2020年高中物理竞赛—量子物理篇(进阶版)19-7测不准关系(共14张PPT)
- 格式:ppt
- 大小:696.00 KB
- 文档页数:14
从认识论角度理解量子力学中测不准关系测不准关系又名“测不准原理”、“不确定关系”,由海森伯在1927 年率先提出, 经历了大半个世纪争论,近30年来才逐渐取得一致, 成为量子力学的重要内容。
量子力学是现代物理学的理论支柱之一, 被广泛地应用于化学、生物学、电子学及高新技术等许多领域。
这一原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。
测量一对共轭量的误差的乘积必然大于常数 2(π2h = ,其中h 是普朗克常数)是德国物理学家海森伯在1927年首先提出的,用公式表示可有:2 ≥∆∆x p x ,2 ≥∆∆y p y ,2 ≥∆∆z p z ,2 ≥∆∆t E ,该原理反映了微观粒子运动的基本规律,是物理学中又一条重要原理。
测不准关系中所说的测得精确和不精确是指对一个粒子的单次测量结果,还是指对一个粒子系统各成员的测量结果的统计分布?或者是对一个粒子的多次测量结果的统计分布?首先,从海森堡提出的各种论据来看,他的论点是把这些测不准量解释为属于一个粒子单次测量的结果,而不是作为测量粒子系综各成员的位置或动量时所得结果的统计分布,并认为测不准关系给出了单次测量中对两个力学量同时进行测量所可能达到的精确度的限制。
雅默把这种来源于海森堡的思想实验的关于测不准关系的同时测量的解释称为非统计解释。
罗伯逊对于测不准关系的证明,则是根据量子力学的基本假设严格导出的,并被多数物理学家认同。
这种证明实际上可以说明:测不准关系对于电子系综是成立的,对于单个电子多次测量的结果也适用,但对于单个电子一次测量的结果是不适用的。
从海森堡最初提出测不准关系的各种论据来看,他的论点是把测不准的原因归结为在单次测量中被测量的微观系统所受到的不可控制的扰动。
这样的看法实际上认定,在系统被测量之前,各种力学量都是有确定值的,只是在测量时受到了干扰才使他们变得不确定了。
量子力学中的测不准关系量子力学是研究微观世界的物理学分支,它的出现彻底改变了我们对于自然界的理解。
在量子力学中,测量是一个核心概念,而测不准关系则是量子力学中重要的原理之一。
本文将探讨量子力学中的测不准关系,并解释其背后的物理原理。
一、测不准关系的定义在量子力学中,测不准关系也被称为海森堡不确定关系,它由物理学家维尔纳·海森堡于1927年提出。
测不准关系指的是当我们试图同时测量一个粒子的位置和动量时,无法同时获得它们的精确值,而只能得到一个不确定的范围。
换句话说,我们无法同时获得一个粒子的位置和动量的确切数值。
二、海森堡不确定原理为了更好地理解测不准关系,我们需要了解海森堡不确定原理。
海森堡不确定原理可以分为位置-动量不确定关系和能量-时间不确定关系两个方面。
1. 位置-动量不确定关系根据位置-动量不确定关系,我们无法准确地同时知道一个粒子的位置和动量,其原理可以用数学表达式来描述:Δx·Δp ≥ h/(4π)其中,Δx表示位置的不确定度,Δp表示动量的不确定度,h为普朗克常数。
这个不等式告诉我们,当我们试图减小位置的不确定度时,动量的不确定度就会增加,反之亦然。
也就是说,如果我们越来越精确地知道一个粒子的位置,我们就越来越不确定它的动量,反之亦然。
2. 能量-时间不确定关系能量-时间不确定关系是海森堡不确定原理的另一个方面。
根据能量-时间不确定关系,我们无法准确地同时知道一个量子态的能量和持续时间,其原理可以用数学表达式来描述:ΔE·Δt ≥ h/(4π)其中,ΔE表示能量的不确定度,Δt表示时间的不确定度,h为普朗克常数。
这个不等式告诉我们,当我们试图减小能量的不确定度时,时间的不确定度就会增加,反之亦然。
也就是说,如果我们越来越精确地知道一个量子态的能量,我们就越来越不确定它的持续时间,反之亦然。
三、测不准关系的物理解释量子力学中的测不准关系并非是由于我们的测量工具或者技术的限制,而是与量子粒子的本质有关。
量子力学中的测不准关系量子力学是研究微观世界的基本物理理论,它描述了微观粒子的行为和性质。
而测不准关系是量子力学中的一个重要概念,它揭示了在测量某个物理量时的固有不确定性。
本文将介绍测不准关系的基本原理、相关数学表达式以及其在现实世界中的应用。
测不准关系的基本原理可以追溯到1927年由维尔纳·海森堡所提出的海森堡不确定性原理。
该原理指出,在任何时刻,无法同时准确测量一个粒子的位置和动量。
这意味着,如果我们试图确定粒子的位置,那么它的动量就将变得模糊不清;反之,如果我们试图确定其动量,其位置也将变得不确定。
换句话说,存在一个固有的不确定度,限制了我们在同一时间测量多个相关物理量的精确性。
测不准关系可以用数学表达式来描述。
以位置(x)和动量(p)的测量为例,海森堡不确定性原理给出了以下数学关系:Δx × Δp ≥ ħ/2其中,Δx代表位置的不确定度,Δp代表动量的不确定度,ħ是普朗克常量的约化值。
这个关系的意义是,位置和动量的不确定度的乘积不能小于普朗克常量的一半。
这说明了在微观尺度上,我们无法同时精确测量位置和动量。
值得一提的是,测不准关系并不是由于观测方法或仪器的限制,而是与量子粒子的本质有关。
这是因为在测量时,我们必须使用光子或其他粒子与被测系统相互作用,而这种相互作用必然会对被测系统的状态产生不可忽视的影响。
因此,测不准关系实际上揭示了微观粒子的固有性质。
测不准关系在实际应用中具有重要意义。
首先,它对于狭义相对论与量子力学的统一提供了重要的线索。
狭义相对论描述了高速运动下的物体,量子力学描述了微观尺度的物体。
然而,这两个理论之间的矛盾问题一直困扰着物理学家。
通过引入测不准关系,我们可以看到,测量的不确定性与时空观念的相对性密切相关,这为两个理论的统一提供了可能性。
其次,测不准关系在量子信息科学、量子计算和量子通信等领域也有广泛应用。
在量子计算中,信息的存储和处理是通过量子比特来实现的。
量子物理学中的测不准原理测不准原理(Uncertainty Principle)是量子物理学中的重要概念之一,由德国物理学家海森伯(Werner Heisenberg)于1927年提出。
它给出了两个相互联系的物理量的测量存在一定的不确定性,即测得一个物理量的精确值会导致对另一个物理量的测量结果的不确定性增加的概率。
测不准原理对量子物理学的发展和理解产生了深远影响,并在实践中发挥了重要作用。
在经典物理学中,我们通常认为物体的性质和状态是可以被精确测量和确定的。
然而,在微观世界中,即量子尺度下,情况却完全不同。
根据量子力学的测不准原理,我们无法同时准确地知道粒子的位置和动量,或者说无法同时准确测量它们的位置和动量。
测不准原理的核心思想是,粒子在任何时候都具有波粒二象性。
这意味着它们既可以像粒子那样表现,拥有具体的位置和动量,又可以像波动那样表现,具有不确定的位置和动量。
当我们试图精确测量粒子的位置时,我们必须用一个精细的仪器来和它进行交互。
这个仪器发射出一束光或粒子束,与粒子相互作用,然后返回仪器,形成我们所观测到的信号。
然而,这种交互过程会干扰粒子的运动,使其原有的位置和动量发生变化。
在测不准原理中,我们用一个参数来表示不确定性的程度,这个参数被称为标准差(standard deviation)。
标准差越小,测量结果越精确,而标准差越大,测量结果越不确定。
根据测不准原理的数学表达式,位置和动量的标准差满足如下关系:位置的标准差乘以动量的标准差大于等于普朗克常量的一半。
这个式子可以简单地表示为△x△p ≥ h/2,其中△x和△p分别表示位置和动量的标准差,h代表普朗克常量。
这个式子告诉我们,当我们试图减小位置的测量不确定性时,动量的测量不确定性就会增加,反之亦然。
这意味着我们无法同时获得粒子的准确位置和准确动量的值。
这种不确定性并不是由仪器的精度或者实验的技术限制所导致,而是在本质上存在的,是量子世界的本质特征。
量子力学中的测不准关系原理量子力学是描述微观世界的一种物理理论,其核心原理之一是测不准关系原理。
测不准关系原理(uncertainty principle)是由著名物理学家海森堡在1927年提出的。
它表明,在量子力学中,不能同时精确地测量粒子的位置和动量,或者精确地测量粒子的能量和时间。
这一原理揭示了微观世界的一种本质性不确定性,是量子力学的基本原理之一,对于我们理解和应用量子力学具有重要意义。
测不准关系原理背后的思想是,粒子的性质在不同的观察中是相互关联的。
具体而言,测不准关系原理指出,对于一个量子粒子,如果我们希望准确地测量它的位置,那么它的动量就会变得不确定;相反,如果我们希望准确地测量它的动量,那么它的位置就会变得不确定。
这意味着,粒子的位置和动量之间存在一个基本的不可克服的关系,无法同时准确地确定它们的值。
测不准关系原理具体表现为一组数学不等式,被称为海森堡不等式。
其中最著名的是位置和动量的不确定性关系,可以用数学形式表示为:Δx * Δp ≥ h/4π其中,Δx表示位置的不确定性,Δp表示动量的不确定性,h为普朗克常数。
这个不等式的意义在于,当我们试图增加对位置的准确测量时,不可避免地会增加对动量的不确定性,反之亦然。
并且,不论我们使用何种方法或仪器,都无法完全消除这种不确定性。
测不准关系原理的影响不仅局限于位置和动量的不确定性,它还涉及到其他物理量的测量。
例如,根据能量-时间不确定性关系,如果我们试图准确测量粒子的能量,那么与之相关的时间就会变得不确定。
这个关系同样表明了粒子的能量和时间之间存在的固有局限性。
测不准关系原理的意义在于,它打破了我们在经典力学中建立的基于精确测量的理论框架。
在经典力学中,我们认为通过充分准确的测量可以完全描述物体的状态和性质。
然而,量子力学的测不准关系告诉我们,在微观世界中,粒子的某些性质并不是事先确定的,而是具有一定的不确定性。
测不准关系原理的应用领域非常广泛。