是图72015年邯郸市初中毕业生升学模拟考试(一)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.分解因式:2x 2-4x +2= .18.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数xk y的 图象上.若点A 的坐标为(-2,-2),则k 的值 为________.19.如下图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π).图9坐标是.6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)已知代数式:A=23+x,B=25624322+-+-÷+-xxxxx.(1)试证明:若A、B均有意义,则它们的值互为相反数;(2)若代数式A、B中的x是满足不等式3(x-3)<6-2x的正整数解,求A-B的值.22.(本小题满分10分)某校为了调查学生书写汉字的能力,从八年级800名学生中随机抽选了50名学生参加测试,这50名学生同时听写50个常用汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:频数分布直方图请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请你估计该校八年级汉字书写优秀的人数?(4)第一组中的A、B、C、D四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习,请用列表法或画树状图的方法,求A与B名同学能分在同一组的概率.23.(本小题满分11分)在图11-1——图11-4中,菱形ABCD 的边长为3,∠A =60°,点M 是AD 边上一点,且DM =31AD ,点N 是折线AB -BC 上的一个动点. (1)如图11-1,当N 在BC 边上,且MN 过对角线AC 与BD 的交点时,则线段AN 的长度为________.(2)当点N 在AB 边上时,将△AMN 沿MN 翻折得到△A′MN ,如图11-2,①若点A′ 落在AB 边上,则线段AN 的长度为________;②当点A′ 落在对角线AC 上时,如图11-3,求证:四边形AM A′N 是菱形;③当点A′ 落在对角线BD 上时,如图11-4,求NA BA ''的值.图11-1图1224.(本小题满分11分)如图12,在平面直角坐标系中,矩形ABCD 的顶点A 、B 、C 的坐标分别为(0,5)、(0,2)、(4,2),直线l 的解析式为y = kx +5-4k (k > 0).(1)当直线l 经过点B 时,求一次函数的解析式;(2)通过计算说明:不论k 为何值,直线l 总经过点D ; (3)直线l 与y 轴交于点M ,点N 是线段DM 上的一点, 且△NBD 为等腰三角形,试探究:①当函数y = kx +5-4k 为正比例函数时,点N 的个数有 个;②点M 在不同位置时,k 的取值会相应变化,点N 的个数情况可能会改变,请直接写出点N 所有不同的个数情况以及相应的k 的取值范围.25.(本小题满分11分)如图13-1,在△ABC 中,∠ACB =90°,AC =BC =2,以点B 为圆心,以1为半径作圆. 设点P 为⊙B 上一点,线段CP 绕着点C 顺时针旋转90°,得到线段CD ,连接DA ,PD ,PB ,(1)求证:AD =BP ;(2)若DP 与⊙B 相切,则∠CPB 的度数为_________°; (3)如图13-2,当B ,P ,D 三点在同一直线上时,求BD 的长; (4)BD 的最小值为________,此时tan ∠CBP =_________;BD 的最大值为 ,此时tan ∠CPB =_________.备用图BCABCD P图13-2ABC D P图13-126.(本小题满分13分)某公司经销农产品业务,以3万元/吨的价格向农户收购农产品后,以甲、乙两种方式进行销售,甲方式包装后直接销售;乙方式深加工后再销售.甲方式农产品的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为y = -m+14(2≤m≤8);乙方式农产品深加工等(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系是S=3n+12,平均销售价格为9万元/吨.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a)(1)该公司收购了20吨农产品,其中甲方式销售农产品x吨,其余农产品用乙方式销售,经销这20吨农产品所获得的毛利润为w万元(毛利润=销售总收入-经营总成本).①直接写出:甲方式购买和包装x吨农产品所需资金为_________万元;乙方式购买和加工其余农产品所需资金为_________万元;②求出w关于x的函数关系式;③若农产品全部销售该公司共获得了48万元毛利润,求x的值;④若农产品全部售出,该公司的最小利润是多少.①其中甲方式经销农产品x吨,则总经销量p为__________吨(用含x的代数式表示);②当x为何值时,使公司获得最大毛利润,并求出最大毛利润.参考答案及评分标准一、选择题1.A2.A3.B4.C5.D6.B7.C8.B9. D 10.B 11.A 12.D 13.D 14.B 15.C 16.A 二、填空题17. 2(x-1)2 18.4 19.3π 20.(8,-8) 三、解答题21.(1)证明:B =25)2)(2()3(232+--++⨯+-x x x x x x =2522+-+x x ………………………………………… 2分 =23+-x =A - ………………………………………… 4分 ∴A 、B 互为相反数………………………………………… 5分(证明A+B=0均可得分) (2)解:解不等式得x<3, x 为正整数,且x ≠2,∴x=1 ………………………………………………………… 7分则A-B=2x 32+⨯=2132+⨯=2 …………………………………………… 10分22.解:(1)a=12 …………………………………………………… 2分 (2)如图………………………………… 4分(3)估计该校八年级汉字书写优秀的人数为⨯+501212800=352人 ……… 6分 (4)根据题意画树形图如下:B C DB C D A C D A B D A B C ……… 9分 共有12种情况,A 与B 两名同学分在同一组的情况有4种,∴A 与B 两名同学能分在同一组的概率为P (同组)=124=10分 23. (1)13…………………………………………………………………… 2分 (2)① 1 ……………………………………………………………………4分②在菱形ABCD 中AC 平分∠DAB ,∠DAB=60°,∴∠DAC=∠CAB=30°,∵△AMN 沿MN 翻折得到△A′MN , ∴AC ⊥MN ,AM= A′M ,AN= A′N ,∴∠AMN=∠ANM=60°∴AM=AN∴AM= A′M=AN= A′N∴四边形AM A′N 是菱形 …………………………………… 7分③在菱形ABCD 中,∠A=60°,AB=AD , ∴∠ADB=∠ABD=60°∵ △AMN 沿MN 翻折得到△A′MN , ∴∠NA′M=∠A=60°∵∠BA′M=∠DMA′+∠ADB ∴∠NA′B=∠DMA′ ∴△DMA′∽△BA′N ∴'DM A BA M A N'=' ∵DM=31AD=1,AM=2, ∴A′M=AM =2∴12A B A N '=' ………………………………………………11分 24.解:(1)将点B (0,2)代入y=kx+5-4k 得34k =………………………… 2分(2)由题意可得:点D 坐标为(4,5) 把x=4代入y=kx+5-4k 得y=5∴不论k 为何值,直线l 总经点D ; ……………………………………… 5分 (3)①2…………………………………………………………… 7分②当k≥2时,有3个点当34<k <2时,有2个点, 当k=34时,有0个当0<k <34时,有1个。
抚顺市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题3分,共36分) (共12题;共30分)1. (3分) (2019七上·宝安期末) 如图,将面积分别为39、29的矩形和圆叠放在一起,两个空白部分的面积分别为m,n(m>n),则m﹣n的值为()A . 5B . 10C . 17D . 202. (3分)(2017·埇桥模拟) 2016年11月3日,中国首枚大型运载火箭长征五号在文昌航天发射场成功发射,它是我国新一代运载火箭,近地轨道运载能力约25吨级,起飞推力约为10500千牛,10500千牛用科学记数法可表示为()A . 105×105B . 1.05×107C . 1.05×108D . 0.105×1083. (3分) (2019八上·昭通期末) 下列图形中,关于直线l对称的是()A .B .C .D .4. (2分)今年我国发现的首例甲型H1N1流感确诊病例曾在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需要了解这位病人7天体温的()A . 中位数B . 方差C . 众数D . 平均数5. (2分) (2019七下·胶州期末) 下列运算正确的是()A .B .C .D . 2m m =2m6. (3分)如图是武夷山市华榕超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价格看不清楚,请根据给出的信息,帮忙算一算,该洗发水的原价是()A . 24元B . 26元C . 22元D . 15.36元7. (2分)一次函数y=2x﹣4与x轴的交点坐标为(2,0),则一元一次不等式2x﹣4≤0的解集应是()A . x≤2B . x<2C . x≥2D . x>28. (2分) (2019九上·潮南期末) 如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A . ∠ABD=∠EB . ∠CBE=∠CC . AD∥BCD . AD=BC9. (3分)每年的3月12日是“植树节”,今年的植树节某单位组织甲、乙两个组参加植树造林活动.已知甲组每小时比乙组每小时少植2棵树,甲组完成60棵的植树任务与乙组完成70棵的植树任务所用的时间相等.若设甲组每小时植树x棵,则根据题意列出方程正确的是().A . =B . =C . =D . =10. (2分)(2018·杭州) 四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A . 甲B . 乙C . 丙D . 丁11. (3分)(2017·长安模拟) 如图,在△ABC中,∠B=90°,AB=21,BC=20,有一个半径为10的圆分别与AB、BC相切,则此圆的圆心是()A . AB边的中垂线与BC中垂线的交点B . ∠B的平分线与AB的交点C . ∠B的平分线与AB中垂线的交点D . ∠B的平分线与BC中垂线的交点12. (2分) (2017八上·老河口期中) 如图,在△PAB中,PA=PB,M,N,K分别在PA,PB,AB上,且AM =BK,BN=AK,若∠MKN=40°,则∠P的度数为()A . 140°B . 90°C . 100°D . 110°二、填空题(每题3分,共12分) (共4题;共10分)13. (2分)(2016·甘孜) 分解因式:a2﹣b2=________14. (3分) (2018九上·宁江期末) 在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球________个.15. (2分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一躲墙上,如图,此时测得地面上的影长为8米,墙上的影长为4米.同一时刻,一根长为1米且垂直于地面放置的标杆在地面上的影长为2米,则树的高度为________。
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2015年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.2-等于(▲)A.2B.-2C.±2D.±122.使1x-有意义的x的取值范围是(▲)A.x>1B.x≥1C.x<1D.x≤13.计算(2a2) 3的结果是(▲)A.2a5B.2a6C.6a6D.8a64.如图所示几何体的俯视图是(▲)A.B.C.D.5.在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有(▲)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为(▲)A.3或4 2 B.4或32C.3或4D.32或42E DCBAA'( 第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.计算 (-1)3+( 14)-1= ▲ . 8.计算 23+13= ▲ . 9.方程3x -4 x -2=12-x的解为x = ▲ . 10.南京地铁三号线全长为44830米,将44830用科学记数法表示为 ▲ . 11.已知关于x 的方程x 2-m x +m -2=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 ▲ 岁.13.如图,正六边形ABCDEF 的边长为2,则对角线AC = ▲ .14.某体育馆的圆弧形屋顶如图所示,最高点C 到弦AB 的距离是20 m ,圆弧形屋顶的跨度AB 是80 m ,则该圆弧所在圆的半径为_____▲_____m .15.如图,将边长为6的正方形ABCD 绕点C 顺时针旋转30°得到正方形A ′B ′CD ′,则点A 的旋转路径长为 ▲ .(结果保留π)16.如图,A 、B 是反比例函数y = kx 图像上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5),若△ABC 的面积为7,则点B 的坐标为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)化简: x -1 x +2 ÷(3x +2-1).18.(6分)解不等式组:⎩⎪⎨⎪⎧1- x +13≥0,3+4(x -1)>1.19.(8分)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AE =CF ,DF ∥BE ,DF =BE .(1)求证:四边形ABCD 是平行四边形; (2)若AC 平分∠BAD ,求证:□ABCD 为菱形.(第19题)A BCD EF FED C B A ( 第13题 )C OB A (第14题)(第16题) A B D A'D' B' (第15题)20.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是____▲______. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关..的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了____▲___天的空气质量检测结果进行统计; (2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为____▲____°; (4)如果空气污染达到中度污染或者以上........,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)22.(8分)已知P (-5,m )和Q (3,m )是二次函数y =2x 2+b x +1图像上的两点.(1)求b 的值;(2)将二次函数y =2x 2+b x +1的图像沿y 轴向上平移k (k >0)个单位,使平移后的图像与x 轴无交点,求k 的取值范围.23.(8分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA =75厘米.展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)O C B A 空气质量等级天数统计图 空气质量等级天数占所抽取天数百分比统计图24.(8分)水池中有水20 m 3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56 m 3,王师傅的具体记录如下表.设从12:00时起经过t min 池中有水y m 3,右图中折线ABCD 表示y 关于t 的函数图像.(1)每个出水口每分钟出水 ▲ m 3,表格中a = ▲ ; (2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16 m 3 ?25.(9分)如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD = ⌒AD ,DE ⊥BC ,垂足为E . (1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由; (3)若CE =1,AC =4,求阴影部分的面积.26.(9分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x 千克. (1)大号苹果的单价为 ▲ 元/千克;小号苹果的单价为 ▲ 元/千克;(用含x 的代数式表示) (2)若水果超市售完购进的1000千克苹果,请解决以下问题: ① 当x 为何值时,所获利润最大? ② 若所获利润为3385元,求x 的值.时间 池中有水(m 3)12:00 20 12:04 12 12:06 a12:14 b 12:20 56(第25题) (第24题) a t/min y /m 3 O 20 b 56AB CD27.(10分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=▲, FBGC=▲.(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB 为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)图③aAB CAB CD EGF图①图②AB CD EGFMN2015年中考数学模拟试题(一)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)7.解:原式= x -1 x +2÷3-x -2x +2……………………………………………………………………………2分= x -1 x +2× x +21-x…………………………………………………………………………………4分 =-1 …………………………………………………………………………………………6分18.解:解不等式①,得x ≤2. …………………………………………………………………………2分解不等式②,得x >12.…………………………………………………………………………4分所以,不等式组的解集是12<x ≤2. …………………………………………………………6分19.证明:(1)∵DF ∥BE ,∴∠AFD =∠CEB , ……………………………………………………………1分 ∵AE =CF ,∴AF =CE .∵AF =CE ,DF =BE ,…………………………………………………………2分∴△ADF ≌△CBE . ……………………………………………………3分∴AD =BC ,∠DAF =∠BCE ,∴AD ∥BC ,∴四边形ABCD 是平行四边形. ………………………………………………4分 (2)∵AC 平分∠BAD ,∴∠DAC =∠BAC .…………………………………………………………………5分 ∵四边形ABCD 是平行四边形, ∴CD ∥AB ,∴∠DCA =∠BAC .∴∠DCA =∠DAC , ………………………………………………………………6分 ∴AD =DC ,…………………………………………………………………………7分 ∴□ABCD为菱形. ………………………………………………………………8分20.解:(1)31------------------------------------------------------------------------------------------------------------2分 (2)树状图或列表正确---------------------------------------------------------------------------------------------5分 将第一题中的三个选项记作A 1、B1、C1,第二题中去掉一个错误选项后的三个选项分别记作A2、B2、C2,其中A1、A2分别是两题的正确选项.列表如下:共有9种等可能的结果,其中,同时答对2题通关有1种结果, ∴P (同时答对两题)=19·······························……………………………………………………··········7分 (3)第一题··································………………………………………………………………·················8分21.解:(1)50; ·······································································································································2分 (2)5·································································4分(3)72;····················································································································································6分 (4)365×24+650=219天····························································································································8分22.解:(1)∵点P 、Q 是二次函数y =2x 2+bx +1图像上的两点,∴此抛物线对称轴是直线x =-1.·······························································································2分∴有-b2×2=-1.∴b =4.·········································································································4分(2)平移后抛物线的关系式为y=2x2+4x+1-k.∵平移后的图像与x轴无交点,∴△=16-8+8 k<0··················································································································6分解得k>1 (8)分23.解:设小桌板桌面宽度BC 的长为 x 厘米,则支架OB 的长为(75-x )厘米.延长CB 交OA 于点D ,由题意知,CD ⊥OA ,…………………………1分 在Rt △OBD 中,OD =OB cos37°=0.8(75-x )=60-0.8x ,………2分 BD =OB sin37°=0.6(75-x )=45-0.6x ,…………………………4分 所以CD =CB +BD =45+0.4x ,AD =15+0.8x ,所以tan37°=ADCD……………………………………………………………6分 即0.75=15+0.8x45+0.4x ,解之得,x =37.5答:小桌板桌面宽度BC 的长为37.5厘米. ……………………………………8分24.解:(1)1,8 …………………………………………………………………………2分 (2)设进水口每分钟进水x m 3,由题意得:8+(x -1)(14-6)+ x (20-14)=56解得x =4 ……………………………………………………………………3分 所以b =8+(4-1)×8=32 m 3 ……………………………………………4分(3)在0~6分钟:y =20-2t当y =16时,16=20-2t ,……………………………………………………5分 解得t =2…………………………………………………………………………6分 在6~14分钟:y =kt +b (k ≠0)把(6,8)(14,32)得:⎩⎪⎨⎪⎧6k +b =8,14k +b =32. 解得⎩⎪⎨⎪⎧k =3,b =﹣10.即y =3t -10当y =16时,16=3t -10,t =263………………………………………………8分则t =2和t =263水池有水16 m 3.25.解:(1)∵四边形ABCD 是⊙O 内接四边形,∴∠BAD +∠BCD =180°,∵∠BCD +∠DCE =180°,∴∠DCE =∠BAD ,………………………………………………………1分∵ ⌒ BD = ⌒AD ,∴∠BAD =∠ACD ,………………………………………………………………………2分 ∴∠DCE =∠ACD ,∴CD 平分∠ACE .………………………………………………………………3分 (2)ED 与⊙O 相切.………………………………………………………………………………………4分 理由:连接OD ,∵OC =OD ,∴∠ODC =∠OCD , ∵∠DCE =∠ACD ,∴∠DCE =∠ODC ,∴OD ∥BE ,∵DE ⊥BC ,∴OD ⊥DE ,∴ED 与⊙O 相切. …………………………………………………………6分 (3)∵AC 为直径,∴∠ADC =90°=∠E ,∵∠DCE =∠ACD ,∴△DCE ∽△ACD ,…………………7分 ∴CE CD =CD CA ,即1CD =CD4,∴CD =2,………………………………………………………………………8分 ∵OC =OD =CD =2,∴∠ DOC =60°,∴S 阴影=S 扇形-S △OCD =23π-3.…………………………9分OC BAD26.解:(1)16-0.03x ;10+0.02x ; ………………………………………………………………2分 (2)①设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x ………………………………····5分=﹣0.05x 2+x +5000 x =﹣b2a=10,y =5005.当x =10时,所获最大利润为5005元. ………………………………………………………····6分 ②由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x ……………7分 化简,整理得032300202=--x x ………………………………………………………………····8分 解得:190=x 或170-=x ………………………………………………………………………····9分 答:大号苹果比计划增加190千克或减少170千克时,才能确保这批苹果的利润为3385元.27.解:(1)3;2.……………………………………………………………………………………····2分 (2)证明:∵DE ∥FG ,∴AD AE = DF EG .………………………………………………………………………………………····3分 ∵DE ∥FG ∥BC , ∴DF EG =FB GC, ∴AD AE = DF EG =FB GC ,即AD AE = MD NE =AM AN,………………………………………………………····5分 ∴△AMD ∽△ANE , ……………………………………………………………………………····6分 ∴∠M =∠N . ………………………………………………………………………………····7分 (3)简要步骤:第一步:在射线DM 上截取△ABC 的三边.第二步:在射线DN 上截取DH =a ,连接HG ,作FI ∥C'E ∥HG ,第三步:以DC'、C'I 、IH 为边构造△A' B' C'.………………………………………………………………………………………………····10分MD(A') E F G N H IC'B'CA B。
辽宁省抚顺市新抚区2015年中考数学模拟试题五一、选择题:每小题3分,共30分,在四个选项中只有一项是正确的.1.﹣5的绝对值是()A.﹣5 B.5 C.D.﹣2.下列计算正确的是()A.(2a2)4=8a6B.a3+a=a4C.(a﹣b)2=a2﹣b2D.a2÷a=a3.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.4.已知二元一次方程组,则x+y=()A.1 B.2 C.3 D.45.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.6.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数100 180 220 80 750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数 D.方差7.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.558.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为()A.7.5 B.10 C.15 D.209.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A.B.C.D.10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是()A.4 B.5 C.6 D.8二、填空题:每小题3分,共24分.11.不等式组的整数解是.12.计算:2×(﹣1)0﹣12015+的值为.13.函数的自变量x的取值范围是.14.一个正多边形的每个内角都是144°,则这个多边形的内角和为.15.如图,有三条绳子穿过一条木板,姊妹两人分别站在左、右两边,各选该边的一条绳子.若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为.16.如图,从半径为10cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为.17.如图,已知点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k>0)上运动,则k的值是.18.如图,已知Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD,PE,值△PDE内作第二个内接正方形HIKJ;再取线段JK的中点Q,在△QHI内作第三个内接正方形;…依次进行下去,则第n个内接正方形的面积为(n为正整数).三、解答题:共96分.解答应写出必要的文字说明、证明过程或演算步骤.19.先化简,再求值:÷,其中a=﹣1.20.为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.21.为了提倡低碳经济,某公司为了更好得节约能源,决定购买一批节省能源的10台新机器.现有甲、乙两种型号的设备,其中每台的价格、工作量如下表.经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.(1)求a,b的值;(2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.甲型乙型价格(万元/台)a b产量(吨/月)240 18022.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,⊙O的半径为3,的长为π.(1)求证:CD是⊙O的切线;(2)求阴影部分的面积.23.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).24.由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台.若一年内该产品的售价y(万元/台)与月份x(1≤x≤12且为整数)满足关系式:y=,一年后发现实际每月的销售量p(台)与月份x之间存在如图所示的变化趋势.(1)直接写出实际每月的销售量p(台)与月份x之间的函数关系式;(2)求前三个月中每月的实际销售利润w(万元)与月份x之间的函数关系式;(3)试判断全年哪一个月的售价最高,并指出最高售价.25.如图,△ABC为等边三角形,BF平分∠ABC,D是BF上的一点,连接AD,以AD为边在AD的左侧作等边△ADE,连接EB.(1)如图1,当E在BD上时,BE与ED的数量关系是;(2)如图2,当E在直线BD外时,(1)的结论是否成立,说明理由;(3)当BD与BA满足什么条件时,以A,B,D,E为顶点的四边形为菱形,直接写出结论.26.如图,已知直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)动点C,E从原点O同时出发,C以每秒1个单位长度的速度沿OB方向运动,E以每秒2个单位长度的速度沿OA方向运动,运动时间是t秒(0<t<2).过E点作DE⊥OA交AB于D,C关于DE的对称点为F,连接CD,CE,FD,FE,四边形CDEF与△ABO重叠部分的面积为S.①求S与t的函数关系式;②当△BCD为直角三角形时,直接写出t的值.2015年辽宁省抚顺市新抚区中考数学模拟试卷(五)参考答案与试题解析一、选择题:每小题3分,共30分,在四个选项中只有一项是正确的.1.﹣5的绝对值是()A.﹣5 B.5 C.D.﹣【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选B【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.下列计算正确的是()A.(2a2)4=8a6B.a3+a=a4C.(a﹣b)2=a2﹣b2D.a2÷a=a【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】分别根据幂的乘方与积的乘方法则、合并同类项的法则及同底数幂的除法法则对各选项进行逐一分析即可.【解答】解:A、左边=(2a2)4=16a8≠右边,故本选项错误;B、a3与a不是同类项,不能合并,故本选项错误;C、左边=a2+b2﹣2ab≠右边,故本选项错误;D、左边=a2÷a=a2﹣1=a=右边,故本选项正确.故选D.【点评】本题考查的是同底数幂的除法,熟知同底数幂的除法法则是解答此题的关键.3.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知二元一次方程组,则x+y=()A.1 B.2 C.3 D.4【考点】解二元一次方程组.【专题】计算题.【分析】方程组两方程相加,即可求出x+y的值.【解答】解:,①+②得:3(x+y)=6,则x+y=2.故选B.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.5.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义,找到从正面看所得到的图形即可.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.6.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:颜色黄色绿色白色紫色红色学生人数100 180 220 80 750学校决定采用红色,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数 D.方差【考点】统计量的选择.【分析】根据平均数、中位数、众数及方差的有关知识判断即可.【解答】解:喜欢红色的学生最多,是这组数据的众数,故选C.【点评】本题考查了平均数、中位数、众数及方差的有关知识,属于基础题,难度不大.7.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55【考点】用样本估计总体.【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【解答】解:∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.8.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为()A.7.5 B.10 C.15 D.20【考点】相似三角形的判定与性质.【专题】常规题型;压轴题.【分析】由DE∥BC,可证得△ADE∽△ABC,然后由相似三角形的对应边成比例求得答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵BD=2AD,∴=,∵DE=5,∴=,∴BC=15.故选:C.【点评】此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.【解答】解:设BE=x,FC=y,则AE2=x2+42,EF2=(4﹣x)2+y2,AF2=(4﹣y)2+42.又∵△AEF为直角三角形,∴AE2+EF2=AF2.即x2+42+(4﹣x)2+y2=(4﹣y)2+42,化简得:,再化为,很明显,函数对应A选项.故选:A.【点评】此题为动点函数问题,关键列出动点的函数关系,再判断选项.10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是()A.4 B.5 C.6 D.8【考点】轴对称-最短路线问题.【分析】作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|PA﹣PB|的值最大的点,|PA﹣PB|=A′B,连接A′C,根据等腰直角三角形的性质得到∠CAB=∠ABC=45°,∠ACB=90°,根据三角形的内角和得到∠ACD=75°,于是得到∠CAA′=15°,根据轴对称的性质得到A′C=BC,∠CA′A=∠CAA′=15°,推出△A′BC是腰三角形,根据等边三角形的性质即可得到结论.【解答】解:作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|PA﹣PB|的值最大的点,|PA ﹣PB|=A′B,连接A′C,∵△ABC为等腰直角三角形,AC=BC=4,∴∠CAB=∠ABC=45°,∠ACB=90°,∵∠BCD=15°,∴∠ACD=75°,∴∠CAA′=15°,∵AC=A′C,∴A′C=BC,∠CA′A=∠CAA′=15°,∴∠ACA′=150°,∵∠ACB=90°,∴∠A′CB=60°,∴△A′BC是等腰三角形,∴A′B=BC=4.故选A.【点评】此题主要考查轴对称﹣﹣最短路线问题,等腰直角三角形的性质,等边三角形的判定和性质,正确的作出图形是解题的关键.二、填空题:每小题3分,共24分.11.不等式组的整数解是0,1,2,3 .【考点】一元一次不等式组的整数解.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:由不等式①得x<4,由不等式②得x≥﹣,其解集是﹣≤x<4,所以整数解为0,1,2,3.故答案为:0,1,2,3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.计算:2×(﹣1)0﹣12015+的值为 3 .【考点】实数的运算;零指数幂.【专题】计算题.【分析】原式利用零指数幂,乘方的意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2﹣1+2=3,故答案为:3【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13.函数的自变量x的取值范围是x≥0且x≠1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x≥0且x﹣1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.一个正多边形的每个内角都是144°,则这个多边形的内角和为1440°.【考点】多边形内角与外角.【分析】首先根据内角的度数可得外角的度数,再根据外角和为360°可得边数,利用内角和公式可得答案.【解答】解:∵一个正多边形的每个内角都是144°,∴它的每一个外角都是:180°﹣144°=36°,∴它的边数为:360°÷36=10,∴这个多边形的内角和为:180°(10﹣2)=1440°,故答案为:1440°.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3)且n为整数).15.如图,有三条绳子穿过一条木板,姊妹两人分别站在左、右两边,各选该边的一条绳子.若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为.【考点】列表法与树状图法.【分析】列举出所有情况,让两人选到同一条绳子的情况数除以总情况数即为所求的概率.【解答】解:将三条绳子记作1,2,3,则列表得:(1,3)(2,3)(3,3)(1,2)(2,2)(3,2)(1,1)(2,1)(3,1)可得共有9种情况,两人选到同一条绳子的有3种情况,∴两人选到同一条绳子的机率为=.故答案为.【点评】本题主要考查列表法与树状图法的知识点,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.如图,从半径为10cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为6cm .【考点】圆锥的计算.【分析】首先求得扇形的弧长,即圆锥的底面周长,则底面半径即可求得,然后利用勾股定理即可求得圆锥的高.【解答】解:圆心角是:360°×(1﹣)=288°,则弧长是: =16π(cm),设圆锥的底面半径是r,则2πr=16π,解得:r=8,则圆锥的高是: =6(cm).故答案是:6cm.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.如图,已知点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k>0)上运动,则k的值是 6 .【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【分析】设点A的坐标为(a,﹣),连接OC,则OC⊥AB,表示出OC,过点C作CD⊥x轴于点D,设出点C坐标,在Rt△OCD中,利用勾股定理可得出x2的值,继而得出y与x的函数关系式.【解答】解:设A(a,﹣),∵点A与点B关于原点对称,∴OA=OB,∵△ABC为等边三角形,∴AB⊥OC,OC=AO,∵AO=,∴CO=AO=,过点C作CD⊥x轴于点D,则可得∠BOD=∠OCD(都是∠COD的余角),设点C的坐标为(x,y),则tan∠BOD=tan∠OCD,即=,解得:y=x,在Rt△COD中,CD2+OD2=OC2,即y2+x2=3a2+,将y=x代入,可得:x2=,故x=,y=a,则k=xy=6,故答案为:6.【点评】本题考查了反比例函数的综合题,涉及了解直角三角形、等边三角形的性质及勾股定理的知识,综合考察的知识点较多,解答本题的关键是将所学知识融会贯通,注意培养自己解答综合题的能力.18.如图,已知Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD,PE,值△PDE内作第二个内接正方形HIKJ;再取线段JK的中点Q,在△QHI内作第三个内接正方形;…依次进行下去,则第n个内接正方形的面积为(n为正整数).【考点】相似三角形的判定与性质;正方形的性质.【专题】规律型.【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出==,即可得出正方形边长之间的变化规律,得出答案即可.【解答】解:∵在Rt△ABC中,AB=AC=3,∴∠B=∠C=45°,BC=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC,∴DE=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI 内作第三个内接正方形…依次进行下去,∴==,∴EI=KI=HI,∵DH=EI,∴HI=DE=()2﹣1×2,第n个内接正方形的边长为:2×()n﹣1,则第n个内接正方形的面积为.故答案为:.【点评】此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.三、解答题:共96分.解答应写出必要的文字说明、证明过程或演算步骤.19.先化简,再求值:÷,其中a=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】将括号内的部分通分后相减,再将除法转化为乘法后代入求值.【解答】解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.【点评】本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.20.为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是40 人;(2)图2中α是54 度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有330 人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由自主学习的时间是1小时的有12人,占30%,即可求得本次调查的学生人数;(2)由×360°=54°,40×35%=14;即可求得答案;(3)首先求得这40名学生自主学习时间不少于1.5小时的百分比,然后可求得该校九年级学生自主学习时间不少于1.5小时的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;…(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(3)600×=330;…故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…【点评】本题考查的是用列表法或画树状图法求概率与扇形统计图、条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.为了提倡低碳经济,某公司为了更好得节约能源,决定购买一批节省能源的10台新机器.现有甲、乙两种型号的设备,其中每台的价格、工作量如下表.经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.(1)求a,b的值;(2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.甲型乙型价格(万元/台)a b产量(吨/月)240 180【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题.【分析】(1)因为购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元,所以可列出方程组,解之即可;(2)可设购买污水处理设备甲型设备x台,乙型设备(10﹣x)台,则有12x+10(10﹣x)≤110,解之确定x的值,即可确定方案;(3)因为每月要求处理洋澜湖的污水量不低于2040吨,所以有240x+180(10﹣x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【解答】解:(1)由题意得:,∴;(2)设购买污水处理设备甲型设备x台,乙型设备(10﹣x)台,则:12x+10(10﹣x)≤110,∴x≤5,∵x取非负整数∴x=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240x+180(10﹣x)≥2040,∴x≥4∴x为4或5.当x=4时,购买资金为:12×4+10×6=108(万元),当x=5时,购买资金为:12×5+10×5=110(万元),∴最省钱的购买方案为,应选购甲型设备4台,乙型设备6台.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来讨论求得方案的问题.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,⊙O的半径为3,的长为π.(1)求证:CD是⊙O的切线;(2)求阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)根据弧长公式求得∠BOC=60°,进而求得∠D=30°,然后根据三角形内角和定理求得∠OCD=90°,即可证得CD是⊙O的切线;(2)求得∠AOC=120°,根据S阴影=S扇形OAC﹣S△OAC求得即可.【解答】(1)证明:连接OC,设∠BOC的度数为n°,则=π,解得n=60°,∴∠A=∠BOC=30°,∵AC=CD,∴∠A=∠D=30°,∴∠OCD=180°﹣∠BOC﹣∠D=180°﹣30°﹣60°=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)解:作CH⊥OB于H,则CH=OC•sin60°=3×=,∵∠BOC=60°,∴∠AOC=120°,∴S阴影=S扇形OAC﹣S△OAC=﹣×3×=.【点评】本题考查了切线的判定,扇形面积的计算等,求得∠BOC=60°是解题的关键.23.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).【考点】解直角三角形的应用.【分析】作DH⊥BC于H,设DH=x米,根据三角函数表示出AH于BH的长,根据AH﹣BH=AB得到一个关于x的方程,解方程求得x的值,进而求得AD﹣BD的长,即可解题.【解答】解:作DH⊥BC于H,设DH=x米.∵∠ACD=90°,∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°=x,在直角△BDH中,∠DBH=45°,BH=DH=x,BD=x,∵AH﹣BH=AB=10米,∴x﹣x=10,∴x=5(+1),∴小明此时所收回的风筝的长度为:AD﹣BD=2x﹣x=(2﹣)×5(+1)≈(2﹣1.414)×5×(1.732+1)≈8米.答:小明此时所收回的风筝线的长度约是8米.【点评】本题考查了直角三角形的运用,考查了30°角所对直角边是斜边一半的性质,本题中求得DH的长是解题的关键.24.由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台.若一年内该产品的售价y(万元/台)与月份x(1≤x≤12且为整数)满足关系式:y=,一年后发现实际每月的销售量p(台)与月份x之间存在如图所示的变化趋势.(1)直接写出实际每月的销售量p(台)与月份x之间的函数关系式;(2)求前三个月中每月的实际销售利润w(万元)与月份x之间的函数关系式;(3)试判断全年哪一个月的售价最高,并指出最高售价.【考点】二次函数的应用.【分析】(1)要根据自变量的不同取值范围,运用待定系数法分段计算出p与x的函数关系式;(2)可根据实际销售利润=单件的利润×销售的数量,然后根据题目中给出的售价与月次的函数式以及(1)中销售量与月次的关系式,得出实际销售利润与月次的函数关系式;(3)要根据自变量的不同的取值范围分别进行讨论,然后找出最高售价.【解答】解:(1)由题意得:P=;(2)w=(﹣0.05x+0.25﹣0.1)(﹣5x+40)=(x﹣3)(x﹣8)=x2﹣x+6,即w与x间的函数关系式w=x2﹣x+6;(3)①当1≤x<4时,y=﹣0.05x+0.25中y随x的增大而减小,∴x=1时,y最大=0.2;②当4≤x≤6时,y=0.1万元,保持不变;③当6<x≤12时,y=0.015x+0.01中y随x的增大而增大,。