第三节-形状记忆陶瓷-第四节-形状记忆高分子
- 格式:ppt
- 大小:1.32 MB
- 文档页数:7
学生姓名:王立鹏教学号:32130615学号:12130916形状记忆材料形状记忆效应是指具有一定形状(初始形状)的固体材料,在某一低温状态下经过塑性变形后(另一形状),通过加热到这种材料固有的某一临界温度以上时,材料又恢复到初始形状,这种效应称为形状记忆效应。
形状记忆材料简称SMM,是指具有一定初始形状的材料经形变并固定成另一种形状后,通过热、光、电等物理刺激或化学刺激的处理又可恢复成初始形状的材料。
其分类主要是合金,陶瓷,高聚物。
最早发现并研究的是合金类形状记忆材料。
而其实质是合金内部热弹性马氏体形成,转变,消失的过程。
合金类(SMA):1.Ti-Ni系形状记忆合金2.铜基系形状记忆合金3.铁基系形状记忆合金1.Ti-Ni系形状记忆合金:具有丰富的相变现象、优异的形状记忆和超弹性性能、良好的力学性能、耐腐蚀性和生物相容性以及高阻尼特性,是当前研究得最全面、记忆性好、实用性强、应用最为广泛的形状记忆材料。
Ti-Ni合金有3种金属化合物:TiNi2,Ti2Ni,TiNi(高温相为体心立方晶体B2,低温相为复杂的长周期堆垛结构,属于单斜晶体),Ti-Ni SMA耐腐蚀、疲劳、磨损,生物相容性好,是目前唯一作为生物医学材料的形状记忆合金。
2.铜基合金的某些特性不及NiTi合金,但由于其加工容易,成本低廉(只及NiTi的1/10),铜基系形状记忆合金种类比较多,主要包括Cu-Zn-Al及Cu-Zn-Al-X(X=Mn、Ni),Cu-Al-Ni及Cu-A1-Ni-X(X=Ti、Mn)和Cu-Zn-X(X=Si、Sn、Au)等系列。
铜基系合金的形状记忆效应明显低于Ti-Ni合金,形状记忆稳定性差,表现出记忆性能衰退现象。
3.铁基合金的形状记忆效应,既有通过热弹性马氏体相变来获得,也有通过应力诱发ε-马氏体相变(非热弹性马氏体)而产生形状记忆效应。
SMA应用:连接紧固件,飞行器用天线,医学应用。
陶瓷类:氧化锆基陶瓷的形状记忆效应。
形状记忆高分子材料引言形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。
1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。
这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。
而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。
1.形状记忆高分子材料的分类SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。
热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。
1.1 热致型SMP热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。
以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。
形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。
形状记忆型高分子原理和制备方法总结形状记忆型高分子材料是一种可以在外界刺激下发生可逆性形状变化的材料。
其原理是利用高分子材料的柔性链段可以在外界刺激下发生可逆性变形,从而实现形状记忆效应。
本文将对形状记忆型高分子材料的原理和制备方法进行详细总结。
形状记忆效应的原理主要基于高分子链段的弹性特性。
高分子材料的链段通常由刚性段和柔性段组成。
刚性段之间的连接点可以通过外界刺激由不稳定的高能态转变为稳定的低能态,从而导致高分子链段的形态变化。
形状记忆型高分子材料是在其中一种外界刺激下能够发生可逆性形状变化的高分子材料。
形状记忆效应的刺激方式可以分为热刺激和光刺激两种。
最常见的是热刺激方式,即通过加热来实现高分子链段的形变。
形状记忆材料通常会在两个不同的温度下存在两种稳定的形态,即低温形态和高温形态。
在低温下,高分子链段处于较为刚性的状态,如果给予一些外界力,高分子链段就会发生可逆性形变。
当将材料加热到高温时,高分子链段变得足够柔软,通过外界力的作用,高分子链段可以回复到最初的形状。
制备形状记忆型高分子材料的方法有很多种,以下列举了几种常见的方法。
1. 反应缩聚法(polymer-analogue method):通过反应缩聚法可以制备出具有形状记忆效应的高分子材料。
具体方法是在反应缩聚体系中引入刚性链段和柔性链段,通过控制反应的条件和体系成分,可以得到具有形状记忆效应的高分子材料。
2. 共聚物法(copolymerization method):共聚物法制备形状记忆型高分子材料是一种常见的方法。
通过共聚物法可以在高分子链段中引入刚性链段和柔性链段,从而实现形状记忆效应。
此外,还可以通过在共聚物结构中引入交联点来增强材料的形状记忆性能。
3. 在线法(online method):在线法是一种将刚性链段和柔性链段分别引入高分子体系中的方法。
通过将刚性链段与柔性链段交融在一起,可以制备具有形状记忆效应的高分子材料。
1、形状记忆高分子定义形状记忆高分子(Shape Memory Polymer)SMP材料是指具有初始形状的制品,在一定的条件下改变其初始形状并固定后,通过外界条件(如热、光、电、化学感应)等的刺激,又可恢复其初始形状的高分子材料。
2、记忆的过程SMP记忆过程主要描述如下的循环过程:2.1引发形状记忆效应的外部环境因素:物理因素:热能,光能,电能和声能等。
化学因素:酸碱度,螯合反应和相转变反应等。
2.2 状记忆高分子分类故根据记忆响应机理,形状记忆高分子可以分为以下几类:1)热致感应型SMP2)光致感应型SMP3)电致感应型SMP4)化学感应型SMP3、高分子的形状记忆过程和原理3.1形状记忆聚合物的相结构3.2产生记忆效应的内在原因需要从结构上进行分析。
由于柔性高分子材料的长链结构,分子链的长度与直径相差十分悬殊,柔软而易于互相缠结,而且每个分子链的长短不一,要形成规整的完全晶体结构是很困难的。
这些结构特点就决定了大多数高聚物的宏观结构均是结晶和无定形两种状态的共存体系。
如PE,PVC等。
高聚物未经交联时,一旦加热温度超过其结晶熔点,就表现为暂时的流动性质,观察不出记忆特性;高聚物经交联后,原来的线性结构变成三维网状结构,加热到其熔点以上是,不再熔化,而是在很宽的温度范围内表现出弹性体的性质,如下图所示。
3.3 形状记忆过程4、热致感应型形状记忆高分子定义:在室温以上一定温度变形并能在室温固定形变且长期存放,当再升温至某一特定响应温度时,能很快恢复初始形状的聚合物。
这类SMP一般都是由防止树脂流动并记忆起始态的固定相与随温度变化的能可逆地固化和软化的可逆相组成。
固定相:聚合物交联结构或部分结晶结构,在工作温度范围内保持稳定,用以保持成型制品形状即记忆起始态。
可逆相:能够随温度变化在结晶与结晶熔融态(Tm)或玻璃态与橡胶态间可逆转变(Tg),相应结构发生软化、硬化可逆变化—保证成型制品可以改变形状。
生物医用形状记忆高分子材料摘要:形状记忆聚合物作为一种智能材料,已经在生物医用领域显示出了巨大的应用前景。
基于形状记忆聚合物材料的原理,组成和结构可以设计兼具生物降解性、生物相容性等多种功能的新型智能材料。
本文综述了三种典型的生物降解性形状记忆聚合物材料(聚乳酸、聚己内酯、聚氨酯)的发展,从结构上对三种形状记忆聚合物进行了分类讨论,详细分析了不同种类聚合物形状记忆的机理、形状变化的固定率和回复率、回复速率等,并介绍了一些形状记忆聚合物材料在生物医学中的应用。
最后对医用形状记忆聚合物未来发展进行了展望:双程形状记忆聚合物及体温转变形状记忆材料将会受到研究者的重点关注。
关键词:生物医用;形状记忆聚合物;聚乳酸;聚己内酯;聚氨酯形状记忆聚合物(shape memory polymers)是一类具有刺激-响应的新型智能高分子材料,其能感知外界环境变化,并对外界刺激做出响应,从而自发调节自身状态参数恢复到预先设计的状态[1]。
兼具生物相容性和生物降解性的SMPs已经在微创外科手术[2,3]、血管支架[4,5]、骨组织的固定[6,7]、可控药物缓释[8,9]、血栓移除[10]中得到了应用。
本文详细讨论了聚乳酸基、聚己内酯基和聚氨酯基三种最常见的生物降解形状记忆聚合物的研究状况。
1 聚乳酸基形状记忆聚合物聚乳酸类材料是一种典型的生物医用材料,具有良好的生物相容性和生物降解性,小分子降解产物能通过体内代谢排出体外[11]。
按照形状记忆聚乳酸的分子结构可将其分为聚乳酸共聚物,聚乳酸共混物和聚乳酸基复合材料三类。
1.1 聚乳酸共聚物纯的聚乳酸材料脆而硬,亲水性差,强度高但其韧性较差,极大地限制了其在生物医学领域中的应用[12]。
在聚乳酸基体中引入第二单体形成聚乳酸基共聚物,能显著地改善其性能。
通过调节PLA与其他单体的比例,可以得到韧性好、降解速率可调,力学性能优异的共聚形状记忆聚乳酸材料[13,14]。
聚己内酯(PCL)[15-17]和聚乙醇酸(PGA)[18]是聚乳酸基形状记忆聚合物常用共聚单元,此外对二氧环酮[19,20],乙交酯[19]与PLA的共聚物也能表现出形状记忆性能。