广东广州市天河区普通高中毕业班2018届高考数学一轮复习模拟试题: 09 Word版含答案
- 格式:doc
- 大小:713.00 KB
- 文档页数:8
一轮复习数学模拟试题11第Ⅰ卷 选择题(共60分)一.选择题:(本大题共12小题,每小题5分.在每小题给出的四个选项中.只有一项是符合题目要求的.)1.若函数()f x A ,函数()lg(1)g x x =-,[2,11]x ∈的值域为B ,则A B 为A (,1]-∞B (,1)-∞C [0,1]D [0,1)2.已知等比数列}{n a 的公比为正数,且23952a a a =,21a =,则1a =() A.21 B. 22 C. 2 D.23.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形, 俯视图是半径为1的半圆,则该几何体的体积是( )B 12π 4.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,95函数()cos 22sin f x x x =+的最小值和最大值分别为( )A 3,1-B 2,2-C 33,2- D 32,2-6已知12,F F 是椭圆221169x y +=的两个焦点,经过点2F 的直线交椭圆于点,A B ,若||5AB =,则11||||AF BF +等于( )A 11B 10C 9D 16 7 设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )A 充分不必要条件B 必要不充分条件正视图俯视图侧视图第8题C 充要条件D 既不充分也不必要条件8 右图给出的是计算111124620++++的值的一个程序框图,其中判断框内应填入的条件是( )A 10i >B 10i <C 20i >D 20i <9.对于复数,,,a b c d ,若集合{,,,}S a b c d =具有性质“对任意,x y S ∈,必有xy S ∈”,则当2211a b c b =⎧⎪=⎨⎪=⎩时,b c d ++等于( )A .1B .-1C .0D .i10已知向量(,),(1,2),(,)a m n b c k t ===,且//,,||10a b b c a c ⊥+=,则mt 的取值范围是( )A (,1]-∞B (0,1]C [1,1]-D (1,1)- 11.已知函数()()x f x y x R e=∈满足'()()f x f x >,则(1)f 与(0)ef 大小关系是( ) A (1)(0)f ef < B (1)(0)f ef > C (1)(0)f ef = D 不能确定 12.已知函数()y f x =是定义在R 上的增函数,函数(1)y f x =-的图像关于点(1,0)对称。
试卷类型:A2018年广州市普通高中毕业班第一次模拟考试数 学 试 题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四处备选项中,只有一项是符合题目要求的.1. 函数()213f x x π⎛⎫=-+ ⎪⎝⎭的最小正周期是( )A .B .1C .πD .2π2. 在复平面中,复数1iz i=+(i 为虚数单位)所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 函数y =1x ≥)的反函数是( )A .y 1x ≥)B .y 0x ≥)C .y =1x ≥)D .y =0x ≥)4. 已知向量(2,3)a =,||213b =,且//a b ,则向量b 的坐标为( )A .(4,6)-B .(4,6)C .(6,4)-或(6,4)-D .(4,6)--或(4,6)5. 已知集合2{|10}M x x =-<,01xN x x ⎧⎫=<⎨⎬-⎩⎭,则下列关系中正确的是( )A .M N =B .M N ⊂≠C .N M ⊂≠D .M N =∅6. 在长方体1111ABCD A B C D -中,4AB =,5AD =,13AA =,则四棱锥111B A BCD -的体积是( ) A .10B .20C .30D .607. 若(41)n x -(n *∈N )的展开式中各项系数的和为729,则展开式中3x 的系数是( )A .1280-B .64-C .20D .12808. 设a 、b 是两条不同的直线,α、β是两个不同的平面,是下列命题中正确的是( )A .若//a b ,//a α,则//b αB .若αβ⊥,//a α,则a β⊥C .若αβ⊥,a β⊥,则//a αD .若a b ⊥,a α⊥,b β⊥,则αβ⊥9. 函数()y f x =是定义在R 上的增函数,()y f x =的图像经过点(0,1)-和下面哪一个点时,能确定不等式|(1)|1f x +<的解集为{|12}x x -<<( ) A .(3,0)B .(4,0)C .(3,1)D .(4,1)10. 已知(,)P t t ,t ∈R ,点M 是圆221(1)4x y +-=上的动点,点N 是圆221(2)4x y -+=上的动点,则||||PN PM -的最大值是( )A 1BC .1D .2二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中相应的横线上.11. 224lim2x x x →--=+ . 12. 设等差数列{}n a 的前n 项和为n S ,715a =,则13S = .13. 某学校招收的12名体育特长生中有3名篮球特长生.现要将这12名学生平均分配到3个班中去,每班都分到1名篮球特长生的分配方法共有 种,3名篮球特长生被分配到同一个班的分配方法共有 种.(用数字作答)14. 如图,已知(0,5)A ,(1,1)B ,(3,2)C ,(4,3)D ,动点(,)P x y 所在的区域为四边形ABCD (含边界).若目标函数z ax y =+只在点D 处取得最优解,则实数a 的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程. 15. (本小题满分12分)某射击运动员射击1次,击中目标的概率为45.他连续射击5次,且每次射击是否击中 目标相互之间没有影响.(Ⅰ)求在这5次射击中,恰好击中目标2次的概率; (Ⅱ)求在这5次射击中,至少击中目标2次的概率.16. (本小题满分12分)已知sincos22αα-=,2παπ⎛⎫∈ ⎪⎝⎭,1tan 2β=. (Ⅰ)求sin α的值; (Ⅱ)求tan()αβ-的值.如图,长度为2的线段AB 夹在直二面角l αβ--的两个半平面内,A α∈,B β∈, 且AB 与平面α、β所成的角都是30︒,AC l ⊥,垂足为C ,BD l ⊥,垂足为D .(Ⅰ)求直线AB 与CD 所成角的大小;(Ⅱ)求二面角C AB D --所成平面角的余弦值.18. (本小题满分14分)已知数列{}n x 满足下列条件:1x a =,2x b =,11(1)0n n n x x x λλ+--++=(n *∈N 且 2n ≥),其中a 、b 为常数,且a b <,λ为非零常数.(Ⅰ)当0λ>时,证明:1n n x x +>(n *∈N ); (Ⅱ)当||1λ<时,求lim n n x →∞.如图,在OAB ∆中,||||4OA OB ==,点P 分线段AB 所成的比3:1,以OA 、OB 所在 直线为渐近线的双曲线M 恰好经过点P ,且离心率为2.(Ⅰ)求双曲线M 的标准方程;(Ⅱ)若直线y kx m =+(0k ≠,0m ≠)与双曲线M 交于不同的两点E 、F ,且E 、F 两点都在以(0,3)Q -为圆心的同一圆上,求实数m 的取值范围.已知函数()f x 是定义在[,0)(0,]e e -上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+ (其中e 为自然对数的底,a ∈R ).(Ⅰ)求函数()f x 的解析式;(Ⅱ)设ln ||()||x g x x =([,0)(0,]x e e ∈-),求证:当1a =-时,1|()|()2f xg x >+; (Ⅲ)试问:是否存在实数a ,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由.2018年广州市普通高中毕业班第一次模拟考试数学试题参考答案一、选择题:二、填空题:1,2⎛+∞ ⎝三、解答题:15. 解:设此人在这5次射击中击中目标的次数为ξ,则45,5B ξ⎛⎫⎪⎝⎭,因此,有 (Ⅰ)在这5次射击中,恰好击中目标2次的概率为232554132(2)55625P C ⎛⎫⎛⎫=⋅⋅=⎪⎪⎝⎭⎝⎭; (Ⅱ)在这5次射击中,至少击中目标2次的概率为541555514131041(0)(1)15553125P P P C C ⎛⎫⎛⎫=--=-⋅-⋅⋅=⎪ ⎪⎝⎭⎝⎭. 16. 解:(Ⅰ)2214sin cos sin cos 1sin sin 222255αααααα⎛⎫-=⇒-=⇒-=⇒= ⎪⎝⎭⎝⎭; (Ⅱ)4sin 54tan 3,2ααπαπ⎫=⎪⎪⇒=-⎬⎛⎫⎪∈ ⎪⎪⎝⎭⎭,由此及1tan 2β=得 41tan tan 1132tan()411tan tan 2132αβαβαβ----===-+⎛⎫+-⨯ ⎪⎝⎭. 17. 解:(Ⅰ)如图所示,连结BC ,设直线AB 与 CD 所成的角为θ,则由AC β⊥知:cos cos cos ABC DCB θ=∠⋅∠cos30==,故45θ=︒;(Ⅱ)如图建立空间直角坐标系,则(0,0,0)D,(0A , (1,0,0)B,(00)C ,所以(0,0,1)CA =,(1,0)CB =,设1(,,)n x y z =是平面ABC 的法向量,则110CA n z CB n x ⎧⋅==⎪⇒⎨⋅==⎪⎩可以取1(20)n =. 同理,2(0,1,n =是平面ABD 的法向量.设二面角C AB D --所成的平面角为γ,则显然γ是锐角,从而有12121cos 3||||3n n n n γ⋅===⋅.18. (Ⅰ)证明:由已知得11()n n n n x x x x λ+--=-及210x x b a -=->知:数列1{}n n x x +-是首项为b a -,公比为λ的等比数列,故11()n n n x x b a λ-+-=-⋅,由此及0λ>知:10n n x x +->,即1n n x x +>;(Ⅱ)由已知得1121n n n n x x x x x x b a λλλλ+--=-==-=-,由此及(Ⅰ)的结论得1()1n n b a b a x λλλ----⋅=-,由此及1||1lim 0lim 1n n n n b ax λλλλ-→∞→∞-<⇒=⇒=-.19. 解:(Ⅰ)因为双曲线M 的离心率为2,所以可设双曲线M 的方程为222213x ya a -=,由此可得渐近线的斜率60k BOx =∠=︒,从而(2,B ,(2,A -. 又因为点P 分线段AB 所成的比为3:1,故(2,P ,代入双曲线方程得23a =,故双曲线M 的方程为22139x y -=;(Ⅱ)如图所示,由方程组22222(3)290139y kx m k x kmx m x y =+⎧⎪⇒-+++=⎨-=⎪⎩,设11(,)E x y 、22(,)F x y ,线段EF 的中点为00(,)N x y ,则有2222222230344(3)(9)093k k k m k m m k⎧⎧-≠≠⎪⎪⇒⎨⎨∆=--+>+>⎪⎪⎩⎩. ……①由韦达定理得120223x x km x k +==--,00233my kx m k =+=--.因为E 、F 两点都在以(0,3)Q -为圆心的同一圆上,所以NQ EF ⊥,即2200333913490NQy m k k k m x km k+-+-===-⇒=+--. ……②由①、②得294994904040m m m m or m m ⎧+>+⎪+>⇒>-<<⎨⎪≠⎩.20. 解:(Ⅰ)当[,0)x e ∈-时,(0,]x e -∈,故有()ln()f x ax x -=-+-,由此及()f x 是奇 函数得()ln()()ln()f x ax x f x ax x -=-+-⇒=--,因此,函数()f x 的解析式为ln()(0)()ln (0)ax x e x f x ax xx e ---≤<⎧=⎨+<≤⎩;(Ⅱ)证明:令1()|()|()2F x f x g x =--。
计数原理01一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设m∈N*,且m<25,则(25-m)(26-m)…(30-m)等于( )A.625mA-B.2530mmA--C.630mA-D.530mA-【答案】C2.把10)x-把二项式定理展开,展开式的第8项的系数是( )A.135B.135-C.-D.【答案】D3.球面上有七个点,其中四个点在同一个大圆上,其余无三点共一个大圆,也无两点与球心共线,那么经过球心与球面上的任意两点可作球的大圆有( )A.15个B.16个C.31个D.32个【答案】B4.西大附中数学组有实习老师共5名,现将他们分配到高二年级的1、2、3三个班实习,每班至少1名,最多2名,则不同的分配方案有( )A.30种B.90种C.180种D.270种【答案】B5.6位好朋友在一次元旦聚会中进行礼品交换,任意两位朋友之间最多交换一次,进行交换的两位朋友互赠一份礼品,已知这6位好朋友之间共进行了13次互换,则收到4份礼品的同学人数为( )A .1或4B .2或4C .2或3D .1或3【答案】B6.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a +bi ,其中虚数有( )A .30个B .42个C .36个D .35个【答案】C7.编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )A .60B .20种C .10种D .8种【答案】C8.设数列{}n a 的前n 项和为n S ,令n S S S T n n +⋯++=21,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列8,1a ,2a ,……,500a 的“理想数”为( )A .2008B .2009C .2010D .2011【答案】A9.现有男、女学生共7人,从男生中选1人,从女生中选2人分别参加数学、物理、化学三科竞赛,共有108种不同方案,那么男、女生人数分别是( )A .男生4人,女生3人B .男生3人,女生4人C .男生2人,女生5人D .男生5人,女生2人.【答案】B10.某班由24名女生和36名男生组成,现要组织20名学生外参观,若这20名学生按性别分层抽样产生,则参观团的组成法共有( )A .824C 1236C 种B .81224.36AC 种 C .10102436C C 种D .2060C 种【答案】A11.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是( )A .1260B .120C .240D .720【答案】D12.计划在4个体育馆举办排球、篮球、足球3个项目的比赛,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2项的安排方案共有( )A .24种B .36种C .42种D .60种 【答案】D二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.n x)1( 的展开式中,某一项的系数为7,则展开式中第三项的系数是________.【答案】2114.某同学有同样的画册2本,同样的集邮册3本,赠送给5位朋友,每位朋友1本,则不同的赠送方法共有种.【答案】1015.7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有种(用数字作答)。
数列一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.数列{}n a 的通项公式为n n a n 2832-=,则数列{}n a 各项中最小项是( )A . 第4项B . 第5项C . 第6项D . 第7项【答案】B2.已知两个等差数列{}n a 和{}n b 的前n 项和分别A n 和B n ,且3457++=n n B A n n ,则使得nn b a为整数的正整数n 的值是( ) A .1,3,5,8,11 B .所有正整数 C .1,2,3,4,5 D .1,2,3,5,11【答案】D 3.等差数列{}n a 的前n 项和为n S ,若17S 为一确定常数,则下列各式也为确定常数的是( )A .215a a + B .215a a ⋅C .2916a a a ++ D .2916a a a ⋅⋅【答案】C4.设等比数列{n a }的公比q=2,前n 项和为S 。
,则43S a 的值为( ) A .154B .152C .74 D .72【答案】A5.利用数学归纳法证明 “*),12(312)()2)(1(N n n n n n n n∈-⨯⋅⋅⋅⨯⨯⨯=+⋅⋅⋅++ ”时,从“k n =”变到“1+=k n ”时,左边应增乘的因式是( )A . 12+kB .112++k k C .1)22)(12(+++k k k D . 132++k k【答案】C6.已知等差数列5724,743…,则使得n S 取得最大值的n 值是( ) A .15 B .7C .8和9D . 7和8【答案】D7.已知等比数列}{n a 中,各项都是正数,且2312,21,a a a 成等差,则87109a a a a ++=( ) A .21+ B .21- C .223+ D .223-【答案】C8.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2 a 10-a 12的值为( )A .20B .22C .24D .28【答案】C9.在等差数列中,有,则此数列的前13项之和为( ) A .24 B .39 C .52 D .104【答案】C10.一个正项等比数列{}n a 中,225)()(1088977=+++a a a a a a ,则=+97a a ( )A .20B .15C .10D .5【答案】B11.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =( )A .12B .C .D . 2【答案】B12.若数列{}n a 的通项公式为),n a n N *=∈若前n 项和为10,则项数为( ) A . 11 B .99 C .120 D .121【答案】C二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知数列{}n a (*n N ∈),其前n 项和为n S ,给出下列四个命题: ①若{}n a 是等差数列,则三点10(10,)10S 、100(100,)100S 、110(110,)110S共线; ②若{}n a 是等差数列,且111a =-,376a a +=-,则1S 、2S 、…、n S 这n 个数中必然存在一个最大者;③若{}n a 是等比数列,则m S 、2m m S S -、32m m S S -(*m N ∈)也是等比数列;④若11n n S a qS +=+(其中常数10a q ≠),则{}n a 是等比数列.其中正确命题的序号是 .(将你认为的正确命题的序号..都填上) 【答案】①④14.设为等差数列的前项和,若,,则当取得最大值时,的值为 。
三角函数、解三角形及平面向量0322.已知锐角A ,B 满足)tan(tan 2B A A +=,则B tan 的最大值为( ) A. 22 B. 2 C.22 D.42 【答案】D【解析】AA A A AB A A B A A B A B tan 2tan 1tan 21tan tan )tan(1tan )tan(])tan[(tan 2+=+=++-+=-+=, 又0tan >A ,则22tan 2tan ≥+AA 则42221tan =≤B . 23.设函数x x x f cos sin )(+=,把)(x f 的图象按向量)0)(0,(>=m m 平移后的图象 恰好为函数)('x f y =的图象,则m 的最小值为 A.4π B .3π C.2π D.32π【答案】C【解析】⎪⎭⎫ ⎝⎛+=+=4sin 2cos sin )(πx x x x f , ⎪⎭⎫ ⎝⎛--=-=4sin 2sin cos )('πx x x x f ,由⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛-+42sin 224sin 2ππππx x ⎪⎭⎫ ⎝⎛+-=4cos 2πx .4sin 2⎪⎭⎫ ⎝⎛--=πx 24.设α为锐角,若54)6cos(=+πα,则)122sin(πα+的值为 【答案】50217【解析】∵α为锐角,且54)6cos(=+πα,∴53)6sin(=+πα ∴2323466ππαπππαπ<+<⇒<+<∵252453542)6(2sin )32sin(=⨯⨯=+=+παπα∴257)32cos(=+πα,50217]4)32sin[()122sin(=-+=+ππαπα 25.函数22()cos ()cos ()44f x x x ππ=--+,()x R ∈是 A 周期为π的奇函数 B.周期为π的偶函数 C,周期为2π的奇函数 D.周期为2π的偶函数 【答案】A【解析】∵2222()cos ()cos ()cos ()sin ()4444f x x x x x ππππ=--+=--- 22cos ()sin ()cos 2()sin 2444x x x x πππ=---=-=∴函数()f x 是周期为π的奇函数 26.若tan α+=,α∈(,),则sin (2α+)的值为( )A. C. D.27.在ABC ∆中。
2018年广东省广州市天河区高考数学一模试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A ={x|x ≤a},B ={x|1≤x <2且A??R B ,则实数a 的取值范围是()A .(∞,1]B .(﹣∞,1)C .[2,+∞)D .(2,+∞)2.(5分)某人到甲、乙两市若干小区调查空置房情况,调查得到的小区空置房的套数绘成了如图的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为()A .4B .3C .2D .13.(5分)在复平面内,设z =1+i (i 是虚数单位),则复数+z 2对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限4.(5分)小明从甲的去乙的跋山涉水共走了2500米,其中涉水路段x 米.他不小心把手机丢在途中,若手机掉在水里,就找不到了,若不掉在水里,则能找到.已知该手机能被找到的概率为,则涉水长度为()A .1750米B .1250米C .750米D .500米5.(5分)已知双曲线与椭圆的焦点重合,它们的离心率之和为,则双曲线的渐近线方程为()A .B .C .D .6.(5分)满足条件的目标函数z =x 2+y 2的最大值为()A .B .C .2D .4化简时原代数式可以用”原式”代替,也可以抄一遍,但要抄准确。
每一步变形用“=”连接。
化简完后,按步骤书写:当a=……时,原式=……=……。
当字母的值没有直接给出时,要写出一些步骤求字母的值。
化简正确是关键,易错点:去括号时漏乘,应乘遍每一项;括号内部分项忘了变号,要变号都变号;合并同类项时漏项,少抄了一项尤其常数项。
字母颠倒的同类项,注意合并彻底。
7.(5分)已知点及抛物线x 2=﹣4y上一动点P(x,y),则|y|+|PQ|的最小值是()A.B.1C.2D.38.(5分)设函数f(x)=a﹣x﹣ka x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是减函数,则g(x)=log a(x+k)的图象是()A.B.C.D.9.(5分)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b ⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(5分)若正整数N除以正整数m后的余数为n,则记为N=n(modm),例如10=4(mod6),如图程序框图的算法源于我国古代《孙子算经》中的“孙子定理”的某一环节,执行该框图,输入a=2,b=3,c=5,则输出的N=()2。
导数及其应用一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.曲线y P x y 处的切线与在点)12,1(113+=轴交点的纵坐标是( )A .-9B .-3C . 9D .15【答案】C2.曲线3sin (0)2y x x π=≤≤与两坐标轴所围成图形的面积为( ) A . 1B . 2C . 52D . 3【答案】A3.设a ∈R ,函数f(x)=e x +a ·e -x的导函数f ′(x),且f ′(x)是奇函数.若曲线y =f(x)的一条切线的斜率是32,则切点的横坐标为( )A .- ln22B .-ln2C .ln22 D .ln2【答案】D4.由曲线3,y x y x ==围成的封闭图形面积为( )A .112 B .14C .13D .712【答案】A5.设()f x 在[]a b ,上连续,则()f x 在[]a b ,上的平均值是( )A .()()2f a f b + B .()baf x dx ⎰C .1()2baf x dx ⎰ D .1()baf x dx b a -⎰【答案】C6.已知函数()f x 的定义域为(2,2),-导函数为(0)0()2cos ,f f x x ='=+且,则满足2(1)()0f x f x x ++->的实数x 的取值范围为( )A . (1,1)-B .(11)-+,C .(1 D .(1,1+【答案】C7.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( )A .18B .38/3C .16/3D .16【答案】A8.设函数)(x f 在区间],[b a 上连续,用分点b x x x x x a n i i =<<<<<=- 110,把区间],[b a 等分成n 个小区间,在每个小区间],[1i i x x -上任取一点),,2,1(n i i =ξ,作和式∑=∆=n i i nxf S 1)(ξ(其中x ∆为小区间的长度),那么n S 的大小( )A .与)(x f 和区间],[b a 有关,与分点的个数n 和i ξ的取法无关B . 与)(x f 和区间],[b a 和分点的个数n 有关,与i ξ的取法无关C . 与)(x f 和区间],[b a 和分点的个数n,i ξ的取法都有关。
一轮复习数学模拟试题04一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集R ,若集合}1|12|{},3|2||{>-=≤-=x x B x x A ,则)(B A C R 为 ( ) A .}51|{≤<x x B .}51|{>-≤x x x 或C .}51|{>≤x x x 或D .}51|{≤≤-x x(2)复数ii z -+=1)2(2(i 是虚数单位)在复平面上对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限(3)在长为10㎝的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm 2与49 cm 2之间的概率为 ( )A .51B .52 C .54 D .103 (4)设等比数列{}n a 的公比为q ,前n 项和为n S ,若1n S +,n S ,2n S +成等差数列,则公 比q 为 ( ) A .2-=qB .1=qC .12=-=q q 或D .12-==q q 或(5)已知i 与j 为互相垂直的单位向量,2a i j =- ,b i j λ=+ 且a 与b的夹角为锐角,则实数λ的取值范围是( )A .1(,)2-∞B .1(,)2+∞C .22(2,)(,)33-+∞D .1(,2)(2,)2-∞--(6)设f (x )是R 上的奇函数, 且在(0, +∞)上递增, 若f (21)=0, f (log 4x )>0, 那么x 的 取值范围是( ) A.21<x <1 B.x >2 C. x >2或21<x <1 D.21<x <1或1<x <2 (7)一起,则不同的站法有( )A .240种B .192种C .96种D .48 (8)如果执行下面的程序框图,那么输出的S = ( ). A.2450 B.2500 C.2550 D.2652(9)球面上有三个点A 、B 、C. A 和B ,A 和C 间的球面距离等于大圆周长的16. B 和C 间的球面距离等于大圆周长的14.如果球的半径是R ,那么球心到截面ABC 的距离等于( ) A.12RR D. 13R(10)已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x , 且目标函数y x z +=2的最大值为7,最小值为1,则=++acb a ( ) A.1 B.1- C.2D. 2-(11)下列命题:①若)(x f 是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,)2,4(ππθ∈,则 ).(cos )(sin θθf f > ②若锐角α、.2,sin cos πβαβαβ<+>则满足③若.)()(,12cos2)(2恒成立对则R x x f x f xx f ∈=+-=π④要得到函数.42sin ,)42sin(个单位的图象向右平移只需将的图象ππx y x y =-= 其中真命题的个数有( )A .1B .2C .3D .4(12)设函数xbax x g x x f +==)(,ln )(,它们的图象在x 轴上的公共点处有公切线,则当1>x 时,)(x f 与)(x g 的大小关系是 ( )A.)()(x g x f >B.)()(x g x f <C.)()(x g x f =D.)(x f 与)(x g 的大小不确定 二、填空题:本大题共4小题,每小题5分。
推理与证明02解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)1.已知1,1≤≤y x ,用分析法证明:xy y x +≤+1.【答案】要证xy y x +≤+1,即证()()221xy y x +≤+,即证22221y x y x +≤+,即证()()01122≤--y x , 因为1,1≤≤y x ,所以01,0122≥-≤-y x ,所以()()01122≤--y x ,不等式得证.2.求证:2222,2,2y ax bx c y bx cx a y cx ax b =++=++=++(,,a b c 是互不相等的实数),三条抛物线至少有一条与x 轴有两个交点.【答案】假设这三条抛物线全部与x 轴只有一个交点或没有交点,则有 ⎪⎩⎪⎨⎧≤-=≤-=≤-=044044044232221bc a Δab c Δac b Δ 三式相加,得a 2+b 2+c 2-ab -ac -bc ≤0⇒(a -b )2+(b -c )2+(c -a )2≤0.∴a=b=c 与已知a ,b ,c 是互不相等的实数矛盾,∴这三条抛物线至少有一条与x 轴有两个交点.3.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家、祖冲之的儿子祖暅首先提出来的. 祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等. 可以用诗句“两个胖子一般高,平行地面刀刀切,刀刀切出等面积,两人必然同样胖”形象表示其内涵. 利用祖暅原理可以推导几何体的体积公式,关键是要构造一个参照体.试用祖暅原理推导球的体积公式.【答案】我们先推导半球的体积. 为了计算半径为R 的半球的体积,我们先观察V 圆锥、V 半球、V 圆柱这三个量(等底等高)之间的不等关系,可以发现V 圆锥<V 半球<V 圆柱,即3313R V R ππ<<半球,根据这一不等关系,我们可以猜测323V R π=半球,并且由猜测可发现V V V =-半球圆柱圆锥. 下面进一步验证了猜想的可靠性. 关键是要构造一个参照体,这样的参照体我们可以用圆柱内挖去一个圆锥构造出,如右图所示. 下面利用祖暅原理证明猜想.证明:用平行于平面α的任意一个平面去截这两个几何体,截面分别为圆面和圆环面. 如果截平面与平面α的距离为l ,那么圆面半径r =半径为R ,小圆半径为r.因此222()S r R l ππ==-圆,2222()S R l R l πππ=-=-环, ∴ S S =圆环. 根据祖暅原理,这两个几何体的体积相等,即2231233V R R R R R πππ=-=半球, 所以343V R π=球.4<0>,0>,故只需证明22<.只需证1020+<5.只需证2125<. 因为2125<显然成立,<5.已知函数)1(,12)(>+-+=a x x a x f x ,用反证法证明:方程0)(=x f 没有负实数根.【答案】假设存在x 0<0(x 0≠-1),满足f(x 0)=0,则0x a =-0021x x -+,且0<0x a <1, 所以0<-0021x x -+<1,即12<x 0<2. 与假设x 0<0矛盾,故方程f(x)=0没有负数根.6.用适当方法证明:如果,0,0>>b a 那么b a ab b a +≥+。
一轮复习数学模拟试题02一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设1z i =-(i 是虚数单位),则22z z+的虚部为 ( )A .-iB .1-iC . -1D .-1-i2. 下列各数集及对应法则,不能构成映射的是 ( ) A. {}Z n n x ∈∈|2,{}Z n n y ∈+∈|12,1:-=→x y x f B. Z x ∈,{}Z n n y ∈∈|2,x y x f 4:=→ C. N x ∈,Q y ∈,xx y x f 1:+=→ D. ⎥⎦⎤⎢⎣⎡∈43,4ππx ,[]2,0∈y ,x y x f sin :=→ 3.已知三条不重合的直线,,m n l 和两个不重合的平面α、β,有下列命题 ①若//,,//;m n n m αα⊂则 ②βαβα⊥⊥⊥⊥则且若m l m l ,③m l n m n l //,,则若⊥⊥ ④αββαβα⊥⊥⊂=⊥n m n n m 则若,,,,其中正确命题的个数为 ( )A .4B .3C .2D .14.已知函数错误!未找到引用源。
,其中错误!未找到引用源。
为实数,若错误!未找到引用源。
对错误!未找到引用源。
恒成立, 且 错误!未找到引用源。
,则错误!未找到引用源。
的单调递增区间是 ( )(A ) )(],6,3[Z k k k ∈+-ππππ错误!未找到引用源。
(B ))(],2,[Z k k k ∈+πππ错误!未找到引用源。
(C )错误!未找到引用源。
)(],32,6[Z k k k ∈++ππππ (D ))(],,2[Z k k k ∈-πππ错误!未找到引用源。
5.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是 ( ) A .[-2,2] B .[2,3] C .[3,2] D .[2,2]第6 题图6.某医院安排三名男医生,两名女医生到三所乡医院工作,每所医院至少安排一名医生且女医生不安排在同一所乡医院工作,则不同分配方法总数为 ( ) A.78 B.114 C.108 D.1207.已知函数(),(),x a x x f x a x ---≤⎧=⎨>⎩63377,若数列{}n a 满足()n a f n =(n N *∈),且{}n a 是递增数列,则实数a 的取值范围是 ( )A 、,⎡⎤⎢⎥⎣⎦934B 、,⎛⎫ ⎪⎝⎭934 C 、(2,3) D 、(1,3)8.输入ln 0.8a =,12b e =,2ec -=,经过下列程序程度运算后, 输出a ,b 的值分别是 ( ) A .2e a -=,ln 0.8b = B .ln 0.8a =,2e b -=C .12a e =, 2eb -= D .12a e =, ln 0.8b = 9.已知)(x f 为定义在R 上的可导函数,且)()('x f x f < 对任意R x ∈恒成立,则 ( ))0()2012(),0()2(.20122f e f f e f A >>)0()2012(),0()2(.20122f e f f ef B ><)0()2012(),0()2(.20122f e f f ef C <> )0()2012(),0()2(.20122f e f f e f D <<10.定义:数列{}n a ,满足d a a a a nn n n =-+++112()*N n ∈d 为常数,我们称{}n a 为等差比数列,已知在等差比数列{}n a 中,2,1321===a a a ,则20062009a a 的个位数 ( ) A ,3 B ,4 C ,6 D ,811.已知椭圆2222:1(0)x y C a b a b+=>>,F 1,F 2为其左、右焦点,P 为椭圆C 上任一点,12F PF ∆的重心为G ,内心I ,且有12IG F F λ=(其中λ为实数),椭圆C 的离心率e=( )A .12B .13C .23D.212.若对任意长方体A ,都存在一个与A 等高的长方体B ,使得B 与A 的侧面积之比和体积 之比都等于常数K ,则K 的取值范围是 ( )(]1,0.A ⎥⎦⎤ ⎝⎛21,0.B [)+∞,1.C ⎪⎭⎫⎢⎣⎡+∞,21.D二、填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卷相应位置上。
一轮复习数学模拟试题09一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,)1.对于集合NM、定义:)()(},|{M MNNMNMNxMxxN-⋃-=+∉∈=-且,设},2|{},,3|{2RxyyNRxxxyyM x∈-==∈-==,则=+NM( )A.(-49,0) B.[-49,0) C.(-∞,-49)∪[0,+∞) D.(-∞,-49]∪(0,+∞)2,已知:αβαββαtan)tan(,0cos5)2cos(3+=++则的值为( )A.±4B.4C.-4D.13.关于for循环说法错误的是()A.在for循环中,循环表达式也称为循环体B.在for循环中,步长为1,可以省略不写,若为其它值,则不可省略C.使用for循环时必须知道终值才可以进行D.for循环中end控制结束一次循环,开始一次新循环,4.如图,样本数为9的四组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是第一组第二组第三组第四组A.B.C.D.5.已知*,2)(,2),2()2(,)(Nnxfxxfxfxf x∈=≤≤--=+若时当且为偶函数,==2007),(anfa n则()A.2007 B.21C.2 D.-26.在△OAB中,ODbOBaOA,,==是AB边上的高,若ABADλ=,则实数λ等于A.()2baaba--⋅B.()2babaa--∙C.()baaba--∙D.()babaa--∙7.已知aba,0,0>>、b的等差中项是βαβα++=+=则且,1,1,21bbaa的最小值是 ( ) 学A.3 B.4 C.5 D.68.从抛物线x y 42=上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线的焦点为F ,则△MPF 的面积为 ( )A .5B .10C .20D .159.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形。
若该几何体的体积为V ,并且可以用n 个这样的几何体拼成一个棱长为4的正方体,则V ,n 的值是 ( ) A .2,32==n VB .3,364==n V C .6,332==n VD .V=16,n=410.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段圆弧,若0<x 1<x 2<1,则A .()11x x f <()22x x f B .()11x x f =()22x x f C .()11x x f >()22x x f D .不能确定 11已知点),(b a P )0(≠ab 是圆O :222r y x =+内一点,直线m 是以P 为中点的弦所在的直线,若直线n 的方程为2r by ax =+,则 ( )A m ∥n 且n 与圆O 相离B m ∥n 且n 与圆O 相交C m 与n 重合且n 与圆O 相离D m ⊥n 且n 与圆O 相离 12已知R b a ∈,,若关于x 的方程02=+-b ax x 的实根1x 和2x 满足-1≤1x ≤1,1≤2x ≤2,则在平面直角坐标系aob 中,点(b a ,)所表示的区域内的点P 到曲线1)2()3(22=-++b a 上的点Q 的距离|PQ|的最小值为 ( ) A .32-1 B .22-1 C .32+1 D .22+1 二、填空题(本大题共4小题,每小题4分,共16分) 13.若数据123,,,,n x x x x 的平均数x =5,方差22σ=,则数据12331,31,31,,31n x x x x ++++ 的平均数为 ,方差为 14.抛物线0122=+y x 的准线方程是 .15. “b a ,为异面直线”是指:① ∅=b a ,且a 不平行于b ;②α平面⊂a ,β平面⊂b ,且∅=b a ;③ α平面⊂a ,β平面⊂b ,且∅=β a ;④ α平面⊂a ,α平面⊄b ;⑤不存在平面α能使α⊂a ,b α⊂ 成立.16如图的矩形,长为5,宽为3,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为120颗,则我们可以估计出阴影 部分的面积为 .三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17(12分)如图,在四边形ABCD 中,AD =8,CD =6,AB =13,∠ADC =90°,且50AB AC ⋅=.(1)求sin ∠BAD 的值;(2)设△ABD 的面积为S △ABD ,△BCD 的面积为S △BCD ,求ABDBCDS S ∆∆的值.18. (本小题满分12分)先后2次抛掷一枚骰子,将得到的点数分别记为,a b .(Ⅰ)设函数()f x x a =-,函数()g x x b =-,令()()()F x f x g x =-,求函数()F x 有且只有一个零点的概率;(Ⅱ)将,,5a b 的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.19平行四边形ABCD 中,CD =1,∠BCD =60°,且BD ⊥CD ,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点。
(1)求证:BD ⊥平面CDE ; (2)求证:GH ∥平面CDE ; (3)求三棱锥D-CEF 的体积。
ACD BDCB AFEHG20(本题满分12分)设x 轴、y 轴正方向上的单位向量分别是i 、j,坐标平面上点n A 、()*n B n N∈分别满足下列两个条件:①1OA j = 且1n n A A i j +=+ ;②13OB i =且1233n n n B B i +⎛⎫=⨯ ⎪⎝⎭.(1)求n OA 及n OB 的坐标;(2)若四边形11n n n n A B B A ++的面积是n a ,求()*n a n N ∈的表达式;(3)对于(Ⅱ)中的n a ,是否存在最小的自然数M ,对一切()*n N ∈都有n a M <成立?若存在,求M ;若不存在,说明理由.21(本题满分12分)已知椭圆 1222=+by x ()10<<b 的左焦点为F ,左、右顶点分别为CA ,上顶点为B 过C B 、、F 作⊙P ,其中圆心P 的坐标为),(n m . (1)当0>+n m 时,求椭圆离心率的范围; (2)直线AB 与⊙P 能否相切?证明你的结论。
四、选做题.(本小题满分10分.请考生在A 、B 、C 三题中任选一题作答,如果多做,则按所做的第一题记分.)22.已知:如右图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,过点D 作AC 的平行线DE ,交BA 的延长线于点E .求证:(1)△ABC ≌△DCB (2)DE ²DC =AE ²BD .23.在直角坐标系xoy 中,以o 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1)3cos(=-πθρ,M,N 分别为C 与x 轴,y 轴的交点(1)写出C 的直角坐标方程,并求出M,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程24.(1)解不等式:21<++x x(2) 如果关于x 的不等式34x x a -+-<的解集不是空集,求参数a 的取值范围。
AB CED第22题图参考答案 1 2 3 4 56789 10 11 12 CCDDB BC BBCAA13. 16;18 14. 3=y 15.①⑤ 16.6.利用几何概型120536300⨯⨯=。
17解 (1)在Rt △ADC 中,AD =8,CD =6,则AC =10,43cos ,sin 55CAD CAD ∠=∠=.又∵50AB AC ⋅= ,AB =13,∴5c o s 13||||AB AC BAC AB AC ⋅∠==.∵0180BAC <∠< ,∴12sin 13BAC ∠=. ∴63sin sin()65BAD BAC CAD ∠=∠+∠=. (2)1252sin 25BAD S AB AD BAD ∆=⋅⋅∠=,1sin 602BAC S AB AC BAC ∆=⋅⋅∠=,24ACD S ∆=,……10分则1685BCD ABC ACD BAD S S S S ∆∆∆∆=+-=,∴32ABD BCD S S ∆∆=.18解:(Ⅰ)先后2次抛掷一枚骰子,将得到的点数分别记为,a b ,事件总数为6636⨯=. ∵函数()F x 有且只有一个零点∴函数()f x x a =-与函数()g x x b =-有且只有一个交点 所以b a <,且,{1,2,3,4,5,6}a b ∈∴满足条件的情况有2,1a b ==;3,1,2a b ==;4,1,2,3a b ==;5,1,2,3,4a b ==;6,1,2,3,4,5a b ==.共1234515++++=种情况.∴函数()F x 有且只有一个零点的概率是1553612= (Ⅱ)先后2次抛掷一枚骰子,将得到的点数分别记为,a b ,事件总数为6636⨯=. ∵三角形的一边长为5∴当1a =时,5b =,(1,5,5), 1种 ; 当2a =时,5b =,(2,5,5),1 种; 当3a =时,3,5b =,(3,3,5),(3,5,5),2 种; 当4a =时,4,5b =,(4,4,5),(4,5,5) ,2种; 当5a =,1,2,3,4,5,6b =,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5) ,6种; 当6a =,5,6b =,(6,5,5),(6,6,5) ,2种故满足条件的不同情况共有14种答:三条线段能围成不同的等腰三角形的概率为1473618=. 19解:(1)证明:平面ADEF ⊥平面ABCD ,交线为AD 。
∵ED ⊥AD ,∴ED ⊥平面ABCD .∴ED ⊥BD 。
又∵BD ⊥CD ,∴BD ⊥平面CDE 。
(2)证明:连结EA ,则G 是AE 的中点。
∴⊿EAB 中, GH ∥AB 。
又∵AB ∥CD ,∴GH ∥CD ,∴GH ∥平面CDE 。
(3)解:设Rt ⊿BCD 中BC 边上的高为h 。
∵CD =1,∠BCD =60°,∴BC =2,h =32。
即:点C 到平面DEF 的距离为3 2 ,∴V D-CEF =V C-DEF =1 3 ²1 2 ²2²2²3 2 =3 3。
20解:(1)1121n n n OA OA A A A A -=+++ (1)()(1)(1,)j n i j n i nj n n =+-+=-+=-1121n n n OB OB B B B B -=+++ 1212223()3()3()3333n i i i i -=+⨯+⨯++⨯21()23399(),0313n n i -⎛⎫=⨯=-⨯ ⎪⎝⎭-(2)1111212[109()](1)[109()]2323n n n n n n n PA B PA B a S S n n+++=-=-⨯⨯+--⨯⨯△△ 125(2)()3n n -=+-⨯,(3)1122[53(2)()][53(1)()]33n n n n a a n n -+-=+-⨯-+-⨯ 112223()[(2)(1)()](4)()333n n n n n --=⨯---⨯=-⨯122334455667000000a a ,a a ,a a ,a a ,a a ,a a ,-<-<-<-=->->所以等即在数列{}n a 中,45859a a ==+是数列的最大项,所以存在最小的自然数M =6,对一切()*n N ∈都有n a <M 成立.21解:(1)设F 、B 、C 的坐标分别为(-c , 0),(0, b ),(1, 0),则FC 、BC 的中垂线分别为),21(12,21-=--=x b b y c x 联立方程组,解出 21c x -=,bc b y 22-=02212>-+-=+bc b c n m ,即0))(1(>-+c b b ,c b >∴从而22c b >,∴,212<e ∴220<<e (2)直线AB 与⊙P 不能相切。