九年级上册数学期末复习测试卷
- 格式:doc
- 大小:466.00 KB
- 文档页数:5
九年级上册数学 全册期末复习试卷检测题(WORD 版含答案)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A .2:3B .2:3C .4:9D .16:81 2.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒3.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º4.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120° 5.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1) B .(﹣2,﹣1)C .(2,﹣1)D .(0,1) 6.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.7.方程2210x x --=的两根之和是( )A .2-B .1-C .12D .12- 8.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π9.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°10.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>12.关于二次函数y =x 2+2x +3的图象有以下说法:其中正确的个数是( )①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y 轴的直线;③它与x 轴没有公共点;④它与y 轴的交点坐标为(3,0).A .1B .2C .3D .413.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( )A .12.36cmB .13.6cmC .32.386cmD .7.64cm14.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度15.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x ﹣2实数根的情况是 ( ) A .有三个实数根 B .有两个实数根C .有一个实数根D .无实数根 二、填空题16.已知tan (α+15°)=33,则锐角α的度数为______°. 17.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________.18.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.19.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.20.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.21.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)22.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AE AC,AE =2,EC =6,AB =12,则AD 的长为_____.23.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.24.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m .25.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .26.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.27.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.28.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为_____s时,△BEF是直角三角形.29.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式21220h t t=-++,则火箭升空的最大高度是___m30.已知二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),则y1_____y2.(填“>”“<”或“=”)三、解答题31.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点,取EF中点G,连接DG并延长交AB于点M,延长EF交AC于点N。
九年级数学上册全册期末复习试卷测试卷(含答案解析)一、选择题1.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度2.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐 3.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1B .m≤1C .m >1D .m <14.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .45.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.56.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x < B .2x > C .0x < D .0x > 7.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y +=8.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A.∠AED=∠B B.∠ADE=∠C C.AD DEAB BC=D.AD AEAC AB=9.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm10.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是()A.c=0 B.c=1 C.c=0或c=1 D.c=0或c=﹣1 11.如图,A,B,C,D四个点均在⊙O上,∠AOB=40°,弦BC的长等于半径,则∠ADC 的度数等于()A.50°B.49°C.48°D.47°12.下列说法正确的是()A.所有等边三角形都相似B.有一个角相等的两个等腰三角形相似C.所有直角三角形都相似D.所有矩形都相似13.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣12121322523…y…2m﹣1﹣74﹣2﹣74﹣1142…可以推断m的值为()A.﹣2 B.0 C.14D.214.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-15.如图,AB为O的切线,切点为A,连接AO BO、,BO与O交于点C,延长BO与O交于点D,连接AD,若36ABO∠=,则ADC∠的度数为( )A.54B.36C.32D.27二、填空题16.若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为_____.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.18.数据2,3,5,5,4的众数是____.19.若关于x的一元二次方程12x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.20.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.21.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04则方程ax 2+bx+c =0的一个解的范围是_____.22.抛物线()2322y x =+-的顶点坐标是______.23.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.24.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.25.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米. 26.若a b b -=23,则ab的值为________. 27.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.28.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.29.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.32.如图,宾馆大厅的天花板上挂有一盏吊灯AB ,某人从C 点测得吊灯顶端A 的仰角为35︒,吊灯底端B 的仰角为30,从C 点沿水平方向前进6米到达点D ,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB 的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)33.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43FH 的长.34.某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y (件)与单价x (元/件)之间存在一次函数关系y =﹣2x +800(200<x <400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元? (2)为使公司日销售获得最大利润,该产品的单价应定为多少元?35.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.四、压轴题36.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b=-+的图像与边OC、AB分别交于点D、E,并且满足OD BE=,M是线段DE上的一个动点(1)求b的值;(2)连接OM,若ODM△的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.37.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.38.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA=,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.39.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【详解】解:∵y=2(x-1)2+3的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y=2(x-1)2+3故选:C.【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.2.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键3.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.4.B解析:B 【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下, ∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误; ④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0), ∴A (3,0),故当y >0时,﹣1<x <3,故④正确. 故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.5.C解析:C 【解析】 【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数. 【详解】解:由题意得:(10×14+15×6)÷20=11.5, 故选:C . 【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可. .6.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 7.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.8.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;C 、AD DE AB BC =不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB=,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.9.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.10.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.11.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.13.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.14.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.15.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题16.20°【解析】【分析】先根据三角形内角和计算出∠B 的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°解析:20°【解析】【分析】先根据三角形内角和计算出∠B的度数,然后根据相似三角形的性质得到∠B′的度数.【详解】解:∵∠A=50°,∠C=110°,∴∠B=180°﹣50°﹣110°=20°,∵△ABC∽△A′B′C′,∴∠B′=∠B=20°.故答案为20°.【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边成比例,它们对应面积的比等于相似比的平方.17.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±==−1±2,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222 -≤-≤-,∴-≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.18.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.19.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】 本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.20.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,R90=25180∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.21.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19时,y=0.02,∴当y=0时,相应的自变量x的取值范围为6.18<x<6.19,故答案为:6.18<x<6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.22.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:. 【点睛】 本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2-- 【解析】【分析】 根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .23.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点. 24.【解析】【分析】作BM ⊥AC 于M ,交AD 于F ,根据三线合一定理求出BD 的长和AD ⊥BC ,根据三角形面积公式求出BM ,根据对称性质求出BF =CF ,根据垂线段最短得出CF +EF≥B M ,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.25.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.26.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23, ∴b=35a,∴a b =5335a a =, 故答案为:53. 【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 27.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.28.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴3222 -≤-≤-,∴-3≤−1−2≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.29.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可.【详解】解:设AP=xcm.则解析:2或3 【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.30.【解析】【分析】取DE 的中点F ,连接AF ,根据直角三角形斜边中点的性质得出AF =EF ,然后证得△BAF≌△DAE,得出AE =AF ,从而证得△AEF 是等边三角形,进一步证得∠ABC=60°,即可解析:32【解析】【分析】取DE 的中点F ,连接AF ,根据直角三角形斜边中点的性质得出AF =EF ,然后证得△BAF ≌△DAE ,得出AE =AF ,从而证得△AEF 是等边三角形,进一步证得∠ABC =60°,即可求得结论.【详解】取DE 的中点F ,连接AF ,∴EF =DF ,∵BE :ED =1:2,∴BE =EF =DF ,∴BF =DE ,∵AB =AD ,∴∠ABD =∠D ,∵AD ⊥AE ,EF =DF ,∴AF =EF ,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题31.(1)y=(x-1)2-4;(2)点G 坐标为(3.6,2.76),S △FHG =6.348;(3)m=0.6,四边形CDPQ 为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G 点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH ,交x 轴于点R ,由平行线的性质得证明△AQR ∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m 中,即可证明四边形CDPQ 为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y 轴交于点E (0,3-),顶点为C (1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)。
九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。
(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
九年级数学上册期末考试及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列各式中,正确的是( )A 3=-B .3=-C 3=±D 3±2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( ) A .﹣2B .﹣4C .2D .43.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣344.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩5.若α,β是方程2x 2x 20180+-=的两个实数根,则2α3αβ++的值为( ) A .2015B .2016-C .2016D .20196.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <14D .c <17.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)116.2.分解因式:ab 2﹣4ab+4a=________.3.33x x -=-,则x 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311xx x x +=--2.已知关于x 的一元二次方程x 2+x +m ﹣1=0. (1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点. (1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集;(3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G . (1)证明:ADG DCE ∆∆≌; (2)连接BF ,证明:AB FB =.5.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.6.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、C6、B7、D8、C9、B 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、a (b ﹣2)2.3、3x ≤4、425、6、(,6)三、解答题(本大题共6小题,共72分)1、x=32、(1)x 1x 2(2)m <543、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)略;(2)略.5、(1)40,补图详见解析;(2)108°;(3)16.6、(1)到2020年底,全省5G 基站的数量是6万座;(2)2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.。
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。
2. 一个正方形的边长是8厘米,它的面积是______平方厘米。
3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。
4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。
5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。
6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。
7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。
8. 一个正方形的边长是7厘米,它的周长是______厘米。
9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。
10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。
九年级数学上册期末考试题及答案【免费】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. ﹣3的绝对值是()A. ﹣3B. 3C. -D.2.已知x+ =6, 则x2+ =()A. 38B. 36C. 34D. 323. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.当1<a<2时, 代数式|a-2|+|1-a|的值是()A. -1B. 1C. 3D. -35. 下列各组数中, 能作为一个三角形三边边长的是()A. 1, 1, 2B. 1, 2, 4C. 2, 3, 4D. 2, 3, 56.一个等腰三角形的两条边长分别是方程的两根, 则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或97.如图, 某小区计划在一块长为32m, 宽为20m的矩形空地上修建三条同样宽的道路, 剩余的空地上种植草坪, 使草坪的面积为570m2.若设道路的宽为xm, 则下面所列方程正确的是()A. (32﹣2x)(20﹣x)=570B. 32x+2×20x=32×20﹣570C. (32﹣x)(20﹣x)=32×20﹣570D. 32x+2×20x﹣2x2=5708.如图, 是函数上两点, 为一动点, 作轴, 轴, 下列说法正确的是( )①;②;③若, 则平分;④若, 则A. ①③B. ②③C. ②④D. ③④9.根据圆规作图的痕迹, 可用直尺成功找到三角形外心的是()A. B.C. D.10.如图, 在矩形纸片ABCD中, AB=3, 点E在边BC上, 将△ABE沿直线AE折叠, 点B恰好落在对角线AC上的点F处, 若∠EAC=∠ECA, 则AC的长是()A. B. 6 C. 4 D. 5二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: __________.2. 分解因式: __________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4.如图, 中, 为的中点, 是上一点, 连接并延长交于, , 且, , 那么的长度为__________.5. 如图, M、N是正方形ABCD的边CD上的两个动点, 满足, 连接AC交BN于点E, 连接DE交AM于点F, 连接CF, 若正方形的边长为6, 则线段CF的最小值是__________.6. PM2.5是指大气中直径小于或等于0.0000025m的颗粒物, 将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中满足.3. 如图, 在平面直角坐标系中, 抛物线y=ax2+2x+c与x轴交于A(﹣1, 0)B (3, 0)两点, 与y轴交于点C, 点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M, 使△BDM的周长最小, 求出点M的坐标;(3)试探究:在拋物线上是否存在点P, 使以点A, P, C为顶点, AC为直角边的三角形是直角三角形?若存在, 请求出符合条件的点P的坐标;若不存在, 请说明理由.4. 如图, AD是△ABC的外接圆⊙O的直径, 点P在BC延长线上, 且满足∠PAC=∠B.(1)求证: PA是⊙O的切线;(2)弦CE⊥AD交AB于点F, 若AF•AB=12 , 求AC的长.5. 某初中学校举行毛笔书法大赛, 对各年级同学的获奖情况进行了统计, 并绘制了如下两幅不完整的统计图, 请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级, 有来自八年级, 其他同学均来自九年级, 现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛, 请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6. 东东玩具商店用500元购进一批悠悠球, 很受中小学生欢迎, 悠悠球很快售完, 接着又用900元购进第二批这种悠悠球, 所购数量是第一批数量的1.5倍, 但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同, 且全部售完后总利润不低于25%, 那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、C4、B5、C6、A7、A8、B9、C10、B二、填空题(本大题共6小题, 每小题3分, 共18分)12. ;3、增大.4、3 2;5、36.2.5×10-6三、解答题(本大题共6小题, 共72分)1、32 x=2、3.3.(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0, 3);(3)符合条件的点P的坐标为(, )或(, ﹣),4.(1)略;(2)AC=2 .5.(1)答案见解析;(2).6、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是35元.。
人教版九年级上册数学期末复习测试卷附解析学生版一、单选题1.如图,AB是⊙O的直径,CD是⊙O的弦,如果⊙ACD=36°,那么⊙BAD等于()A.36°B.44°C.54°D.56°2.如图,在⊙O中,弦AB⊙CD,OP⊙CD,OM=MN,AB=18,CD=12,则⊙O的半径为()A.4B.4√2C.4√6D.4√33.已知⊙O的半径为2cm,点P到圆心O的距离为4cm,则点P和⊙O的位置关系为()A.点P在圆内B.点P在圆外C.点P在圆上D.不能确定4.平面上有四个点,过其中任意3个点一共能确定圆的个数为()A.0或3或4B.0或1或3C.0或1或3或4D.0或1或45.如图,⊙ABC中,⊙C=90°,BC=5,⊙O与⊙ABC的三边相切于点D、E、F,若⊙O的半径为2,则⊙ABC的周长为()A.14B.20C.24D.306.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分⊙BAC,则AD长()A.4 √5cm B.3 √5cm C.5 √5cm D.4 cm7.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A.B.C.D.8.边长为1的正六边形的内切圆的半径为().A.2B.1C.D.9.如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.⊙AOB=90°,弧AB的半径OA 长是6米,C是OA的中点,点D在弧AB上,CD⊙OB,则图中休闲区(阴影部分)的面积是()A.(10π−9√32)米2B.(π−9√32)米2C.(6π−9√32)米2D.(6π−9√3)米2 10.一个扇形的半径为8cm,弧长为πcm,则扇形的圆心角为()A.60°B.120°C.150°D.180°11.用一个半径为3,面积为6π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2D.112.如图,将⊙ABC绕点C(0,﹣1)旋转180°得到⊙A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)13.如图,在⊙ABC中,⊙CAB=65°,将⊙ABC在平面内绕点A旋转到⊙AB′C′的位置,使CC′⊙AB,则旋转角的度数为()A.35°B.40°C.50°D.65.14.如图,在Rt⊙ABC中,⊙ABC=90°,AB=BC,点P在⊙ABC内一点,连接PA,PB,PC,若⊙BAP=⊙CBP,且AP = 6,则PC的最小值是()A.2√2B.3C.3√5−3D.3√2二、填空题15.已知⊙O的半径为10,弦AB//CD,AB=12,CD=16,则AB和CD的距离为. 16.如图所示,点B,D,C是⊙A上的点,⊙BCD=130°,则⊙BAD=.17.已知圆外点到圆上各点的距离中,最大值是6,最小值是1,则这个圆的半径是.18.如图,AB为⊙O直径,BC=4,AC=3,CD平分⊙ACB,则AD=.19.如图,在⊙O中,半径r=10,弦AB=16,P是弦AB上的动点,则线段OP长的最小值为.20.如图,⊙ABC中,⊙BAC=60°,⊙ABC=45°,AB= √2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最小值为.21.如图,MN是⊙O的直径,MN=2,点A在⊙O上,⊙AMN=30°,B为弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为.22.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt⊙ADE,⊙AED=90°,连接OE,DE=6,OE=8 √2,则另一直角边AE的长为.⌢的23.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是MB中点,P是直径AB上的一动点,若MN=1,则ΔPMN周长的最小值为.24.在Rt⊙ABC中,⊙ACB=90°,AC=BC=1,将Rt⊙ABC绕A点逆时针旋转30°后得到Rt⊙ADE,则图中阴影部分的面积是.25.如图,在矩形ABCD中,已知AB=2,BC=1.5,矩形在直线上绕其右下角的顶点B向右第一次旋转90°至图①位置,再绕右下角的顶点继续向右第二次旋转90°至图②位置,…,以此类推,这样连续旋转4次后,顶点A在整个旋转过程中所经过的路程之和是.26.如图,小明从纸上剪下一个圆形和一个扇形纸片,用它们恰好能围成一个圆锥模型.若圆的半径为1,扇形的圆心角为120°,则此扇形的半径为.27.现要在一个长为35m,宽为22m的矩形花园中修建等宽的小道,剩余的地方种植花草,如图,要使种植花草的面积为625m²,设小道的宽为xm,则根据题意,可列方程为.28.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且⊙ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值是;此时⌢的长度是.BHC29.如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为.30.已知,P为等边三角形ABC内一点,PA=3,PB=4,PC=5,则S⊙ABC=.三、单选题(每题3分,共30分)31.如图所示,以AB为直径的半圆,绕点B顺时针旋转60°,点A旋转到点A′,且AB=4,则图中阴影部分的面积是()A.π3B.8π3C.8D.π6四、解答题32.已知:如图所示,AD=BC。
九年级上册数学期末复习测试卷 一.选择题1. 已知反比例函数y =2x ,则这个函数的图象一定经过 的点是( )A . (2,1)B . (2,-1)C . (2,4)D . (-12,2)2. 抛物线y =-12(x -4)2-5的对称轴是( )A .直线x =-4B .直线x =-5C .直线x =5D .直线x =4. 3. 下列命题中,正确的是( )A.所有的等腰三角形都相似 B .所有的直角三角形都相似 C .所有的等边三角形都相似 D .所有的矩形都相似 4. 已知点(-2,y 1),(-1,y 2),(3,y 3)都在反比例函数x6y的图象上,那么y 1、y 2 、y 3的大小关系正确的是( )A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 25. 二次函数y=ax 2+ bx, 若a+b=1,则它的图象必经过点( )A .(-1,-1)B .(-1, 1)C .(1, -1)D .(1, 1) 6. 如图,圆O 的弦AB 垂直平分半径OC .则四边形OACB ( )A.是正方形B.是长方形C.是菱形D.以上答案都不对7. 如图,圆锥形烟囱帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帽的侧面积是( )A .4000πcm 2 B .3600πcm 2 C .2000πcm 2 D .1000πcm 2 8. 按如下方法,将△ABC 的三边缩小到原来的21,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为2: 1 ④△ABC 与△DEF 的面积比为2:1 A .1 B .2 C .3 D .49. 一个点到圆的最小距离为6cm ,最大距离为9cm ,则该圆的半径是 ( ) A 、1.5cm B 、7.5cm C 、3cm 或15cm D 、1.5cm 或7.5cm 10. 二次函数y=ax 2+x+a 2-1 的图像可能是( )二.填空题11. 如图,点A ,B ,C 都在⊙O 上,若∠C=320,则∠AOB 的度数为 .12. 普通投影仪灯泡的使用寿命约为1500小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为__________。
13. 在平面直角坐标系中,有一点A (3,4),小芳画出一个以原点O 为圆心5为半径的 ⊙O ,则点A 一定在⊙O (填“内”、“外”、或“上”).14. 一公园占地面积约为8000002m ,在比例尺为1∶2000公园示意图上,其面积约为 m 2.15. 如图,已知点F 的坐标为(3,0),点A 、B 分别是某函数图象与x 轴、y轴的交点,点P 是此图象上的一动点,设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(0≤x ≤5).则结论:①OA =5;②OB =3;③AF =2;④BF =5中,正确结论的序号是 .16. 如图,正方形OA 1B 1C 1的边长为2,以O 为圆心、OA 1为半径作弧A 1C 1交OB 1于点B 2,设弧A 1C 1与边A 1B 1、B 1C 1围成的阴影部分面积为1S ;然后以OB 2为对角线作正方形OA 2B 2C 2,又以O 为圆心、OA 2为半径作弧A 2C 2交OB 2于点B 3,设弧A 2C 2与边A 2B 2、B 2C 2围成的阴影部分面积为2S ;…,按此规律继续作下去,设弧A n C n 与边A n B n 、B n C n 围成的阴影部分面积为n S .则=1S ,=2S ,…,=n S .三.解答题 17. 已知32x y =,求y x y x 22+-的值.18. 已知二次函数图象的顶点坐标为(-1,5),且过点(0,-3),求此二次函数解析式.19. 如图,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F . (1)请写出两对..相似三角形(不必说理);(2)请直接写出含AF 的一个..比例式.20. 如图所示,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上. (1)若∠AOD =52°,求∠DEB 的度数; (2)若OC =3,OA =5,求AB 的长.21. 如图,已知点A (-4,2)、B ( n ,-4)是一次函数y=kx+b 的图象与反比例函数my x图象的两个交点 (1)求此反比例函数的解析式和点B 的坐标;(2)根据图象写出使一次函数的值小于反比例函数值的x 的取值范围.22. 如图,AB 是⊙O 的直径,点P 是⊙O 上的动点(P 与A ,B 不重合),连结AP 、PB ,过点O 分别作OE ⊥AP 于E ,OF ⊥BP 于F .(1)若AB=12,当点P 在⊙O 上运动时,线段EF 的长会不会改变.若会改变,请说明理由;若不会改变请求出EF 的长;(2)若AP=BP ,试判断四边形OEPF 是什么特殊四边形?23. 在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M 处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度332米。
如图a :以球门底部为坐标原点建立坐标系,球门PQ 的高度为2.44米.问:(1)通过计算说明,球是否会进球门?(2)如果守门员站在距离球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?(3)如图b :在另一次地面进攻中,假如守门员站在离球门中央2米远的A 点处防守,进攻队员在离球门中央12米的B 处以120千米/小时的球速起脚射门,射向球门的立柱C .球门的宽度CD 为7.2米,而守门员防守的最远水平距离S 和时间t 之间的函数关系式为S =10 t ,问这次射门守门员能否挡住球?24. 如图,在Rt △ABC 中,∠C =90o ,AB =50,AC =30,D 、E 、F 分别是AC 、AB 、BC 的中点,点P 从点D 出发沿折线DE -EF -FC -CD 以7个单位长度每秒的速度匀速运动;点Q 从点B 出发沿BA 方向以4个单位长度每秒的速度匀速运动,过点Q 作射线QK ⊥AB ,交折线BC -CA 于点G .点P 、Q 同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)D 、F 两点间的距离是 .(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值;若不能,说明理由. (3)当点P 运动到折线EF -FC 上,且点P 又恰好落在射线QK 上时,求t 的值.参考答案1、A 提示:只要是横坐标与纵坐标之积等于2就可以了;2、D 提示:二次函数顶点式的对称轴为直线x=-m3、C 提示:所有等边三角形的各边对应成比例;对应角相等;所以选C ;4、A 提示:因为x=3时,y>0;而比例系数大于0,所以y 随x 的增大而减小;所以选A ;5、D 提示:直接检验法,把每一个选项代入验证可得答案D ;6、C 提示:利用对角线互相垂直平分的四边形是菱形7、C 提示:利用圆锥的侧面积公式进行计算可得答案C8、C 提示:①②③都正确,④的面积之比为1:4;9、D 提示:点可以在圆内,也可以在圆外; 10、B 提示:通过排除法可得答案B11、64°提示:一长弧所对的圆周角等于它所对的圆心角的一半; 12、y=x150013、上 提示:点A 到原点距离为5,从而有d=r ,所以点在圆上;14、0.2 提示:比例尺可看作是相似比,则有面积比等于相似比的平方比,可求。
15、①、③、④ 16、=1S π-4 ,=2S 22π-, =n S 13221---n n π提示:都通过正方形的面积减扇形的面积来解决。
17、解:设x =3k ,y =2k ,则22x y x y -+=2324432277k k k k k k ⨯-==+⨯18、由条件可设二次函数解析式为y=a (x+1)2+5 把(0,-3)代入,23(01)5a -=++,a =-8所以二次函数解析式为28(1)5y x =-++,即28163y x x =--- 19、(1)△AFD ∽△EFC △AFD ∽△EAB 等 (2).等CEBCFE AF = 20、解:(1),∵OD ⊥AB ∴⋂AD =⋂DB 11522622DEB AOD ∴∠=∠=⨯=,(2)OD AB ⊥,AC BC ∴=,AOC △为直角三角形,3OC =,5OA =,由勾股定理可得AC =4∴AB =821、(1)反比例函数的解析式为xy 8-=,点B (2,-4) (2)一次函数的值小于反比例函数值的x 的取值范围是:-4<x <0或x >2 22、(1)EF 的长不会改变 ∵OE ⊥AP 于E ,OF ⊥BP 于F ∴AE=EP ,BF=FP ∴162EF AB == (2)四边形OEPF 是正方形∵AP=BP ,又∵OE ⊥AP 于E ,OF ⊥BP 于F ,∴OE=OF ∵AB 是⊙O 的直径,∴∠P=90°) ∴OEPF 是正方形23、解:(1)设足球经过的路线所代表的函数解析式为()332142+-=x a y , 把(30,0)代入得:241-=a ,故()332142412+--=x y 。
当0=x 时,44.25.2>=y 所以球不会进球门。
) (2)当2=x 时,314=y 75.2> 所以守门员不能在空中截住这次吊射。
(3)连结BA 并延长,交CD 于点M ,由题意M 为CD 中点,过A 作EF//CD 。
由BEA ∆∽BCM ∆可得AE =3 ∴BE =109,1001093=t ,3101093>=S 答:这次射门守门员能挡住球。
24、(1)25;- (2)能.连接DF ,过点F 作FH ⊥AB 于点H ,由四边形CDEF 是矩形,可知QK 过DF 中点O 时,QK 把矩形CDEF 分为面积相等的两部分(可利用全等三角形 借助割补法说明),因为DF 是△ABC 中位线,DF//AB , 所以此时QH =OF =12.5由BF =20,△HBF ∽△CBA ,得HB =16. 故12.5161748t +==.- (3)①当点P 在EF 上(6257x ≤≤)时, QB=4t ,DE+EP=7t ,所以EP =7t -20, 由△PQE ∽△BCA ,得7202545030t t --=,7t -35,BF =20,得5t =20+7t -35,解得t =172所以21441t =. ②当点P 在FC 上(5≤t ≤677)时,BQ=4t ,从而BP =5t ,由PF = ABE F P D· C QK G ABEFP (G ) D·C Q K。