北师大版七年级下册 2.3 平行线的性质 练习题
- 格式:doc
- 大小:96.50 KB
- 文档页数:5
北师大版七年级数学下册第二章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100°B.140°C.160°D.105°3、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A .①B .③C .①②D .②③4、下列关于画图的语句正确的是( ).A .画直线8cm AB =B .画射线8cm OA =C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一直线与AB 平行5、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'6、下列说法中,正确的是( )A .从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B .互相垂直的两条直线不一定相交C .直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cmD .过一点有且只有一条直线垂直于已知直线7、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°8、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°9、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .10、如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .180°-∠2+∠1B .180°-∠1-∠2C .∠2=2∠1D .∠1+∠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.2、(1)已知α∠与β∠互余,且3518α'∠=︒,则β∠=________.(2)82325'''︒+________=180°.(3)若27m n a b -+与443a b -是同类项,则m +n =________.3、如图,点O 在直线AB 上,OD ⊥OE ,垂足为O .OC 是∠DOB 的平分线,若∠AOD =70°,则∠COE =__________度.4、已知∠1=71°,则∠1的补角等于__________度.5、已知一个角的补角是这个角的余角的3倍,则这个角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB,CD相交于点O,90∠.∠=︒,OF平分AOEFOD(1)写出图中所有与AOD∠互补的角;(2)若120∠的度数.AOE∠=︒,求BOD2、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.3、如图,已知AB CD∠,求证1290∠,CE平分BCD∥,BE平分ABC∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.4、(感知)已知:如图①,点E在AB上,且CE平分ACD∠,12∠=∠.求证:AB CD∥.将下列证明过程补充完整:证明:∵CE平分ACD∠(已知),∴2∠=∠__________(角平分线的定义),∵12∠=∠(已知),∴1∠=∠___________(等量代换),∴AB CD ∥(______________).(探究)已知:如图②,点E 在AB 上,且CE 平分ACD ∠,AB CD ∥.求证:12∠=∠.(应用)如图③,BE 平分DBC ∠,点A 是BD 上一点,过点A 作AE BC ∥交BE 于点E ,:4:5ABC BAE ∠∠=,直接写出E ∠的度数.5、如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.-参考答案-一、单选题1、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.2、B【分析】BAD CAE DAE再利用角的和差关系可得答案. 根据方位角的含义先求解,,,【详解】解:如图,标注字母,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.3、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.故选:D.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.4、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A 、画直线AB =8cm ,直线没有长度,故此选项错误;B 、画射线OA =8cm ,射线没有长度,故此选项错误;C 、已知A 、B 、C 三点,过这三点画一条直线或2条、三条直线,故此选项错误;D 、过直线AB 外一点画一直线与AB 平行,正确.故选:D .【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.5、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.6、C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.7、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角8、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.9、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD ,∠ECD +∠2=180°,∴∠BCE =∠BCD +∠ECD =180°-∠2+∠1,故选A .【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.二、填空题1、40°【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2、5442'︒ 972755'''︒ 3【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m 、n 的值,然后代值计算即可.【详解】解:(1)α∠与β∠互余,且3518α'∠=︒,∴90=903518=5442βα'∠=︒-︒-︒'︒∠;故答案为:5442'︒;(2)18082325=972755''''''︒-︒︒;故答案为:972755'''︒;(3)∵27m n a b -+与443a b -是同类项,∴2474m n -=⎧⎨+=⎩, ∴63m n =⎧⎨=-⎩, ∴()633m n +=+-=.故答案为:3.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.3、35【分析】根据补角的性质,可得∠BOD =110°,再由OC 是∠DOB 的平分线,可得1552COD BOC BOD ∠=∠=∠=︒ ,又由OD ⊥OE ,可得到∠BOE =20°,即可求解. 【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴1552COD BOC BOD∠=∠=∠=︒,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.4、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.5、45︒【分析】设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒ 根据等量关系一个角的补角是这个角的余角的3倍,列方程()180390x x -=-,解方程可得.【详解】解:设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒()180390x x ∴-=-,1802703x x ∴-=- ,290x ∴=,45x ∴=,答:这个角为45︒.故答案为:45︒.【点睛】本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.三、解答题1、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.2、(1)∠AOC 的对顶角是∠BOD ,∠EOB 的对顶角是∠AOF ,.∠AOC 的邻补角是∠AOD ,∠BOC ;(2)共有6对对顶角,它们分别是∠AOC 与∠BOD ,∠AOE 与∠BOF ,∠AOF 与∠BOE ,∠AOD 与∠BOC ,∠EOD 与∠COF ,∠EOC 与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC 的对顶角是∠BOD ,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.3、12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∴∠1+∠2=90°.故答案为:12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由∠∠=即可求得∠ABC的度数,从而可求得∠E的度数.ABC BAE:4:5【详解】感知∵CE平分ACD∠(已知),∴2=ECD(角平分线的定义),∵12∠=∠(已知),∴1∠=∠ECD(等量代换),∴AB CD∥(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分ACD∠,∴2ECD∠=∠,∵AB CD∥,∴l ECD∠=∠,∵12∠=∠.应用∵BE 平分∠DBC , ∴12ABE CBE ABC ∠=∠=∠,∵AE ∥BC ,∴∠CBE =∠E ,∠BAE +∠ABC =180゜,∴∠E =∠ABE ,∵:4:5ABC BAE ∠∠=,∴∠ABC =80゜∴40ABE ∠=︒∴40E ∠=︒【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键. 5、22︒【分析】根据90EOC ∠=︒、34COF ∠=︒可得56EOF ∠=︒,OF 是∠AOE 的角平分线,可得56AOF EOF ∠=∠=︒,所以22AOC AOF COF ∠=∠-∠=︒,再根据对顶角相等,即可求解.【详解】解:∵90EOC ∠=︒、34COF ∠=︒,∴56EOF ∠=︒,∵OF 是∠AOE 的角平分线,∴56AOF EOF ∠=∠=︒,∴22AOC AOF COF ∠=∠-∠=︒,∴22BOD AOC ∠=∠=︒,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.。
2.3平行线的性质课后同步练习班级:________ 姓名:________一、单选题(共 10 小题)1、如图,已知AB //DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .42°B .43°C .44°D .45°2、如图,AB CD ∥,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =52°,则∠EGF 等于( )A .26°B .64°C .52°D .128°3、如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4、如图,AB ∥CE ,∠B =60°,DM 平分∠BDC ,DM ⊥DN ,则∠NDE ( )A .30°B .40°C .50°D .60°5、如图,AB CD ∥,AE 平分∠CAB 交CD 于点E ,若∠C =50°,则∠AED =( )A .65°B .115°C .125°D .130°6、如图,直线l 1 ∥ l 2 ,CD ⊥AB 于点D ,∠1=50°,则∠BCD 的度数为( )A .40°B .45°C .50°D .30°7、如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④8、已知直线a ∥b ,将一块含30°角的直角三角板(∠BAC =30°)按如图所示方式放置,并且顶点A ,C 分别落在直线a ,b 上,若∠1=22°,则∠2的度数是( )A.38°B.45°C.58°D.60°AB CD EF CG AF,那么图中与∠AFE相等的角的个数是()9、如图,////,//A.4 B.5 C.6 D.710、如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°二、填空题(共 8 小题)1、如图,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=110°,CD与AB在直线EF异侧.若∠DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和6度/秒的速度同时顺时针转动,设时间为t秒,在射线CD转动一周的时间内,当时间t的值为____时,CD与AB平行.2、如图,AB ∥CD,AD 平分∠BAC,且∠C=80°,则∠D 的度数为____.3、如图,已知AD ∥BC ,∠C=38°,∠EAC=88°,则∠B=________4、如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3=_____°.5、如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=_____.6、如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,138E ∠=︒,BFD ∠=___________°.7、如图,直线MN 分别与直线AB ,CD 相交于点E ,F ,EG 平分∠BEF ,交直线CD 于点G ,若∠MFD =∠BEF =62°,射线GP ⊥EG 于点G ,则∠PGF 的度数为__度.8、如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.三、解答题(共 6 小题)1、如图,已知//AB CD ,∠B=∠D ,AE 交BC 的延长线于点E .(1)求证://AD BE ;(2)若∠1=∠2=60°,∠BAC=2∠EAC ,求∠DCE 的度数.2、三角形ABC中,D是AB上一点,DE∥BC交AC于点E,点F是线段DE延长线上一点,连接FC,∠BCF+∠ADE=180°.(1)如图1,求证:CF∥AB;(2)如图2,连接BE,若∠ABE=40°,∠ACF=60°,①求∠BEC的度数;②如图2,点G是线段FC延长线上一点,若∠EBC:∠ECB=7:13,BE平分∠ABG,求∠CBG的度数.3、如图,已知AB∥CD.(1)判断∠FAB与∠C的大小关系,请说明理由;(2)若∠C=35°,AB是∠FAD的平分线.①求∠FAD的度数;②若∠ADB=110°,求∠BDE的度数.4、问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC 的度数.由分析得,请你直接写出:∠CAF的度数为______,∠EMC的度数为______.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.5、如图,已知AB∥CD,问∠BED、∠D、∠ABE的关系.6、如图,已知AC∥FE,∠1+∠2=180°(1)求证:∠FAB=∠BDC;(2)若AC平分∠FAD,EF⊥BE于点E,∠FAD=80°,求∠BCD的度数.第11页/ 共11页。
2021-2022学年北师大版七年级数学下册《2-3平行线的性质》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°,则∠2的度数为()A.55°B.60°C.65°D.75°2.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°3.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α﹣β=90°4.如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60°B.80°C.75°D.70°5.如图,直线AB∥CD,AE⊥CE于点E,若∠EAB=120°,则∠ECD的度数是()A.120°B.100°C.150°D.160°6.如图,b∥c,a⊥b,∠1=130°,则∠2等于()A.30°B.40°C.50°D.60°7.如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次拐角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C为()A.170°B.160°C.150°D.140°8.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二.填空题(共7小题,满分35分)9.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.10.如图,DE∥BC,CD平分∠ACB,∠ACB=58°,则∠EDC=.11.如图,将一副三角板如图叠放,且EF∥BC,则∠BFD=度.12.为增强学生体质,某学校将“抖空竹”引人阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,小明把它抽象成图2的数学问题:已AB∥CD,∠EAB=80°,∠ECD =110°.则∠E的度数是.13.如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为.14.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.15.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=度.三.解答题(共5小题,满分45分)16.如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数.17.如图,已知AB∥CD,连接BC.点E,F是直线AB上不重合的两点,G是CD上一点,连接ED交BC于点N,连接FG交BC于点M.若∠ENC+∠CMG=180°.(1)求证:∠2=∠3;(2)若∠A=∠1+60°,∠ACB=50°,求∠B的度数.18.已知一个角的两边与另一个角的两边分别平行,结合下图,试探索这两个角之间的关系,并说明你的结论.(1)如图1,AB∥EF,BC∥DE.∠1与∠2的关系是:,理由:;(2)如图2,AB∥EF,BC∥DE.∠1与∠2的关系是:,理由:.(3)由(1)(2)你得出的结论是:如果,那么.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角度数的分别是19.(1)如图①,∠CEF=90°,点B在射线EF上,AB∥CD,若∠ABE=130°,求∠C 的度数;(2)如图②,把“∠CEF=90°”改为“∠CEF=120°”,点B在射线EF上,AB∥CD.猜想∠ABE与∠C的数量关系,并说明理由.20.如图,直线AB∥CD.(1)如图①,若∠ABE=40°,∠BEC=140°,∠ECD=°(填空)(2)如图①,试探究∠ABE,∠BEC,∠ECD的关系,并说明理由;(3)如图②,若CF平分∠ECD,且满足CF∥BE,试探究∠ECD,∠ABE的数量关系,并说明理由.参考答案一.选择题(共8小题,满分40分)1.解:如图,∵∠1=25°,∴∠3=65°,∵直尺的两边互相平行,∴∠2=65°.故选:C.2.解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故选:C.3.解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°﹣∠2,∴∠α﹣∠β=180°﹣∠2﹣∠1=180°﹣∠BCD=90°,故选:D.4.解:∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选:D.5.解:延长AE,与DC的延长线交于点F,∵AB∥CD,∴∠A+∠AFC=180°,∵∠EAB=120°,∴∠AFC=60°,∵AE⊥CE,∴∠AEC=90°,而∠AEC=∠AFC+∠ECF,∴∠ECF=∠AEC﹣∠F=30°,∴∠ECD=180°﹣30°=150°,故选:C.6.解:∵b∥c,a⊥b,∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选:B.7.解:如图,过点B作BD∥AE,由已知可得:AE∥CF,∴AE∥BD∥CF,∴∠ABD=∠A=130°,∠DBC+∠C=180°,∴∠DBC=∠ABC﹣∠ABD=150°﹣130°=20°,∴∠C=180°﹣∠DBC=180°﹣20°=160°.故选:B.8.解:如图,过A作AB∥a,∵a∥b,∴AB∥b,∴∠1+∠BAD=180°,∠2=∠BAC=∠3+∠BAD,∴∠BAD=∠2﹣∠3,∴∠1+∠2﹣∠3=180°,故选:B.二.填空题(共7小题,满分35分)9.解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°,故答案为:80.10.解:∵CD平分∠ACB,∠ACB=58°,∴∠ECD=∠ACB=29°,∵DE∥BC,∴∠EDC=∠ECD=29°.故答案为:29°.11.解:由题意得,∠ABC=45°,∠DFE=30°,∵EF∥BC,∴∠BFE=∠ABC=45°,∴∠BFD=45°﹣30°=15°.故答案为:15.12.解:如图所示:延长DC交AE于点F,∵AB∥CD,∠EAB=80°,∠ECD=110°,∴∠EAB=∠EFC=80°,∴∠E=110°﹣80°=30°.故答案为:30°.13.解:∵AB∥CD∥EF,∠ABC=125°,∠CEF=105°,∴∠BCD=∠ABC=125°,∠DCE=180°﹣∠CEF=75°,∴∠BCE=∠BCD﹣∠DCE=50°.故答案为:50°.14.解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.15.解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.三.解答题(共5小题,满分45分)16.解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3∴DG∥AB,∴∠BAC+∠AGD=180°,∴∠AGD=110°17.(1)证明:∵∠CMG=∠FMN,又∵∠ENC+∠CMG=180°,∴∠ENC+∠FMN=180°,∵ED∥FG,∴∠2=∠D(两直线平行,同位角相等),又∵AB∥CD(已知),∴∠3=∠D(两直线平行,内错角相等),∴∠2=∠3 (等量代换);(2)解:∵AB∥CD,∴∠1=∠B,在△ABC中,∠A+∠B+∠ACB=180°,又∵∠A=∠1+60°且∠ACB=50°,∴∠1+60°+∠1+50°=180°,∴∠1=35°,∴∠B=∠1=35°.18.解:(1)∠1=∠2,理由:∵AB∥EF∴∠3=∠2,∵BC∥DE∴∠3=∠1∴∠1=∠2.故答案为:∠1=∠2,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.(2)∠1+∠2=180°,理由:∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°.故答案为:∠1+∠2=180°,如果一个角的两边与另一个角的两边分别平行,那么这两个角互补.(3)由(1)(2)我们得到:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(4)设另一个角为x°,根据以上结论得:2x﹣30=x或2x﹣30+x=180°,解得:x=30,或x=70,故答案为:30°、30°或110°,70°.19.解:(1)如图①,过E作EK∥AB,则∠ABE+∠1=180°,∴∠1=180°﹣∠ABE=50°,∵∠CEF=90°,∴∠2=90°﹣∠1=40°,∵AB∥CD,EK∥AB,∴EK∥CD,∴∠C=∠2=40°;(2)∠ABE﹣∠C=60°,理由:如图②,过E作EK∥AB,则∠ABE+∠1=180°,∴∠1=180°﹣∠ABE,∵AB∥CD,EK∥AB,∴EK∥CD,∴∠C=∠2,∵∠CEF=∠1+∠2=120°,即180°﹣∠ABE+∠C=120°,∴∠ABE﹣∠C=180°﹣120°=60°.20.解:(1)如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠ABE=∠BEF,∠FEC+∠ECD=180°,∵∠ABE=40°,∠BEC=140°,∴∠FEC=100°,∴∠ECD=180°﹣100°=80°;(2)如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠ABE=∠BEF,∠FEC+∠ECD=180°,∴∠BEC=180°﹣∠ECD+∠ABE;(3)如图②延长BE和DC相交于点G,∵AB∥CD,∴∠ABE=∠G,∵BE∥CF,∴∠GEC=∠ECF,∵∠ECD=∠GEC+∠G,∴∠ECD=∠ECF+∠ABE,∵CF平分∠ECD,∴∠ECF=∠DCF,∴∠ECD=∠ECD+∠ABE,∴∠ABE=∠ECD.故答案为:80.。
北师大版七年级数学下册第二章相交线与平行线综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°2、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有()对.A.5 B.4 C.3 D.23、如图,∠1与∠2是同位角的是()① ② ③ ④A.①B.②C.③D.④4、如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是()A.线段AC的长度表示点C到AB的距离B.线段AD的长度表示点A到BC的距离C.线段CD的长度表示点C到AD的距离D.线段BD的长度表示点A到BD的距离5、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是()A.152°B.28°C.52°D.90°6、下列语句中叙述正确的有()①画直线3AB cm;②连接点A与点B的线段,叫做A、B两点之间的距离;③等角的余角相等;④射线AB与射线BA是同一条射线.A.0个B.1个C.2个D.3个7、已知40A∠=︒,则A∠的余角的补角是()A.130︒B.120︒C.50︒D.60︒8、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°9、如果两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角的度数分别是()A.48°,72°B.72°,108°C.48°,72°或72°,108°D.80°,120°10、若∠α=55°,则∠α的余角是()A.35°B.45°C.135°D.145°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线a b∥,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.2、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.3、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.4、图中∠AOB的余角大小是_____°(精确到1°).5、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角()(2)如果两个角相等,那么这两个角是对顶角()(3)有一条公共边的两个角是邻补角()(4)如果两个角是邻补角,那么它们一定互补( )(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )三、解答题(5小题,每小题10分,共计50分)1、已知AB ∥CD ,点E 在AB 上,点F 在DC 上,点G 为射线EF 上一点.(基础问题)如图1,试说明:∠AGD =∠A +∠D .(完成图中的填空部分).证明:过点G 作直线MN∥AB ,又∵AB∥CD ,∴MN∥CD ( )∵MN∥AB ,∴∠A =( )( )∵MN∥CD ,∴∠D = ( )∴∠AGD =∠AGM +∠DGM =∠A +∠D .(类比探究)如图2,当点G 在线段EF 延长线上时,直接写出∠AGD 、∠A 、∠D 三者之间的数量关系.(应用拓展)如图3,AH 平分∠GAB ,DH 交AH 于点H ,且∠GDH =2∠HDC ,∠HDC =22°,∠H =32°,直接写出∠DGA 的度数.2、已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.3、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.4、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF 开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.5、如图,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE比它的补角大100°,将一直角三角板AOB的直角点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒10°的速度逆时针旋转一周.设旋转时间为t秒.(1)求∠COE的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得∠BOC=∠BOE?若存在,请求出t的取值,若不存在,请说明理由;(3)若在三角板开始转动的同时,射线OC也绕O点以每秒10°的速度顺时针旋转一周.从旋转开始多长时间.射线OC平分∠BOE.直接写出t的值.(本题中的角均为大0°且小180°的角)-参考答案-一、单选题1、C【分析】如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.【详解】如图,过点C作CG∥AB,过点D作DH∥EF,∴∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),∴∠A﹣∠ACD+∠CDE+∠E=180°.故选:C.【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.2、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.3、B【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.4、D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.5、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.6、B【分析】根据直线的性质判断①,根据两点间距离的定义判断②,根据余角的性质判断③,根据射线的表示方法判断④.【详解】解:因为直线是向两端无限延伸的,所以①不正确;因为连接两点间的线段的长度,叫做这两点间的距离,所以②不正确;③正确;因为射线AB和射线BA的端点不同,延伸方向也不同,所以④不正确.故选:B.【点睛】本题考查直线的性质,两点间的距离的定义(连接两点间的线段的长度,叫做这两点间的距离),余角的性质,射线的表示方法,熟练掌握这些知识点是解题关键.7、A【分析】根据余角和补角定义解答.解:A ∠的余角的补角是180(9040)130︒-︒-︒=︒,故选:A .【点睛】此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.8、A【分析】本题首先根据∠BGD ′=26°,可以得出∠AEG =∠BGD ′=26°,由折叠可知∠α=∠FED ,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG =∠BGD ′=26°,即:∠GED =154°,由折叠可知: ∠α=∠FED , ∴∠α=12GED ∠=77°故选:A .【点睛】本题主要考察的是根据平行得性质进行角度的转化.9、B【分析】根据题意可得这两个角互补,设其中一个角为x ,则另一个角为()180x ︒-,由两个角之间的数量关系列出一元一次方程,求解即可得.解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补, ∵一个角的12等于另一个角的13,∴这两个角互补,设其中一个角为x ,则另一个角为()180x ︒-, 根据题意可得:()1118023x x =︒-,解得:72x =︒,180108x ︒-=︒,故选:B .【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.10、A【分析】根据余角的定义即可得.【详解】由余角定义得∠α的余角为90°减去55°即可.解:由余角定义得∠α的余角等于90°﹣55°=35°.故选:A .【点睛】本题考查了余角的定义,熟记定义是解题关键.二、填空题【分析】如图,标注字母,过B 作,BC a ∥ 再证明,BC b ∥证明12,EBD从而可得答案.【详解】解:如图,标注字母,过B 作,BC a ∥1=,EBC,a b ∥,BC b ∥2=,DBC12,EBD∠1=52°,90,EBD ∠=︒2=905238.故答案为:38︒【点睛】本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.2、20°或125°或20°【分析】根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.【详解】解:∵∠1与∠2的两边分别平行,∴∠1,∠2相等或互补,①当∠1=∠2时,∵∠2=3∠1-40°,∴∠2=3∠2-40°,解得∠2=20°;②当∠1+∠2=180°时,∵∠2=3∠1-40°,∴∠1+3∠1-40°=180°,解得∠1=55°,∴∠2=180°-∠1=125°;故答案为:20°或125°.【点睛】本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.3、70【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.【详解】解:∵AB//CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°-40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB//CD,∴∠AEC=∠EAB=70°,故答案为70.【点睛】本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.4、63【分析】根据余角的定义:如果两个角的度数和为90度,那么这两个角互为余角,进行求解即可.【详解】解:由量角器上的度数可知,∠AOB=27°,∴∠AOB的余角的度数=90°-∠AOB=63°,故答案为:63.【点睛】本题主要考查了量角器测量角的度数和求一个角的余角,熟知余角的定义是解题的关键.5、(1)×;(2)×;(3)×;(4)√;(5)×【分析】根据对顶角与邻补角的定义与性质分析判断即可求解.【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.三、解答题1、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A +∠D;类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG =∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD(平行于同一条直线的两条直线平行),∵MN∥AB,∴∠A=∠AGM(两直线平行,内错角相等),∵MN∥CD,∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D.故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD,∵MN∥AB,∴∠A=∠AGM,∵MN∥CD,∴∠D=∠DGM,∴∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,又∵AB∥CD,∴MN∥CD,PQ∥CD∵MN∥AB,PQ∥AB,∴∠BAG=∠AGM,∠BAH=∠AHP,∵MN∥CD,PQ∥CD,∴∠CDG=∠DGM,∠CDH=∠DHP,∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,∵AH平分∠BAG,∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°.【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.2、见解析【分析】由AB ∥CD ∥EF 可得,1AGH ∠=∠,2EMH ∠=∠,即可证明.【详解】证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等)又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等)∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.3、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.4、(1)60,75;(2)152秒;(3)3或12或21或30【分析】(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.(2)由题意先根据60α=︒,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF '运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE 的左边和右边,进而根据其夹角列4个方程可得时间.【详解】解:(1)∵∠BOE =90°,∴∠AOE =90°,∵∠AOC=α=30°,∴∠EOC =90°-30°=60°,∠AOD =180°-30°=150°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =12×150°=75°;故答案为:60,75;(2)当60α=︒,9060150EOF ∠=︒+︒=︒.设当射线OE '与射线OF '重合时至少需要t 秒,可得128150t t +=,解得:152t =; 答:当射线OE '与射线OF '重合时至少需要152秒; (3)设射线OE '转动的时间为t 秒,由题意得:12815090t t +=-或12815090t t +=+或81236015090t t +=+-或12836015090t t +=++, 解得:3t =或12或21或30.答:射线OE '转动的时间为3或12或21或30秒.【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.5、(1)140゜(2)存在,t=2秒或20秒;(3)533秒【分析】(1)设∠COE=x度,则其补角为(180−x)度,根据∠COE比它的补角大100°列方程即可求得结果;(2)存在两种情况:当OC在直线DE上方时;当OC在直线DE下方时;就这两种情况考虑即可;(3)画出图形,结合图形表示出∠COE与∠COB,根据角平分线的性质建立方程即可求得t值.【详解】(1)设∠COE=x度,则其补角为(180−x)度,由题意得:x−(180−x)=100解得:x=140即∠COE=140゜(2)存在当OC在直线DE上方时,此时OB平分∠BOC∵∠COE=140゜∴1702BOC COE∠=∠=︒当OB没有旋转时,∠BOC=50゜所以OB旋转了70゜−50゜=20゜则旋转的时间为:t=20÷10=2(秒)当OC在直线DE下方时,如图由图知:∠BOE+∠BOC+∠COE=360゜即:2∠BOE+∠COE=360゜∵OB旋转了10t度∴∠BOE=(10t−90)度∴2(10t−90)+140=360解得:t=20综上所述,当t=2秒或20秒时,∠BOC=∠BOE(3)OB、OC同时旋转10t度如图所示,∠COE=(180゜+40゜)−(10t)゜=(220−10t)゜∵2×(10t)゜−∠COB+50゜=360゜∴∠COB=2× (10t)゜−310゜∵∠COB=∠COE∴2× 10t−310=220-10t解得:533 t即当t的值为533秒时,满足条件.【点睛】本题考查了角平分线的性质,角的和差运算,补角的概念,解一元一次方程等知识,注意数形结合及分类讨论.。
《平行线性质与判定的综合》基础训练知识点1 综合运用平行线的性质与判定进行计算或说理1.如图,已知a∥b,∠1=58°,则∠2的大小是()A.122°B.85°C.58°D.32°2.如图,直线EB∥FD,直线c分别交EB、FD于点A、C,∠BAC的平分线交直线FD于点G,若∠2=50°,则∠1的度数是()A.50°B.60°C.80°D.100°3.如图,一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14°B.15°C.16°D.17°4.如图,直线,,,a b c d ,已知,c a c b ⊥⊥,直线,,b c d 交于一点.若150︒∠=,则2∠等于( )A.60︒B.50︒C.40︒D.30︒5.如图,直线,a b 被直线,c d 所截.若12,3125︒∠=∠∠=,则4∠的度数是()A.65︒B.60︒C.55︒D.75︒6.如图,若180A ABC ︒∠+∠=,则下列结论正确的是( )A.12∠=∠B.23∠=∠C.13∠=∠D.24∠=∠7.如图,12,60A ︒∠=∠∠=,则ADC ∠=____________.8.如图,//,180BC DE E B ︒∠+∠=,则AB 和EF 的位置关系为____________.9.如图所示,//,,AB DC ABC ADC BF ∠=∠和DE 分别平分ABC ∠和ADC ∠.试说明://ED BF .解:因为BF 和DE 分别平分ABC ∠和ADC ∠(已知),所以EDC ∠=____________,ADC FBA ∠∠=_________ABC ∠(角平分线的定义). 又因为ADC ABC ∠=∠(已知),所以∠___________FBA =∠(等量代换). 因为//AB DC (已知),所以AED EDC ∠=∠(______________).所以∠______=∠_______(等量代换).所以//ED BF (______________).10.如图,已知180,B BCD B D ︒∠+∠=∠=∠.请你观察图形,写出E ∠和DFE ∠满足什么数量关系?并说明理由.知识点2 利用平行线的性质与判定解决实际问題11.如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120,为使管道对接,另一侧铺设的角度大小应为()A.120︒B.100︒C.80︒D.60︒12.如图,在,A B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42,,A B 两地同时开工,B地所挖水渠走向应为南偏东_________.13.一条建设中的高速公路要穿过一山体开挖一条隧道,甲、乙两工程队分别从山体两侧的,A B两点同时开工,现甲队从A点测得道路的走向是北偏东55,为了不浪费人力、物力,问乙队在B点处应该按β∠等于多少度开挖,才能够保证隧道准确接通?14.如图,B处在A处的南偏西45°方向,C处在B处的北偏东80°方向.(1)求∠ABC的度数;(2)要使CD∥AB,D处应在C处的什么方向?15.如图,已知CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.16.如图,已知AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.参考答案1、B 2.C 3.D4.答案:C解析:∵a ∥b,∴∠1=∠2,∵∠1=58°,∴∠2=58°,故选C.5.答案:C解析:∵EB ∥FD,∴∠BAG=∠2=50°,∵AG 平分∠BAC,∴∠GAC=∠BAG=50°,∴∠1=180°-∠BAG-∠GAC=80°,故选C.6.答案:C解析:根据题意可知∠2+∠3=60°,因为∠2=44°,所以∠3=16°,再根据直尺的对边平行,可知∠1=∠3=16°.7.120 8.平行 9.12 12EDC 两直线平行,内错角相等 FBA AED 同位角相等,两直线平行10.解:E DFE ∠=∠.理由如下:因为180,B BCD B D ︒∠+∠=∠=∠,所以180D BCD ︒∠+∠=.所以//AD BE .所以E DFE ∠=∠.11.D 12.4213.解:因为指北方向平行,且,A B 两点走向形成一条直线,即//CA DB ,所以a ∠和β∠就构成了一对同旁内角.所以180a β︒∠+∠=,即18055125β︒︒︒∠=-=.因此,乙队在B 点处应该按125β︒∠=开挖.14.答案:见解析解析:(1)如图,由题意,得∠FAB=45°.因为AF ∥BE,所以∠FAB=∠ABE=45°,因为∠EBC=80°,所以∠ABC=35°.(2)D处在C处的南偏西45°方向.理由如下:如图,因为CG∥BE,所以∠GCB=∠EBC=80°.因为∠GCD=45°,所以∠BCD=35°,所以∠ABC=∠BCD=35°,所以CD∥AB.15.答案:见解析解析:证明:∵∠B=∠ADE(已知),∴DE∥BC(同位角相等,两直线平行),∴∠1=∠DCB(两直线平行,内错角相等).∵CD⊥AB,GF⊥AB,∴∠BDC=90°,∠BFG=90°, ∴CD∥FG(同位角相等,两直线平行),∴∠2=∠DCB(两直线平行,同位角相等).∴∠1=∠2(等量代换).16.答案:见解析解析:证明:(1)∵AB∥CD,∴∠4=∠BAF.∵∠1=∠2,∴∠BAF=∠1+∠CAF=∠2+∠CAF=∠DAC,∴∠4=∠DAC.(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE.。
1. 如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°2. 如图,∠A=∠D,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°3. 如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A.95°B.85°C.70 °D.55°4. 如图,∠1=∠2,∠B=∠D,下列四个选项中,错误的是( )A.∠DCA=∠DAC B.AD∥BC C.AB∥CD D.∠DAC =∠BCA5.如图,已知∠1=∠2,∠BAD=∠BCD,则下列结论⑴AB∥CD,⑵AD∥BC,⑶∠B=∠D,⑷∠D=∠ACB,正确的有()A. 1个B. 2个C. 3个D. 4个6.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A. 80°B. 40°C. 60°D. 50°7.完成下面的证明过程:已知:如图,∠D=123°,∠EFD=57°,∠1=∠2求证:∠3=∠B证明:∵∠D=123°,∠EFD=57°(已知)∴∠D+∠EFD=180°∴AD∥________(________)又∵∠1=∠2(已知)∴________∥BC(内错角相等,两直线平行)∴EF∥________(________)∴∠3=∠B(两直线平行,同位角相等)8.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG与BC的位置关系,并说明理由.9.如图所示,已知∠1=∠2,∠3=∠4,∠5=∠C,求证:DE//BF10.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.请你判断AD和BE的位置关系,并说明理由.11.如图,已知AD⊥EF,CE⊥EF,∠2+∠3=180°.(1)请你判断∠1与∠BDC的数量关系,并说明理由;(2)若∠1=70°,DA平分∠BDC,试求∠FAB的度数.12. 如图,已知∠ADE=∠B,∠1=∠2,那么CD与FG平行吗?试说明理由.答案:1.D2.B3.D4.A5.C6.D7.EF;同旁内角互补,两直线平行;AD;BC;平行于同一条直线的两直线平行8.解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC9.证明:∵∠3=∠4.∴BD ∥CF.∴∠C+∠CDB=180°.又∵∠5=∠C.∴∠CDB+∠5=180°.∴AB ∥CD.∴∠2=∠BGD.又∵∠1=∠2.∴∠BGD=∠1.∴DE ∥BF.10.证明:∵AE 平分∠BAD , ∴∠1=∠2,∵AB ∥CD ,∠CFE=∠E ,∴∠1=∠CFE=∠E ,∴∠2=∠E ,∴AD ∥BE .11.(1)猜想:∠1=∠BDC 证明:∵AD ⊥EF ,CE ⊥EF ,∴∠GAD=∠GEC=90°∴AD ∥CE∴∠ADC+∠3=180°又∵∠2+∠3=180°,∴∠2=∠ADC∴AB ∥CD∴∠1=∠BDC(2)解:解:∵AD ⊥EF , ∴∠FAD=90°.∵AB ∥CD ,∴∠BDC=∠1=70°,∵DA 平分∠BDC ,∴∠ADC= ∠BDC= ×70°=35°.∵AB ∥CD ,∴∠2=∠ADC=35°,∴∠FAB=∠FAD ﹣∠2=90°﹣35°=55°12.解:平行.理由:因为∠ADE=∠B,所以DE∥BC,所以∠1=∠BCD,又因为∠1=∠2,所以∠BCD=∠2,所以CD∥FG(同位角相等,两直线平行)。
2.3.1 平行线的性质一、选择题。
1.一副三角板如图摆放,且AB∥CD,则∥1的度数为()A.80°B.60°C.105°D.75°2.如图,AB∥CD,∥1=65°,∥2=35°,则∥B=()A.20°B.25°C.30°D.35°3.如图,将直尺与含30°角的直角三角板叠放在一起,若∥1=140°,则∥2的度数是()A.105°B.100°C.110°D.120°4.如图,直线a∥b,直线c与直线a,b分别交于A,B两点,AC∥AB于点A,交直线b于点C,如果∥1=58°,那么∥2的度数为()A.32°B.42°C.58°D.122°5.如图,已知直线AB∥CD,∥GEB的平分线EF交CD于点F,∥1=30°,则∥2等于()A.135°B.145°C.155°D.165°6.如图,AB∥DE,BC∥EF,∥B=50°,则∥E的度数为()A.50°B.120°C.130°D.150°二、填空题。
7.∥1的两边与∥2的两边分别平行,且∥2是∥1的余角的4倍,则∥1=.8.如图,AB∥CD,∥A=40°,∥C=30°,则∥AEC的度数为°.9.如图,已知AB∥CD∥EF,∥1=60°,∥3=20°,则∥2=.10.如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C',D'的位置上,EC'交AD于点G.已知∥EFG=58°,那么∥BEG=度.11.已知∥MON=40°,OE平分∥MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D,设∥OAC=x°,若AB∥ON,当x=时,使得∥ADB中有两个相等的角.三、解答题。
2.3平行线的性质练习题
一、选择题
1.如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()
A.42°B.50°C.60°D.68°
2.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()
A.112°B.110°C.108°D.106°
3.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()
A.85°B.75°C.60°D.30°
4.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()
A.30°B.60°C.90°D.120°
5.如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()
A.30°B.40°C.50°D.60°
6.在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()
A.50°B.45°C.40°D.35°
7.如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()
A.62°B.108°C.118°D.152°
8.下列图形中,根据AB∥CD,能得到∠1=∠2的是()
A.B.
C.D.
9.如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()
A.42°B.64°C.74°D.106°
10.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()
A.125°B.135°C.145°D.155°
二、填空题
11.如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED 的度数为°.
12.如图,直线a∥b,Rt△ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为.
13.如图,已知直线a∥b,∠1=70°,则∠2=.
14.如图,直线a∥b,AB⊥BC,如果∠1=35°,那么∠2的度数为.
15.如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为.
三、解答题
16.如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.
17.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE 平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
18.如图,AB∥CD,点E、G分别是AB、CD上的点,且∠AEG=34°,EF⊥EG交CD于点F,求∠EFG的度数.
19.如图,直线AB∥CD,∠EMB=100°,MF平分∠AME交CD于F,求∠EFM的大小.
20.如图,已知AB∥CD,若∠A=20°,∠E=35°,求∠C的度数.
21.如图,AB∥CD,EF平分∠AEG,若∠EGD=130°,求∠EFG的度数.。