数值分析实验报告总结
- 格式:docx
- 大小:21.45 KB
- 文档页数:6
数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。
在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。
【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。
我们选择了经典的插值和数值积分问题来进行实验。
【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。
通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。
通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。
在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。
这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。
实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。
【实验结果】我以一个实际问题作为例子来展示实验结果。
问题是计算半径为1的圆的面积。
通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。
最后将每个扇形的面积相加,即可得到圆的近似面积。
通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。
在插值问题中,我选择了一段经典的函数进行插值研究。
通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。
同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。
【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。
我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。
在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。
总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。
2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeiostreamusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;kn-1;k++){for(j=k,i=k;jn;j++){if(j==k)temp=fabs(a[j][k]);else if(tempfabs(a[j][k])){temp=fabs(a[j][k]);i=j;}}if(temp==0){cout"无解\n; return;}else{for(j=k;jn;j++){temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;in;i++) {l=a[i][k]/a[k][k];for(j=k;jn;j++)a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}if(a[n-1][n-1]==0){cout"无解\n;return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i=0;i--){temp=0;for(j=i+1;jn;j++)temp=temp+a[i][j]*x[j];x[i]=(b[i]-temp)/a[i][i];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}//平方根法void pfg(double **a,double *b,int n)int i,k,m;double x[8],y[8],temp;for(k=0;kn;k++){temp=0;for(m=0;mk;m++)temp=temp+pow(a[k][m],2);if(a[k][k]temp)return;a[k][k]=pow((a[k][k]-temp),1.0/2.0);for(i=k+1;in;i++){temp=0;for(m=0;mk;m++)temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k]; }temp=0;for(m=0;mk;m++)temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k=0;k--){temp=0;for(m=k+1;mn;m++)temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10]; for(i=0;in;i++){a0[i]=a[i][i];if(in-1)c[i]=a[i][i+1];if(i0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;in-1;i++){b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;in;i++)y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;in;i++){printf("x%d=%lf\t",i+1,x[i]); printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;in;i++){A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout"第一题(Gauss列主元消去法):"endlendl; cout"请输入阶数n:"endl;cinn;cout"\n请输入系数矩阵:\n\n";for(i=0;in;i++)for(j=0;jn;j++){篇三:数值分析实验报告(包含源程序) 课程实验报告课程实验报告。
一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。
为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。
二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。
三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。
四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。
2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。
3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。
4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。
5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。
数值分析实验报告模板篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。
本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。
利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。
即若x0 偏离所求根较远,Newton法可能发散的结论。
并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。
前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。
掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收敛,但精度不够。
熟悉Matlab语言编程,学习编程要点。
体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。
数学原理:对于一个非线性方程的数值解法很多。
在此介绍两种最常见的方法:二分法和Newton法。
对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk)产生逼近解x*的迭代数列{xk},这就是Newton法的思想。
当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。
另外,若将该迭代公式改进为xk?1?xk?rf(xk) 'f(xk)其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。
程序设计:本实验采用Matlab的M文件编写。
其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。
一、实习背景数值分析是数学的一个重要分支,它研究如何用数值方法求解数学问题。
随着计算机技术的飞速发展,数值分析在各个领域得到了广泛的应用。
为了提高自己的实践能力,我选择了数值分析作为实习课题,希望通过这次实习,能够掌握数值分析的基本方法,并将其应用于实际问题中。
二、实习过程1. 实习初期在实习初期,我首先了解了数值分析的基本概念、理论和方法。
通过阅读相关教材和文献,我对数值分析有了初步的认识。
接着,我学习了数值分析的基本方法,如泰勒展开、牛顿法、高斯消元法等。
2. 实习中期在实习中期,我选择了几个实际问题进行数值计算。
首先,我使用泰勒展开法求解一个简单的微分方程。
通过编写程序,我得到了微分方程的近似解。
然后,我运用牛顿法求解一个非线性方程组。
在实际计算过程中,我遇到了一些问题,如收敛性、迭代次数过多等。
通过查阅资料和请教导师,我找到了解决方法,成功求解了方程组。
3. 实习后期在实习后期,我进一步学习了数值分析的高级方法,如复化梯形公式、复化Simpson公式、自适应梯形法等。
这些方法在解决实际问题中具有更高的精度和效率。
我选择了一个具体的工程问题,运用复化梯形公式求解定积分。
在计算过程中,我遇到了区间细分、精度控制等问题。
通过不断尝试和调整,我得到了较为精确的积分值。
三、实习收获与体会1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。
在实习过程中,我不仅学习了数值分析的理论知识,还将其应用于实际问题中。
这使我更加深刻地理解了数值分析的基本方法,提高了自己的实践能力。
2. 严谨的学术态度在实习过程中,我养成了严谨的学术态度。
在编写程序、进行数值计算时,我注重细节,力求精确。
这使我更加注重学术规范,提高了自己的学术素养。
3. 团队合作精神实习过程中,我与其他同学进行了交流与合作。
在解决实际问题时,我们互相学习、互相帮助,共同完成了实习任务。
这使我更加懂得团队合作的重要性,提高了自己的团队协作能力。
误差分析实验1.1(问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。
对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。
通过本实验可获得一个初步体会。
数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。
病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。
问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。
现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。
这相当于是对(1.1)中19x 的系数作一个小的扰动。
我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。
实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。
roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。
设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a的全部根;而函数poly(v)b =的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。
可见“roots ”和“poly ”是两个互逆的运算函数。
;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =))20:1((ve poly roots +上述简单的Matlab 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。
实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。
数值实验题1实验1.1 病态问题实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。
对数值方法的研究而言,所谓坏问题是指问题本身对扰动敏感,反之属于好问题。
本实验通过对一个高次多项式方程的求解,初步认识病态问题。
实验内容:考虑一个高次的代数多项式201()(1)(2)(20)()k p x x x x x k ==---=-∏ (E.1.1)显然该多项式的全部根为1,2,…,20,共计20个,且每个根都是单重的(也称为简单的)。
现考虑该多项式的一个扰动 19()0p x x ε+=, (E.1.2)其中,ε是一个非常小的数。
这相当于是对方程(E.1.1)中x 19的系数作一个小的扰动。
比较方程(E.1.1)和方程(E.1.2)根的差别,从而分析方程(E.1.1)的解对扰动的敏感性。
实验步骤与结果分析:(一) 实验源程序function t_charpt1_1% 数值实验1.1病态问题% 输入:[0 20]之间的扰动项及小的扰动常数 % 输出:加扰动后得到的全部根 clcresult=inputdlg({'请输入扰动项:在[0 20]之间的整数:'},'charpt 1_1',1,{'19'}); Numb=str2num(char(result));if((Numb>20)|(Numb<0))errordlg('请输入正确的扰动项:[0 20]之间的整数!');return;endresult=inputdlg({'请输入(0 1)之间的扰动常数:'},'charpt 1_1',1,{'0.00001'}); ess=str2num(char(result)); ve=zeros(1,21); ve(21-Numb)=ess;root=roots(poly(1:20)+ve);x0=real(root); y0=imag(root); plot(x0',y0', '*');disp(['对扰动项 ',num2str(Numb),'加扰动',num2str(ess),'得到的全部根为:']); disp(num2str(root));(二)实验结果分析(1)对于x19项的扰动ess,不同的取值对应的结果如下所示。
一、实验名称数值分析实验二、实验目的1. 掌握数值分析的基本概念和方法。
2. 理解并应用插值法、数值积分、数值微分、数值解法等数值分析的基本方法。
3. 提高数值计算能力和编程能力。
三、实验内容1. 插值法1.1 拉格朗日插值法1.2 牛顿插值法1.3 线性插值法1.4 拉格朗日插值法与牛顿插值法的比较2. 数值积分2.1 牛顿-科特斯公式2.2 帕普斯公式2.3 比较牛顿-科特斯公式与帕普斯公式的精度3. 数值微分3.1 前向差分法3.2 后向差分法3.3 中点差分法3.4 比较三种差分法的精度4. 数值解法4.1 线性方程组的迭代法4.2 非线性方程的迭代法4.3 比较不同迭代法的收敛速度四、实验步骤1. 插值法1.1 输入插值点的数据,使用拉格朗日插值法计算插值多项式。
1.2 使用牛顿插值法计算插值多项式。
1.3 使用线性插值法计算插值多项式。
1.4 比较三种插值法的精度。
2. 数值积分2.1 输入被积函数和积分区间,使用牛顿-科特斯公式进行数值积分。
2.2 使用帕普斯公式进行数值积分。
2.3 比较两种数值积分方法的精度。
3. 数值微分3.1 输入函数和求导点的数据,使用前向差分法、后向差分法和中点差分法计算导数。
3.2 比较三种差分法的精度。
4. 数值解法4.1 输入线性方程组或非线性方程,使用迭代法求解方程组或方程。
4.2 比较不同迭代法的收敛速度。
五、实验结果与分析1. 插值法通过比较三种插值法的精度,得出以下结论:- 线性插值法精度最低。
- 拉格朗日插值法与牛顿插值法精度较高,但牛顿插值法在计算过程中需要计算多项式的导数,增加了计算量。
2. 数值积分通过比较牛顿-科特斯公式与帕普斯公式的精度,得出以下结论:- 牛顿-科特斯公式精度较高。
- 帕普斯公式精度较低。
3. 数值微分通过比较三种差分法的精度,得出以下结论:- 中点差分法精度最高。
- 后向差分法次之。
- 前向差分法精度最低。
4. 数值解法通过比较不同迭代法的收敛速度,得出以下结论:- 牛顿迭代法收敛速度最快。
第1篇一、实验目的本次实验旨在通过数值分析方法对一组已知数据点进行拟合,掌握线性插值、多项式插值、样条插值等方法的基本原理和实现过程,并学会使用MATLAB进行数值拟合。
二、实验内容1. 线性插值线性插值是一种简单的插值方法,适用于数据点分布较为均匀的情况。
其基本原理是通过两个相邻的数据点,利用线性关系拟合出一条直线,然后通过该直线来估算未知的值。
2. 多项式插值多项式插值是一种较为精确的插值方法,通过构造一个多项式函数来逼近已知数据点。
其基本原理是利用最小二乘法求解多项式的系数,使得多项式在已知数据点上的误差最小。
3. 样条插值样条插值是一种更灵活的插值方法,通过构造一系列样条曲线来逼近已知数据点。
其基本原理是利用最小二乘法求解样条曲线的系数,使得样条曲线在已知数据点上的误差最小。
三、实验步骤1. 线性插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`linspace`生成插值点:xi = linspace(1, 5, 100);(3)使用MATLAB内置函数`interp1`进行线性插值:yi = interp1(x, y, xi, 'linear');(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');2. 多项式插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`polyfit`求解多项式系数:p = polyfit(x, y, 3);(3)使用MATLAB内置函数`polyval`进行多项式插值:yi = polyval(p, xi);(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');3. 样条插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`spline`进行样条插值:yi = spline(x, y, xi);(3)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');四、实验结果与分析1. 线性插值线性插值方法简单易行,但精度较低,适用于数据点分布较为均匀的情况。
数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。
本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。
实验一:方程求根方程求根是数值分析中的基础问题之一。
我们选取了一个非线性方程进行求解。
首先,我们使用二分法进行求解。
通过多次迭代,我们得到了方程的一个近似解。
然后,我们使用牛顿法进行求解。
与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。
通过比较两种方法的结果,我们验证了牛顿法的高效性。
实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。
我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。
通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。
同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。
实验三:数值积分数值积分是数值分析中的重要内容之一。
我们选取了一个定积分进行计算。
首先,我们使用复化梯形公式进行积分计算。
通过增加分割区间的数量,我们得到了更精确的结果。
然后,我们使用复化辛普森公式进行积分计算。
与复化梯形公式相比,复化辛普森公式具有更高的精度。
通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。
实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。
我们选取了一个常微分方程进行数值解的计算。
首先,我们使用欧拉方法进行数值解的计算。
然后,我们使用改进的欧拉方法进行数值解的计算。
通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。
实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。
我们选取了一个线性方程组进行数值解的计算。
首先,我们使用高斯消元法进行数值解的计算。
然后,我们使用追赶法进行数值解的计算。
通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。
数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。
本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
实验所依赖的主要库包括 NumPy、Matplotlib 等。
三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。
2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。
(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。
2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。
(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。
2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。
(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。
2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。
四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。
根据给定的数据点和待求点,计算插值多项式的值。
输出插值结果,并与真实值进行比较。
2、牛顿插值法计算差商表。
构建牛顿插值多项式。
进行插值计算和结果分析。
(二)数值积分1、梯形公式定义积分区间和被积函数。
按照梯形公式计算积分近似值。
分析误差。
2、辛普森公式同样定义积分区间和被积函数。
运用辛普森公式计算积分近似值。
比较与梯形公式的精度差异。
(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。
进行消元操作。
回代求解方程。
输出解向量。
2、 LU 分解法对系数矩阵进行 LU 分解。
第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。
通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。
二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。
而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。
2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。
幂法在处理大型稀疏矩阵时表现出较好的性能。
3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。
拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。
数值分析实验报告篇一:数值分析实验报告(一)(完整)数值分析实验报告12345篇二:数值分析实验报告数值分析实验报告课题一:解线性方程组的直接方法1.实验目的:1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;4、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。
2.实验过程:实验代码:#include "stdio.h"#include "math.h"#includeusing namespace std;//Gauss法void lzy(double **a,double *b,int n) {int i,j,k;double l,x[10],temp;for(k=0;k {for(j=k,i=k;j {if(j==k)temp=fabs(a[j][k]);else if(temp {temp=fabs(a[j][k]);i=j;}}if(temp==0){cout return;}elsefor(j=k;j {temp=a[k][j];a[k][j]=a[i][j];a[i][j]=temp;}temp=b[k];b[k]=b[i];b[i]=temp;}for(i=k+1;i {l=a[i][k]/a[k][k];for(j=k;j a[i][j]=a[i][j]-l*a[k][j]; b[i]=b[i]-l*b[k];}}if(a[n-1][n-1]==0){cout return;}x[n-1]=b[n-1]/a[n-1][n-1];for(i=n-2;i>=0;i--)temp=0;for(j=i+1;j temp=temp+a[i][j]*x[j]; x[i]=(b[i]-temp)/a[i][i];}for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}//平方根法void pfg(double **a,double *b,int n) {int i,k,m;double x[8],y[8],temp;for(k=0;k {temp=0;for(m=0;m temp=temp+pow(a[k][m],2); if(a[k][k] return;a[k][k]=pow((a[k][k]-temp),1.0/2.0); for(i=k+1;i {temp=0;for(m=0;m temp=temp+a[i][m]*a[k][m]; a[i][k]=(a[i][k]-temp)/a[k][k];}temp=0;for(m=0;m temp=temp+a[k][m]*y[m];y[k]=(b[k]-temp)/a[k][k];}x[n-1]=y[n-1]/a[n-1][n-1];for(k=n-2;k>=0;k--){temp=0;for(m=k+1;m temp=temp+a[m][k]*x[m];x[k]=(y[k]-temp)/a[k][k];}for(i=0;i {printf("x%d=%lf\t",i+1(转自:小草范文网:数值分析实验报告),x[i]);printf("\n");}}//追赶法void zgf(double **a,double *b,int n){int i;double a0[10],c[10],d[10],a1[10],b1[10],x[10],y[10];for(i=0;i {a0[i]=a[i][i];if(i c[i]=a[i][i+1];if(i>0)d[i-1]=a[i][i-1];}a1[0]=a0[0];for(i=0;i {b1[i]=c[i]/a1[i];a1[i+1]=a0[i+1]-d[i+1]*b1[i];}y[0]=b[0]/a1[0];for(i=1;i y[i]=(b[i]-d[i]*y[i-1])/a1[i];x[n-1]=y[n-1];for(i=n-2;i>=0;i--)x[i]=y[i]-b1[i]*x[i+1];for(i=0;i {printf("x%d=%lf\t",i+1,x[i]);printf("\n");}}int main(){int n,i,j;double **A,**B,**C,*B1,*B2,*B3;A=(double **)malloc(n*sizeof(double)); B=(double **)malloc(n*sizeof(double));C=(double **)malloc(n*sizeof(double));B1=(double *)malloc(n*sizeof(double));B2=(double *)malloc(n*sizeof(double));B3=(double *)malloc(n*sizeof(double));for(i=0;i {A[i]=(double *)malloc((n)*sizeof(double));B[i]=(double*)malloc((n)*sizeof(double));C[i]=(double*)malloc((n)*sizeof(double)); }cout cin>>n;cout for(i=0;i for(j=0;j篇三:数值分析实验报告(包含源程序)课程实验报告课程实验报告。
实验一、误差分析一、实验目的1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。
二.实验原理误差问题是数值分析的基础, 又是数值分析中一个困难的课题。
在实际计算中, 如果选 用了不同的算法,由于舍入误差的影响, 将会得到截然不同的结果。
因此, 选取算法时注重 分析舍入误差的影响, 在实际计算中是十分重要的。
同时, 由于在数值求解过程中用有限的 过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。
注意到y 20 1 ( 1 1 ) 0.0 0 8 7 3 0取 20 20 1 0 5 1 2 6 .:四.实验程序及运行结果 程序一 : t=log(6)-log(5);n=1;y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1;实验内容对 n 0,1,2, ,20 ,计算定积分y n nx x5dx算法 1:利用递推公式1 y n 5y n 1 n n 1,2, ,201 y 0dx ln6 ln5 0.18 2322 取 0 x 5 . 算法 2:利用递推公式11 y n 1 5n5y nn 20,19, ,1 11261 x 20dx 60 1 20 1 0x x 5dx 51 0 x 20dx 1 105endyy =0.0884y =0.0581y =0.0431y =0.0346y =0.0271y =0.0313y =-0.0134y =0.1920y =-0.8487y =4.3436y =-21.6268y =108.2176y =-541.0110y =2.7051e+003y =-1.3526e+004y =6.7628e+004y =-3.3814e+005y =1.6907e+006y =-8.4535e+006y =4.2267e+007程序2:y=zeros(20,1);n=1;y1=(1/105+1/126)/2;y(20)=y1;for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end运行结果:y =0.08840.05800.04310.03430.02850.02120.01880.01690.01540.01410.01300.01200.01120.01050.00990.00930.0089实验二、插值法一、实验目的1、理解插值的基本概念,掌握各种插值方法,包括拉格朗日插值和牛顿插值等,注意其不同特点;2、通过实验进一步理解并掌握各种插值的基本算法。
数值分析实习报告总结首先,我想对我所参加的数值分析实习课程表示由衷的感谢。
这次实习让我对数值分析这门学科有了更深入的理解,并且让我在实际操作中掌握了许多有用的技能和知识。
在这篇实习报告总结中,我将回顾我在实习过程中的学习经历,总结我在实习中学到的主要内容,并分享我的一些感悟。
实习的第一周,我主要学习了数值分析的基本概念和方法。
通过阅读教材和参加课堂讨论,我了解了数值分析的重要性以及在工程、科学和商业领域中的应用。
我学习了插值、线性代数、微分方程等数值方法的原理和实现方式。
此外,我还通过实际编程练习,掌握了使用数值分析方法解决实际问题的基本技能。
在实习的第二周,我深入学习了Lagrange插值和数值线性代数。
我了解到Lagrange插值是一种构造多项式以通过一组给定的点的方法,它在插值和逼近方面有广泛的应用。
通过编写代码实现Lagrange插值算法,我学会了如何利用已知的数据点来预测未知的点。
此外,我还学习了数值线性代数中的矩阵运算、特征值问题和线性方程组的求解方法,这些方法对于解决实际问题非常重要。
在实习的第三周,我学习了数值微积分和数值求解微分方程的方法。
我了解到数值微积分是利用数值方法近似计算积分和导数的过程,它在信号处理和物理模拟等领域有广泛应用。
通过编写代码实现数值积分和数值导数算法,我学会了如何近似计算函数的积分和导数。
此外,我还学习了如何使用数值方法求解常微分方程和偏微分方程,这些方法对于解决工程和科学领域中的问题非常重要。
在实习的过程中,我也遇到了一些困难和挑战。
例如,在实现数值算法时,我常常会遇到编程错误和数值误差的问题。
通过与同学和老师的讨论和交流,我学会了如何调试代码和减小数值误差的方法。
这些经验让我更加熟悉编程和数值分析的方法,并且提高了我的问题解决能力。
通过这次数值分析实习,我不仅学到了许多关于数值分析的知识和技能,还提高了自己的编程能力和问题解决能力。
我相信这些知识和技能将在我未来的学习和工作中发挥重要作用。
数值分析实验报告总结
随着电子计算机的普及与发展,科学计算已成为现代科
学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。
通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。
算法算法是指由基本算术运算及运算顺序的规定构成的完
整的解题步骤。
算法可以使用框图、算法语言、数学语言、自然语言来进行描述。
具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。
误差
计算机的计算结果通常是近似的,因此算法必有误差,
并且应能估计误差。
误差是指近似值与真正值之差。
绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。
误差来源见表
第三章泛函分析泛函分析概要
泛函分析是研究“函数的函数”、函数空间和它们之间
变换的一门较新的数学分支,隶属分析数学。
它以各种学科
如果
a 是相容范数,且任何满足
为具体背景,在集合的基础上,把客观世界中的研究对象抽
范数
范数,是具有“长度”概念的函数。
在线性代数、泛函
分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。
这里以
Cn 空间为例,
Rn 空间类似。
最常用的范数就是 P-范数。
那么
当P 取1, 2 ,s 的时候分别是以下几种最简单的情形:
其中2-范数就是通常意义下的距离。
对于这些范数有以下不等式:
1 < n1/2
另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1
么有赫德尔不等式:
II = ||xH*y|
当p=q=2时就是柯西-许瓦兹不等式
般来讲矩阵范数除了正定性,齐次性和三角不等式之
矩阵范数通常也称为相容范数。
象为元素和空间。
女口:距离空间,赋范线性空间,
内积空间。
1-范数:
1= x1 + x2 +?+ xn
2-范数:
x 2=1/2
8 -范数:
8 =max
oo
,那
外,还规定其必须满足相容性:
所以
a的范数p都不是相容范数,那么称为极小范数。
对于n阶实方阵全体上的任何一个范数,总存
在唯一的实数k>0,使得k 是极小范数。
注:如果不考虑相容性,那么矩阵范数和向量范数就没
有区别,因为mxn矩阵全体和mn维向量空间同构。
引入相
容性主要是为了保持矩阵作为线性算子的特征,这一点和算
子范数的相容性一致,并且可以得到Mincowski定理以外的
信息。
本学期讲解过的主要算法列举如下:线性方程组的解
法;非线性方程的求根方法;矩阵特征值与特征向量的计算;
函数的插值方法;最佳平方逼近;数值积分与数值微分;常微分方程初值问题的数值解法。
下面对主要算法进行分析。
线性方程组的解法本章学习了一些求解线性方程组的常用方法,其
中
Gauss消元法,列主元消元法,LU分解法,追赶法和LDL'
分解法都是解线性方程组的直接方法;而Jacobi迭代法和
SOR法则是解线性方程组的基本迭代法。
求解线性方程组时,应该注意方程组的性态,对病态方程组使用通常求解方程组的方法将导致错误。
迭代求精法可用于求解某些病态方程。
高斯列主元LU分解法求解线性方程组
高斯消元法和LU分解法是直接法求解线性方程组中的
两种方法。
其中高斯消元法的基本思想是将线性方程组()通
过消元,逐步化为同解的三角形方程组,然后用回代法解出
n个解。
高斯列主元消元法则是在高斯消元法的基础上提
(k?1)(k?1)a?0akkkk 出的先选主元再消元的方法,避免
了时消元无法进行或者是当的绝
(k?1)a(i?k?1,k?2,ik 对值与其下方的元素,n)的绝对
值之比很小时,引起计算机
上溢或产生很大的舍入误差而导致所求出的解失真的
问题。
LU分解法是将矩阵A用一个下三角矩阵和一个上三角
矩阵之积来表示,即A?LU,然后由A?LU, Ax?b,得LUx?b,
将线性方程组的求解化为对两个三角形方程组Ly?b 和Ux?y 的求解,由此可解出线性方程组的n个解x1,x2,,xn 。
这两种求解线性方程组的方法在处理单个线性方程组时没有差
别,只是方法的不同,但在处理系数矩阵A相同,而右端项
不同的一组线性方程组时,LU分解法就有明显的优势,因为它是将系数矩阵A和右端项b分开处理的,这样就可以只进
行一次分解。
例如,求解线性方程组Ax?bi,i?1,2,,m ,用高斯消元法求解的计算量1313mnn?mn2
大约为3,而用LU分解求解的计算量约为3,后者计算
量显然小很多。
但是LU分解法同样有可能由于ujj的绝对
值很小而引起计算机上溢或产生很
大的舍入误差而导致所求出的解失真。
因此提出了结合
高斯列主元消元的LU分解法。
我们采用的计算方法是先将 曰牛、
A 矩阵进行高斯列主元消
元,然后再计算相应的 L 矩阵和U
矩阵。
但要注意,第 k 步 消元时会产生 mik(i?k?1,k?2,,n),从而可以得到 L 矩阵的 第k 列元素,但在下一步消元前选取列主元时可能会交换方 程的位置,因此与方程位置对应的 L 矩阵中的元素也要交换
位置。
非线性方程组的求根方法 本章学习的二分法简单迭代法、
Newton 迭代法等方法,
代表着求解非线性方程所采用的两类方法。
大范围收敛方法 的初值x0选取没有多少限制,只要在含根区间任选其一即
为代表的各类迭代法都属这类方法。
迭代法
个近似根,将f(x)在
f'(x0)f(x)?f(x0)?f(x0)(x?x0)?(x?x0)2?x0
Taylor 展开得2!'
,若取其
'x?x?f(x)/f(x0) ,然后再对x1做f(x)100前两项来近
似代替,得近似方程的根
'f 上述同样处理,继续下去,一般若 (xk)?0,则可以构
可,二分法就是这类方法。
局部收敛法要求 x0要充分靠近 根X*才能保证收敛,以简单迭代法为基础,
Newton 迭代法
牛顿迭代法的构造过程是这样的:设 X0 是 f(x)?O 的
造出迭代格式
xk?1?xk?f(xk)
f(xk)
此格式称为牛顿迭代格式,用它来求解f(x)?0 的方法
称为牛顿迭代法。
顿迭代法的几何意义是用f(x)在xk处
的切线与x轴得交点作为下一个迭代点xk?1的。
由于这
特点,牛顿迭代法也常称为切线法。
牛顿迭代法虽然收敛很快,但它通常过于依赖初值x0 的选取,如果x0选择不当,将导致迭代发散或产生无限循
环。
矩阵特征值与特征向量的计算
本章学习了计算矩阵特征值和特征向量的三种常用的
有效方法。
幕法是求矩阵的主特征值和对应特征向量的一种迭代
方法。
它在计算过程中原始举证A始终不变。
这种方法简单
方便,适用于任意类型的矩阵,特别适用于。