2017年人教版高中化学选修3讲义3-2
- 格式:doc
- 大小:56.50 KB
- 文档页数:5
精心整理第一章原子结构与性质一.原子结构1.能级与能层注意:每个能层的能级种数为n;轨道总数为n2;每个轨道最多容纳电子数为2每个能层最多容纳电子数为2n22.原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原3.⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按能量由低到高的顺序填入核外电子运动轨道(能级),叫做构造原理。
1s/2s2p3s3p4s3d4p5s4d5p/6s4f5d6p7s5f6d7p(2态,简称能量最低原理。
基态原子:处于最低能量状态的原子激发态原子:处于能量较高状态的原子迁释放能量有关)(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特规则。
比如,p3的轨道式为或,而不是↑↑↓↓↓↑↑↑洪特规则特例:当p、d轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、p3、d5、p6、d10时,是较稳定状态。
前36号元素全空状态的有4Be2s22p0、12Mg3s23p0、20Ca4s23d0;半充满状态的有:7N2s22p3、15P3s23p3、Cr3d54s1、25Mn3d54s2、33As4s24p3;全充满状态的有10Ne2s22p6、18Ar3s23p6、29Cu3d104s1、30Zn3d104s2、24Kr4s24p6。
364.基态原子核外电子排布的表示方法(1)①K:19②(2)(35)Fe:3d64s二.1.号。
②同一主族元素,从上到下第一电离能逐渐减小;元素金属性渐强,非金属性渐弱。
③同一原子的电离能逐级增大,即I1<I2<I3<,且隔层的电离能数值相差巨大。
第一章 原子结构与性质一.原子结构 1.能级与能层注意: 每个能层的能级种数为n ; 轨道总数为n 2 ; 每个轨道最多容纳电子数为2每个能层最多容纳电子数为2n 22.原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按能量由低到高的顺序填入核外电子运动轨道(能级),叫做构造原理。
1s / 2s 2p / 3s 3p / 4s 3d 4p / 5s 4d 5p / 6s 4f 5d 6p / 7s 5f 6d 7p 能级交错:原子轨道的能量关系是:n s <(n -2)f <(n -1)d <n p 【能级组:n s (n -2)f (n -1)d n p ;一个能级组中的各能级能量相近但不同】 (2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状 态,简称能量最低原理。
基态原子:处于最低能量状态的原子 激发态原子:处于能量较高状态的原子 基态原子可以吸收能量使核外电子跃迁到较高能级变成激发态,形成吸收光谱激发态原子也可释放能量使核外电子跃迁到较低能级变成低能激发态或基态,形成发射光谱现代化学中常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析(焰火、激光、灯光、霓虹灯光、焰色反应等许多可见光都与核外电子跃迁释放能量有关) (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特规则。
比如,p 3的轨道式为 或 ,而不是洪特规则特例:当p 、d 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
第一节 原子结构第1课时 能层与能级 构造原理与电子排布式目标与素养:1.了解原子核外电子的能层分布,能级分布及其与能量的关系。
(微观探析)2.了解原子结构的构造原理,熟记基态原子核外电子在原子轨道上的排布顺序。
(宏观辨识与模型认知)3.熟练掌握1~36号元素基态原子的核外电子排布式。
(微观探析与科学探究)一、原子的诞生 1.原子的诞生2.宇宙的组成元素及其含量宇宙⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫氢(H ):约为宇宙原子总数的88.6%氦(He ):约为氢原子数的18二者合起来约占宇宙原子总数的99.7%以上 其他90多种天然元素的原子总数加起来不足1% 3.地球的组成元素地球上的元素⎩⎨⎧非金属元素(包括稀有气体):仅22种金属元素:绝大多数二、能层与能级1.能层2.能级(1)根据多电子原子中同一能层电子能量的不同,将它们分成不同能级。
(2)能级用相应能层的序数和字母s、p、d、f……组合在一起来表示,如n能层的能级按能量由低到高的顺序排列为n s、n p、n d、n f等。
(3)能层序数等于该能层所包含的能级数,如第三能层有能级3s、3p、3d。
(4)s、p、d、f能级可容纳的电子数依次为1、3、5、7的二倍。
3.能层、能级中所容纳的电子数能层(n)一二三四五六七……符号K L M N O P Q ……能级1s2s2p 3s3p3d4s 4p4d4f 5s……………………最多电子数2 2 6 2 612 61142……………………2 8 18 32 ………………2n2(1)原子结构示意图中有几个能层和能级?[答案]3,4。
(2)能级n s能量一定大于(n-1)d的能量吗?[答案]不一定。
三、构造原理与电子排布式1.构造原理(1)含义在多电子原子中,电子在能级上的排列顺序是:电子先排在能量较低的能级上,然后依次排在能量较高的能级上。
(2)构造原理示意图微点拨:①不同能层同能级符号的能量,能层越高,能量越高。
选修3物质结构与性质第一章原子结构与性质一、原子结构1.能级与能层2.原子轨道电子规律3.基态与激发态原子能量稳定称为基态,当原子得失能量而诱发电子得失或跃迁时,称为激发态,一般多指离子4.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。
能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。
也可以记成:1223343、4545645(2)能量最低原理原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
(3)泡利(不相容)原理:基态多电子原子中,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特规则。
比如,p 3的轨道式为或,而不是。
洪特规则特例:当轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p 0、d 0、f 0、p 3、d 5、f7、p 6、d10、f 14时,是较稳定状态。
5. 基态原子核外电子排布的表示方法 (1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s 22s22p63s 23p 64s 1。
①为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:[Ar]4s 1。
(2)电子排布图(轨道表示式)每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。
如基态硫原子的轨道表示式为注意:1、考试的时候看清楚是问排布式还是排布图2、看清问的是外层还是价层(主族元素价层是最外层,副族价层是3d 4s 层) 3、看清问的是原子还是离子(离子得失电子顺序是由外向里,逐渐得失)二、原子结构与元素周期表 1.原子的电子构型与周期的关系(1)每周期第一种元素的最外层电子的排布式为n s1。
(完整版)高中化学选修3-2知识点总结高中化学选修3-2知识点总结1. 化学反应速率- 反应速率定义:单位时间内反应物消失或生成物形成的量。
- 影响反应速率的因素:- 反应物的浓度:浓度越高,反应速率越快。
- 反应温度:温度越高,反应速率越快。
- 反应物的粒子大小:粒子越小,反应速率越快。
- 反应物的物质状态:气体 > 溶液 > 固体,状态越好反应速率越快。
- 反应物的催化剂:催化剂可以降低活化能,加速反应速率。
2. 化学平衡- 化学平衡:正反应速率相等时的状态。
- 影响化学平衡的因素:- 温度:温度升高,平衡位置往反向移动。
- 压力:增加压力,平衡位置往反向移动。
- 浓度:改变浓度不会改变平衡位置,但会影响平衡达到的速度。
- 催化剂:催化剂不改变平衡位置,但可以影响平衡达到的速度。
3. 酸碱中和反应- 酸碱指数:pH 值是对溶液酸碱性强弱程度的度量。
- 酸和碱反应:- 酸和碱中和反应生成盐和水。
- 酸和金属反应生成盐和氢气。
- 酸和碱反应生成盐和水的反应叫中和反应。
4. 化学电流- 电解液:能导电的溶液叫做电解液。
- 电解:通过电流把化合物分解成离子的过程叫做电解。
- 电解质:指电解液中的化合物。
- 阳极:电解质中离子象动物迁移的地方叫做阳极。
- 阴极:电解质中离子象动物迁移的终点叫做阴极。
- 电解插图:这些是高中化学选修3-2的重要知识点总结。
请根据需要进行学习和复习。
人教版高中化学选修三知识1原子结构与性质1、电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图。
离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小。
2、电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.3、原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。
4、原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子。
5、原子核外电子排布原理:(1)能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道;(2)泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子;(3)洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同。
洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s16、根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
基态原子核外电子的排布按能量由低到高的顺序依次排布。
7、第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。
常用符号I1表示,单位为kJ/mol。
(1)原子核外电子排布的周期性随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.(2)元素第一电离能的周期性变化随着原子序数的递增,元素的第一电离能呈周期性变化:说明:①同周期元素,从左往右第一电离能呈增大趋势。
1.下列说法中,正确的是()
A.冰融化时,分子中H—O键发生断裂
B.原子晶体中,共价键越强,熔点越高
C.分子晶体中,共价键键能越大,该分子晶体的熔、沸点一定越高
D.分子晶体中,分子间作用力越大,该物质越稳定
解析:A项,冰为分子晶体,融化时破坏的是分子间作用力,故A项错误;B项,原子晶体熔点的高低取决于共价键的强弱,共价键越强,熔点越高,故B项正确;C项,分子晶体熔、沸点的高低取决于分子间作用力的大小,而共价键的强弱决定了分子的稳定性大小,所以C项错误,D项也错误。
故选B。
答案:B
2.SiCl4的分子结构与CCl4相似,对其进行下列推测,不正确的是()
A.SiCl4晶体是分子晶体
B.常温、常压下,SiCl4是气体
C.SiCl4的分子是由极性键形成的非极性分子
D.SiCl4的熔点高于CCl4
解析:由于SiCl4具有分子结构,所以属于分子晶体。
影响分子晶体熔、沸点的因素是分子间的作用力,在这两种分子中都只有范德华力,SiCl4的相对分子质量大于CCl4的相对分子质量,所以SiCl4的分子间作用力,熔、沸点比CCl4高。
CCl4的分子是正四面体结构,
SiCl4与它结构相似,因此也是正四面体结构,是含极性键的非极性分子。
答案:B
3.(双选题)下列性质符合分子晶体特点的是()
A.熔点1 070 ℃,易溶于水,水溶液能导电
B.熔点10.31 ℃,液态不导电,水溶液能导电
C.能溶于CS2,熔点112.8 ℃,沸点444.6 ℃
D.熔点97.81 ℃,质软,导电,密度为0.97 g/cm3
解析:本题考查分子晶体的性质。
分子晶体中分子之间是以分子间作用力相结合的,分子晶体具有低熔点、易升华、硬度小等性质。
A项熔点高,不是分子晶体的性质;D项能导电,不是分子晶体的性质,该项所述是金属钠的性质。
故选BC。
答案:BC
4.(双选题)下列关于原子晶体的说法中错误的是()
A.原子晶体中不存在独立的“分子”
B.原子晶体中所有原子之间以共价键结合成空间网状结构
C.金刚石是原子晶体,所以其化学性质稳定,即使在高温下也不与氧气发生反应
D.原子晶体中必须有共价键,可能存在分子间作用力
解析:原子晶体中原子之间以共价键结合形成空间网状结构,故原子晶体中不存在单独的“分子”;由原子晶体的定义可知,原子晶体中只有共价键,不存在分子间作用力。
碳的化学性质不活泼,但在
一定条件下能与O2、CO2等发生反应。
故选CD。
答案:CD
5.(双选题)下列式子中,能真实表示分子组成的是()
A.H2SO4B.NH3
C.SiO2D.C
解析:H2SO4是分子晶体,所以H2SO4可表示硫酸分子的组成;NH3为分子晶体,故NH3可表示氨气分子的组成;SiO2是原子晶体,SiO2只能表示晶体中Si原子与O原子的个数比为12;C既可表示金刚石,又可表示石墨等碳单质。
答案:AB
6.下列说法正确的是()
A.在含4 mol Si—O键的二氧化硅晶体中,氧原子的数目为4N A B.金刚石晶体中,碳原子数与C—C键数之比为1 2
C.30 g二氧化硅晶体中含有0.5 N A个二氧化硅分子
D.晶体硅、晶体氖均是由相应原子直接构成的原子晶体
解析:在二氧化硅晶体中,每个硅原子形成4个Si—O键,故含有4 mol Si—O键的二氧化硅晶体的物质的量为1 mol,即含有2N A 个氧原子,A项错误;金刚石中每个碳原子均与另外4个碳原子形成共价键,且每两个碳原子形成一个C—C键,故1 mol 金刚石中共有2 mol C—C键,因此碳原子与C—C键数目之比为12,B项正确;二氧化硅晶体中不存在分子这种微粒,C项错误;氖晶体是由单原子分子靠分子间作用力结合在一起形成的,属于分子晶体,D项错误。
答案:B
7.有下列物质:①水晶、②冰醋酸、③氧化钙、④白磷、⑤晶体氩、⑥氢氧化钠、⑦铝、⑧金刚石、⑨过氧化钠、⑩碳化钙、⑪碳化硅、⑫干冰、⑬过氧化氢。
根据要求填空:
(1)属于原子晶体的化合物是________。
(2)直接由原子构成的晶体是________。
(3)直接由原子构成的分子晶体是________。
(4)由极性分子构成的晶体是________,属于分子晶体的单质是________。
(5)在一定条件下,能导电且不发生化学变化的单质是________,受热熔化后化学键不发生变化的是________,受热熔化需克服共价键的是________。
解析:本题考查的是原子晶体、分子晶体、金属晶体的辨别及晶体内作用力类型的分析。
属于原子晶体的有:金刚石、碳化硅和水晶;属于分子晶体的有:晶体氩(无化学键)、白磷(非极性分子)、干冰(由极性键构成的非极性分子)、过氧化氢和冰醋酸(由极性键和非极性键构成的极性分子);晶体熔化时,分子晶体只需克服分子间作用力,不破坏化学键,而原子晶体、离子晶体、金属晶体熔化时破坏化学键。
答案:(1)①⑪(2)①⑤⑧⑪(3)⑤
(4)②⑬④⑤(5)⑦②④⑫⑬①⑧⑪
8.根据SiO2晶体的结构,回答下列问题。
(1)在二氧化硅晶体中有若干环状结构,最小的环状结构由________个原子构成。
(2)在二氧化硅晶体中,硅原子的价电子层原子轨道发生了杂化,
杂化的方式是________,O—Si—O夹角是________。
(3)二氧化硅属于重要的无机非金属材料之一,请列举两项二氧化硅的主要用途:①________;②________。
(4)下列说法中正确的是________。
①凡是原子晶体都含有共价键②凡是原子晶体都有正四面体结构③凡是原子晶体都具有空间立体网状结构④凡是原子晶体都具有很高的熔点
解析:本题以SiO2为例考查原子晶体的结构。
可通过对比碳原子与硅原子结构的相似性、金刚石晶体与二氧化硅晶体结构的相似性,判断二氧化硅晶体中硅原子的原子轨道杂化的方式。
有了原子轨道杂化方式,即可确定键角。
不同的原子晶体可能结构不同,并不是所有的原子晶体都具有正四面体结构。
答案:(1)12(2)sp3109°28′
(3)①制造石英玻璃②制造石英表中的压电材料(也可以答制造光导纤维等)
(4)①③④。