§6-2 轴上点的球差 -
一、 球差定义及表示方法
1、轴向球差 由实际光线的光路计算公式知,当物距L为定值时,像距L 与入射高 由实际光线的光路计算公式知,当物距L为定值时,像距L’与入射高 及孔径角U有关,随着孔径角的不同,像距L 是变化的 即如图所示: 是变化的, 度h1及孔径角U有关,随着孔径角的不同,像距L‘是变化的,即如图所示: 轴上点A点发出的光束,对于光轴附近的光用近轴光路计算公式, 轴上点A点发出的光束,对于光轴附近的光用近轴光路计算公式,像点为 A0’(看作高斯像点),对于实际光线采用实际光计算公式,成像于A’1(实 ),对于实际光线采用实际光计算公式 (看作高斯像点),对于实际光线采用实际光计算公式,成像于A 际像)。 际像)。
球差是孔径的偶次方函数,因此 校正球差只能使某带的球差为零。 球差是孔径的偶次方函数,因此, 校正球差只能使某带的球差为零。如 果通过改变结构参数, 使初级球差系数A 和高级球差系数A 符号相反, 果通过改变结构参数 使初级球差系数 1和高级球差系数 2符号相反,并具 有一定比例,使某带的初级球差和高级球差大小相等,符号相反, 有一定比例,使某带的初级球差和高级球差大小相等,符号相反,则该带的 球差为零。在实际设计光学系统时,常通过使初级球差与高级球差相补偿, 球差为零。在实际设计光学系统时,常通过使初级球差与高级球差相补偿, 将边缘带的球差校正到零, 将边缘带的球差校正到零,即
4 δ L'0 .707 = − A 2 h m / 4
球差曲线图
从上分析知球差与孔径密切相关, 越大, 越大 越大, 从上分析知球差与孔径密切相关,U 越大,δL‘越大, 所以球差必须校 正。 对于光学系统而言,透镜是最为基本的元件: 对于光学系统而言,透镜是最为基本的元件: 正透镜――产生负球差; 产生负球差; 正透镜 产生负球差 负透镜――产生正球差。 产生正球差。 负透镜 产生正球差 这是由透镜本身结构特性决定的,所以,单个透镜不能校正球差。但若 这是由透镜本身结构特性决定的,所以,单个透镜不能校正球差。 是正负透镜组合,就可以实现球差的校正。 是正负透镜组合,就可以实现球差的校正。 所谓的消球差一般只是能使某一孔径带的球差为0, 所谓的消球差一般只是能使某一孔径带的球差为 ,而不能使各个孔径 带全部为0,一般对边缘光孔径校正球差,而此时一般在有最大的剩余球差 带全部为 ,一般对边缘光孔径校正球差, 0.707,且值为边缘带高级球差-1/4。 ,且值为边缘带高级球差- / 。 3、单个折射球面得齐明点 、 对于单个折射球向面,有几个特殊的物点位置, 对于单个折射球向面,有几个特殊的物点位置,不管球面的曲率半径 如何,均不产生球差。 如何,均不产生球差。 (1) L=0,此时亦有 =0,β=1。即物点和像点均位于球面顶点时,不产 = ,此时亦有L‘= , = 。即物点和像点均位于球面顶点时, 生球差。 生球差。