复杂网络基础1(M.Chang)
- 格式:pdf
- 大小:591.67 KB
- 文档页数:83
第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。
即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。
即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。
第二章複雜網路の基礎知識2.1 網路の概念所謂“網路”(networks),實際上就是節點(node)和連邊(edge)の集合。
如果節點對(i,j)與(j,i)對應為同一條邊,那麼該網路為無向網路(undirected networks),否則為有向網路(directed networks)。
如果給每條邊都賦予相應の權值,那麼該網路就為加權網路(weighted networks),否則為無權網路(unweighted networks),如圖2-1所示。
圖2-1 網路類型示例(a) 無權無向網路(b) 加權網路(c) 無權有向網路如果節點按照確定の規則連邊,所得到の網路就稱為“規則網路”(regular networks),如圖2-2所示。
如果節點按照完全隨機の方式連邊,所得到の網路就稱為“隨機網路”(random networks)。
如果節點按照某種(自)組織原則の方式連邊,將演化成各種不同の網路,稱為“複雜網路”(complex networks)。
圖2-2 規則網路示例(a) 一維有限規則網路(b) 二維無限規則網路2.2 複雜網路の基本特徵量描述複雜網路の基本特徵量主要有:平均路徑長度(average path length )、簇係數(clustering efficient )、度分佈(degree distribution )、介數(betweenness )等,下麵介紹它們の定義。
2.2.1 平均路徑長度(average path length )定義網路中任何兩個節點i 和j 之間の距離l ij 為從其中一個節點出發到達另一個節點所要經過の連邊の最少數目。
定義網路の直徑(diameter )為網路中任意兩個節點之間距離の最大值。
即}{max ,ij ji l D = (2-1) 定義網路の平均路徑長度L 為網路中所有節點對之間距離の平均值。
即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 為網路節點數,不考慮節點自身の距離。
复杂网络系统的基础和应用一、引言随着信息技术的发展,网络系统在社会经济领域中的应用越来越广泛。
复杂网络系统已经成为一个热门话题,它涉及计算机科学、物理学、生物学、社会学、经济学等多个领域。
在网络系统的建立和维护过程中,需要考虑到复杂网络系统的基础和应用,这对于我们建立高效、稳定的网络系统至关重要。
二、复杂网络系统的基础1.什么是复杂网络系统?复杂网络系统是指由大量的节点和链接组成的网络,在这个系统中,节点之间的联系构成了一个复杂的网络结构。
2.复杂网络系统的分类复杂网络系统可以按照不同的方式进行分类,例如:根据节点的属性,网络的拓扑结构或者是节点之间的联系分布等。
3.节点的度数分布节点的度数是指与某个节点相连的边数,度数分布是指网络中各个节点的度数占比。
4.网络的拓扑结构网络的拓扑结构可以分为完全图、随机图、小世界网络、无标度网络等不同类型。
这些类型的网络结构具有不同的特点,需要根据实际需求来选择合适的结构。
5.网络中的聚类系数和平均路径长度聚类系数和平均路径长度反映了网络中节点之间的联系密切程度和信息传递的效率。
6.网络的模型与算法网络模型和算法是构建复杂网络系统的关键部分,例如:Erdos-Renyi模型、Watts-Strogatz模型、Barabasi-Albert模型等多种模型,以及PageRank算法、社区发现算法等。
三、复杂网络系统的应用1.社交网络社交网络是最为广泛的应用之一,其涵盖了各个行业和领域。
社交网络系统需要考虑到用户之间的互动、信息传递及数据处理等。
2.金融网络金融网络系统涵盖金融市场、银行系统、保险及证券交易等各个方面。
在金融网络系统中需要考虑到对已经存在的网络进行监管和风险控制等方面的问题。
3.交通网络交通网络系统涵盖城市交通、物流、航空、铁路及船运等方面。
在交通网络系统中需要考虑到管理及优化不同交通方式之间的协调与有效性。
4.生态网络生态网络系统涵盖了水、空气及土壤污染、气候变化等方面,需要通过复杂网络系统来理解和解决这些问题。
复杂⽹络基本概念1.复杂⽹络:随机⽹络,⼩世界⽹络和⽆标度⽹络2.⼩世界⽹络的属性:平均路径长度(Average Path Length,APL)⼩于正则⽹络的;⼩世界⽹络具有较低的平均聚类系数(Average Clustering Coefficient,ACC)3.复杂⽹络⾯对的挑战:⾼数据量;物理系统到真实复杂⽹络模型映射过程中的复杂性;⾼计算复杂性4.图信号处理将经典信号处理中的概念和⼯具(如平移,卷积,傅⾥叶变换,滤波器组和⼩波变换)扩展应⽤于任意⽹络中的数据5.加权图,有向图6.图在计算机的存储器中⽤矩阵表⽰,如邻接矩阵,关联矩阵,权重矩阵,度矩阵以及拉普拉斯矩阵等。
7.如果在两个节点之间存在多条边,称该图为多重图(multigraph);如果存在⾃环,则称该图为伪图(pseudograph)8.包含原始图所有顶点的⼦图称为⽣成⼦图(spanning subgraph)9.图g的补图是指与图G具有同样的顶点集,但边集中的边则由那些在图g中不存在的边组成,也称为反向图(inverse graph)10.图在计算机中以矩阵或者链表的⽅式存储11.权重矩阵:图的权重矩阵包含图中相应边的权重。
权重矩阵是图的拓扑结构的完整表⽰。
所有的其他矩阵(邻接,度,拉普拉斯)都可以通过权重矩阵推导得出。
对于⾮加权图,权重矩阵和邻接矩阵是⼀样的。
12.邻接矩阵:包含图连接的N*N矩阵13.关联矩阵:每⼀⾏对应图中的⼀个顶点,⽽每⼀列对应图中的⼀条边。
14.度矩阵:是⼀个对⾓线矩阵,在对⾓线上包含了顶点的度。
节点的度是所有与该节点相关联的边的权重之和。
⼀些⼤的⽹络通常通过度的频率分布来刻画。
15.拉普拉斯矩阵:L=D-W,D是图的度矩阵,W是图的权重矩阵。
具有正边权重的⽆向图的拉普拉斯矩阵的基本性质:对称性;每⼀⾏之和为0,具有奇异性,det(L)=0;半正定;其特征值是⾮负实数。
16.归⼀化拉普拉斯矩阵:L(norm)=D(-1/2)LD^(-1/2)17.有向拉普拉斯矩阵:L=Din-W; Din是⼊度矩阵18.基本图测度:平均邻居度(AND),平均聚类系数(ACC,局部连通性属性),平均路径长度(APL,全局⽹络属性),平均边长度(AEL),图的直径和体积。
复杂网络的理论及应用随着科技的不断发展,人们的生活和社会组织方式也在不断变化。
在这个过程中,网络的作用越来越显著。
复杂网络作为网络科学的一支重要学科,研究的是网络的结构和性质。
通过探究网络中节点的联系及其交互关系,为许多实际问题提供了解决思路。
1. 复杂网络的理论复杂网络学理论基础主要有三个方面:图论、随机过程、统计物理学。
图论是复杂网络学理论的基础,它将复杂网络看作由节点和边构成的图。
随机过程是强大的工具,它可以描述复杂网络的动态演化。
统计物理学则为复杂网络提供了相当严密的理论基础,将网络中的节点当作对象,基于概率论和热力学的基本假设,研究网络的各种性质。
在以上基础上,复杂网络的理论发展主要包括以下几个方面:1.1. 网络的基本属性网络的基本属性包括:度数分布、聚类系数和平均路径长度。
其中,度数分布指的是每个节点拥有的链接数,而聚类系数和平均路径长度则分别描述了节点间的紧密程度和短距离程度。
1.2. 小世界效应小世界网络是指网络具有高聚类系数和短路径长度的共同特点。
研究表明,许多真实网络都具有小世界特性,表现为较高的聚集指数和较短的平均路径长度。
这种现象被称为小世界效应。
1.3. 无标度网络与节点重要性无标度网络是指网络中节点度数分布呈幂律分布。
具有该特性的网络具有重要的节点。
研究表明,少数节点在网络中的重要性远高于其他节点,这些节点被称为“关键节点”。
识别和保护这些关键节点对于网络的稳定性和鲁棒性至关重要。
1.4. 阻尼振荡阻尼振荡是复杂网络中的一种现象,它可以描述节点之间的同步现象。
研究表明,网络的结构和同步现象密切相关,不同的结构会导致不同的同步行为。
2. 复杂网络的应用复杂网络的应用广泛,尤其在社会学、生物学等领域中有着非常重要的地位。
下面分别介绍常见的应用领域。
2.1. 社交网络社交网络指的是人与人之间的联系网络。
研究表明,社交网络中的节点和联系具有很多特性,比如关闭性、传染性等。
基于这些特性,社交网络可以应用于疾病的传播、信息的传递等领域。
复杂网络的基本统计特征理论知识复杂网络的基本统计特征理论知识2.1 路网拥挤核2.1.1路网拥挤核的定义路网的总体拥堵评估,用路网拥挤核这一指标来进行评估。
路网拥挤核为路段拥挤度居全网前k%且相互连通成为一个局部网络,并且不能忽略的是,该网络对于所研究区域整体的人口,经济,政策等与人类活动的因素有着不可忽视的作用,那么这个城市道路局部网络,称为路网拥挤核。
2.1.2路网拥挤核k 值的计算根据宁波市交通工程的实际情况,考虑到宁波市的经济社会发展水平以及交通需求水平,利用宁波市的GDP 增长率、国省道日均流量增长比以及汽车拥有量增长比这三个指标,运用以下公式:;(2.1)本文选择的研究对象为宁波市,所以这里K 值计算暂时只讨论宁波市的路网拥挤核;根据公式,结合你宁波近十年数据,计算可得k=17.7,而考虑到宁波市的经济总量和汽车拥有量较大,在经济总量足够大以及汽车拥有量趋于饱和后,它们的增长率和增长比的数值会有所下降,所以将k 值暂定为15,即路段拥挤度居全网前15%且相互连通成为一个局部网络,就称该局部网络为一个路网拥挤核。
2.2复杂网络的基本统计特征对于城市道路网络演化模型构建与评估必须对于复杂网络的一些基础知识进行必要的了解。
汽车拥有量增长比增长率国省道日均流量增长比??=GDP K2.2.1复杂网络的度与度分布度是对于复杂网络系统里面,最常用同时也是最简单的一种概念。
在一个复杂网络系统里面,具体的每个节点的度m i 是指与这个节点连接在一起的边的具体的数量,而如果给这个复杂网络系统加上方向,那么具体的度可以分为二种:出度和入度;前者指的是从选定的节点,沿着复杂网络系统的方向指向的其他节点的具体的边的数目,后者指的是从选定的节点,反着复杂网络系统的方向指向的其他节点的具体的边的数目。
复杂网络系统的度m i 平均值叫做,网络的平均度用符号表示。
对于有向的复杂网络系统,有如下公式m m m out in i +=;(2.2)其中,m in 表示选定的节点的入度;m out 表示选定的节点的出度。
复杂网络与网络安全引言随着互联网的迅猛发展,网络已经成为人们生活中不可或缺的一部分。
随之而来的网络安全问题也日益突出。
复杂网络理论作为一种描述和研究网络结构的数学工具,对解决网络安全问题具有重要意义。
本文将介绍复杂网络的基本概念和特性,并探讨其在网络安全中的应用。
复杂网络的基本概念复杂网络是一种由大量节点和连接构成的网络结构。
在传统的网络中,节点之间的连接方式比较简单,节点的度数(连接的数量)往往是相对均匀的。
而在复杂网络中,节点的度数分布呈现出一定的不规则性,存在少数节点度数非常高的情况,被称为“幂律分布”。
复杂网络还具有“小世界效应”和“无标度特性”等重要特点。
复杂网络的重要特性小世界效应小世界效应是指在复杂网络中,任意两个节点之间的最短路径长度较短。
也就是说,即使网络中的节点规模非常大,节点之间的距离仍然相对较近。
这一特性使得信息在复杂网络中的传播速度较快,有利于进行高效的通信和数据传输。
无标度特性无标度特性是指在复杂网络中,部分节点的度数远远高于其他节点。
这些高度连接的节点被称为“关键节点”。
在网络中,攻击和破坏关键节点可能导致整个网络的崩溃。
研究和保护网络中的关键节点对于网络安全至关重要。
复杂网络在网络安全中的应用复杂网络理论可以应用于多个领域,包括网络安全。
以下是几个复杂网络在网络安全中的应用示例:网络攻击与防御复杂网络理论可以帮助分析网络攻击的传播路径和速度,并提出相应的防御策略。
通过研究网络中的关键节点和连接模式,可以找到最脆弱的环节,并采取相应的安全措施来确保网络的安全性。
异常检测复杂网络理论可以用于检测网络中的异常行为。
通过研究网络中节点之间的连接模式和信息传播规律,可以发现与正常行为不匹配的异常行为,提前预警和阻止潜在的网络攻击。
数据保护与隐私保护复杂网络理论可以用于设计高效的数据加密和隐私保护算法。
通过研究网络中节点之间的连接模式和数据传输规律,可以为数据的保护和隐私提供更佳的解决方案。