九年级数学等腰三角形的性质和判定
- 格式:pdf
- 大小:834.29 KB
- 文档页数:9
中考数学复习高频考点知识讲解与练习第18讲等腰三角形【考点知识总汇】一、等腰三角形的判定与性质1.判定:如果一个三角形有两个角相等,那么这两个角所对的边也(简写“”)。
2.性质(1)等腰三角形的两个底角(简写为“”)。
(2)等腰三角形顶角的、底边上的高和底边上的互相重合(简写成“三线合一”)。
(3)等腰三角形是图形,底边上的中线(或底边上的高或顶角的平分线)所在的直线是它的对称轴。
知识点总结:二、等边三角形的判定与性质1.判定(1)三个角的三角形是等边三角形。
(2)有一个角等于60 的三角形是等边三角形。
2.性质(1)等边三角形的三个内角都,并且每一个角都等于。
(2)等边三角形是轴对称图形,并且有条对称轴。
21AB知识点总结: 1.由于等边三角形是特殊的等腰三角形,所以等边三角形具有等腰三角形的所有性质,但等边三角形具有的性质等腰三角形不一定具有。
2.等边三角形的性质和判定的题设和结论也正好相反,要注意区别。
三、线段的垂直平分线1.性质:线段垂直平分线上的点与这条线段两个端点的距离。
2.判定:与一条线段两个端点距离相等的点,在这条线段的上。
知识点总结:1.线段的垂直平分线的性质是证明线段相等或垂直的重要方法。
2.垂直平分线的性质与判定的题设和结论也正好相反,注意区别。
高频考点1、等腰三角形的性质与判定【范例】如图, 90=∠ABC ,E D ,分别在AC BC ,上,DE AD ⊥,且DE AD =,点F 是AE 的中点,FD 与AB 相交于点M 。
(1)求证:FCM FMC ∠=∠。
(2)AD 与MC 垂直吗?并说明理由。
得分要领:等腰三角形的“三线合一”,包括以下三个结论:如图,在△ABC 中,AC AB =。
1.若BC AD ⊥,则DC BD =,21∠=∠。
2.若DC BD =,则BC AD ⊥,21∠=∠。
3.若21∠=∠,则BC AD ⊥,DC BD =。
【考题回放】1.若等腰三角形的顶角为40 ,则它的底角数为( )A.40B.50C.60D.702.如图,在△ABC 中,AC AB =,且D 为BC 上一点,AD CD =,BD AB =,则B ∠的度数为( )A.30B.36C.40D.45第2题 第3题3.如图,在△ABC 中,AC AB =, 40=∠A ,点D 在AC 上,DC BD =,则ABD ∠的度数是。
初中数学教案:等腰三角形的性质和判定等腰三角形的性质和判定一、等腰三角形的性质等腰三角形是指具有两条边相等的三角形。
在初中数学中,研究等腰三角形的性质和判定是非常重要的,因为它涉及到几何图形的分类和性质的分析。
下面将详细介绍等腰三角形的性质和判定。
1. 等腰三角形的定义等腰三角形是指具有两条边相等的三角形。
以ABC为例,如果AB=AC,我们就可以称它为等腰三角形。
等腰三角形的第三条边称为底边。
2. 等腰三角形的性质(1)等腰三角形的底角相等在等腰三角形ABC中,如果AB=AC,则∠B=∠C,即等腰三角形的底角相等。
(2)等腰三角形的等边角相等在等腰三角形ABC中,如果AB=AC,则∠A也等于60°,即等腰三角形的等边角相等。
(3)等腰三角形的高线重合于底边的中点在等腰三角形ABC中,如果AB=AC,则从顶点A到底边BC的垂直线段AD与BC的中垂线DE重合,即高线重合于底边的中点。
二、等腰三角形的判定在几何学中,判定一个三角形是否为等腰三角形是非常重要的,以下是几种常见的等腰三角形判定方法。
1. 边长相等法如果一个三角形的两条边的边长相等,那么这个三角形就是等腰三角形。
根据等腰三角形的定义可知,两边相等是等腰三角形的充分条件。
2. 底角相等法如果一个三角形的两个底角相等,那么这个三角形就是等腰三角形。
根据等腰三角形的性质可知,在等腰三角形中,底角是相等的。
3. 顶角相等法如果一个三角形的顶角等于底角,那么这个三角形就是等腰三角形。
根据等腰三角形的等边角相等的性质可知,在等腰三角形中,顶角等于底角。
4. 对称性质法如果一个三角形的某个角的两侧边相等,那么这个三角形就是等腰三角形。
根据等腰三角形的定义可知,两边相等是等腰三角形的充分条件。
5. 高线重合法如果一个三角形的高线重合于底边的中点,那么这个三角形就是等腰三角形。
根据等腰三角形的性质可知,等腰三角形的高线重合于底边的中点。
通过以上几种判断方法,我们可以轻松地判断一个三角形是否为等腰三角形。
等腰三角形的性质与判定等腰三角形是初中数学中的一个重要概念,它具有一些独特的性质和判定方法。
在本文中,我们将探讨等腰三角形的性质和判定,并通过几个例子加深理解。
首先,我们来了解等腰三角形的定义。
等腰三角形是指具有两条边相等的三角形。
根据这个定义,我们可以得出等腰三角形的第一个性质:等腰三角形的底角(底边对应的角)是相等的。
这是因为等腰三角形的两条边相等,所以它们对应的角也必须相等。
接下来,我们来探讨等腰三角形的第二个性质:等腰三角形的高线(从顶点到底边的垂直线段)是对称轴。
这个性质可以通过几何推理来证明。
假设我们有一个等腰三角形ABC,其中AB = AC。
如果我们从顶点A向底边BC引一条垂直线段AD,我们可以证明BD = CD。
这是因为在等腰三角形中,高线将底边等分,所以BD = CD。
这也意味着高线AD是底边BC的中垂线,而中垂线是对称轴。
除了这些基本性质外,等腰三角形还有一些判定方法。
首先,我们可以通过边长判定法来判断一个三角形是否为等腰三角形。
如果一个三角形的两条边相等,那么它就是等腰三角形。
其次,我们可以通过角度判定法来判断一个三角形是否为等腰三角形。
如果一个三角形的两个角相等,那么它就是等腰三角形。
这两种判定方法可以互相验证,帮助我们确定一个三角形是否为等腰三角形。
让我们通过一个例子来加深对等腰三角形性质和判定的理解。
假设我们有一个三角形DEF,其中DE = DF。
我们可以通过边长判定法得出这个三角形是等腰三角形。
接下来,我们可以通过角度判定法验证这个结论。
如果我们发现角D和角E相等,那么我们可以确定这个三角形是等腰三角形。
通过计算角度,我们可以发现角D和角E的度数相等,所以我们可以得出结论:三角形DEF是等腰三角形。
在实际生活中,等腰三角形的性质和判定方法也有一些应用。
例如,在建筑设计中,等腰三角形的对称性可以用于设计对称美观的建筑物。
在工程测量中,等腰三角形的判定方法可以帮助工程师确定一个三角形的性质,从而更好地进行测量和计算。
等腰三角形的性质与判定1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
等腰三角形知识点一:等腰三角形的性质——等边对等角等腰三角形的两个底角 .例1:(2009年贵州黔东南州)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )A .30oB .40oC .45oD .36o同步检测一:1.在△ABC 中,AB =AC ,①若∠A =70°,则∠B = °,∠C = °②若∠B =40°,则∠A = °2.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )A.50° B.80° C.50°或80° D.40°或65°知识点二:等腰三角形的性质——三线合一等腰三角形的 、 、 互相重合。
例2:如图,在△ABC 中,AD =AE ,BD =CE ,求证:AB =AC同步检测二:1.在△ABC 中,AB =AC ,D 为BC 的中点,∠B =70°,BC =10㎝,则BD = ,∠BAD = °A B CD E F知识点三:等腰三角形的判定——等角对等边在△ABC 中,如果∠A =∠B ,则有 =例3:如图,已知BD 是∠ABC 的角平分线,DE ∥BC 交AB 于E ,求证:△BED 是等腰三角形.1.在△ABC 中∠A =50°,∠B =80°,BC =10㎝,则AB = ㎝ 【证明题典例】例4:已知:如图,AC 和BD 相交于点O ,AB ∥CD ,OA=OB ,求证:OC=OD例5:求证:等腰三角形两腰上的中线相等.例6:在△ABC 中,∠ABC、∠ACB 的平分线相交于点O ,过点O 作DE∥BC,分别交AB 、AC 于点D 、E .求证:DE=BD+EC .A B C DE随堂检测:1、已知ABC ∆中,AB AC =.36A ∠=︒,则C ∠______.2、若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为( )A .50︒ B.80︒ C.65︒或50︒ D.50︒或80︒3、等腰三角形一腰为3cm,底为4cm,则它的周长是 ;4、已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( )A .4.8cmB .9.6cmC .2.4cmD .1.2cm 5、如图,若已知36A ∠=︒,72C ∠=︒,BD 平分ABC ∠交AC 于D ,若已知 4AD =cm , (5题图)则BC = cm .6、如图,等腰ABC △中,底边BC a =,36A ∠=︒,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,则图中等腰三角形共有( )个.A .3B .4C .5D .67、如图,已知OC 平分∠AOB ,CD ∥OB ,若OD =3㎝,则CD = ㎝(6题图) (7题图) (8题图)8.如图,△ABC 中,AB =AC , ∠B =30°,EF 垂直平分AB 如CF =8,则BF = .9、如图,在△ABC 中,∠B 和∠C 的平分线相交于点O ,且OB=OC ,请说明AB=AC 的理由.(9题图)10、(1)已知:OD 平分∠AOB ,EO=E D.请说明:ED ∥OB.(2)已知:ED ∥O B ,EO=ED.请说明:OD 平分∠AOB. (10题图)11、已知:如图所示,在△ABC 和△DCB 中,∠A=∠D=90°,AC 与BD 相交于点O ,AC=DB .求证:△OBC 为A B D CE D C BAA B CO等腰三角形.12、(1)已知:如图,在△ABC 中,D 是BC 的中点,DE⊥AB,DF⊥AC,垂足分别是E 、F ,且DE=DF .求证:△ABC 是等腰三角形.(2)求证:等腰三角形底边的中点到两腰的距离相等.【课后作业】1.在△ABC 中,AB=AC,BD 是角平分线,如果∠A=40 o ,那么∠BDC= .2. 在△ABC 中,点D 在CB 上,且AB=AD=CD,∠C=25 o ,那么∠BA C= .3.下列说法正确的是( )A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等 (2题图)C.等腰三角形一边不可是另一边的两倍D.等腰三角形的两个底角相等4、如图,在△ABC 中,已知∠B 和∠C 的平分线相交于点F ,过F作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD+CE=9, 则线段DE 的长为( ).(A) 9 (B) 8 (C) 7 (D) 65.如图,在△ABC 中,D 是BC 上的一点,DE 平分∠ADB ,DF 平分∠ADC ,且EF ∥BC ,若EF 交AD 于M ,EF=12,则DM = .(5题图) (6题图)6.如图,在△ABC 中,AB =AC ,∠BAD =20o ,AD =AE ,则∠EDC= .7.已知:如图,△ABC 的两条高BE 、CD 相交于点O ,且OB=OC ,求证:△ABC 是等腰三角形.E D C BA。
等腰三角形的性质等腰三角形是在初中数学中经常讨论的一个概念,指的是具有两条边相等的三角形。
在本文中,我们将探讨等腰三角形的性质及其相关定理。
通过对等腰三角形的研究,我们可以更好地理解三角形的特性和性质。
一、等腰三角形的定义等腰三角形是指一个三角形的两条边相等。
通常情况下,等腰三角形的两条等边分别称为腰,而未与之相等的边称为底边。
根据等腰三角形的定义,我们可以推导出等腰三角形的一些重要性质。
二、1. 等腰三角形的底角相等等腰三角形的两条边相等,因此根据三角形内角和定理可得,等腰三角形的底角相等。
也就是说,如果一个三角形的两条边相等,那么它的底角也相等。
2. 等腰三角形的顶角相等根据等腰三角形的定义和性质1,我们可以得出结论,等腰三角形的顶角必定相等。
因为等腰三角形的两条边相等,所以顶角必然相等。
3. 等腰三角形的高线和中线等腰三角形的高线和中线有一些特殊的性质。
等腰三角形的高线是从顶角所在的顶点到底边所在的垂足的线段。
等腰三角形的中线是连接两条等边中点和底边中点的线段。
4. 等腰三角形的高线和中线相等等腰三角形的高线和中线相等。
这是因为等腰三角形的两条等边分别是高线和中线的斜边,而两条斜边的长度相等。
所以,等腰三角形的高线和中线相等。
5. 等腰三角形的对称性等腰三角形具有一种对称性质。
如果我们把等腰三角形的底边作为对称轴,那么等腰三角形就具有对称性。
也就是说,等腰三角形的两个腰关于对称轴是对称的。
三、等腰三角形的判定怎样判定一个三角形是等腰三角形呢?在数学中,我们有一些判定等腰三角形的条件。
1. 两边相等如果一个三角形的两边相等,那么它就是等腰三角形。
2. 两角相等如果一个三角形的两个角相等,那么它就是等腰三角形。
3. 等边判定法如果一个三角形的三边相等,那么它就是等边三角形,也是等腰三角形。
四、等腰三角形的应用等腰三角形在学习数学过程中有着广泛的应用。
除了上述的性质和定理,等腰三角形还与圆有着紧密的联系。
苏教版九年级上册数学《等腰三角形的性质和判定》教学设计课题:3.1等腰三角形的性质和判定义务教育课程标准实验教科书数学(苏科版)九年级上册第一章第1节【设计说明】本节课是苏科版教材九(上)第一章《图形与证明(二)》的第1节,从知识本身来看,学生在八年级时曾利用轴对称性发现了等腰三角形的相关性质,因此,学生对于结论很熟悉;从证明过程来看,由于在学习《图形与证明(一)》时已接触过有条理地思考与表达,因此,用综合法书写证明过程的基本格式学生也并不陌生;从活动经验来看,学生已初步体验到观察、操作、实验、猜想得到的结论有时是不全面的、不深入的,甚至是错误的,已体会到证明的必要性,但这些感受还是较肤浅的,并且刚上九年级的学生其演绎推理的能力还比较薄弱,思维的广阔性、严密性、灵活性比较欠缺。
因此,本节课的教学是从学生原有的认知基础出发,以学生自主探索、合作交流为主要方式,让学生经历数学知识的形成与应用的过程。
具体来说,一是要通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在思维积极的状态中进行主动探究,发现证明等腰三角形的性质和判定定理的证明思路,明确“怎么想”与“怎么写”之间的关系;二是通过此探索活动进一步理解合情推理和演绎推理都是获得数学结论的重要途径,体会证明的必要性,发展学生合乎逻辑的思考和有条理地表达能力;三是通过设计思考一个命题的逆命题的真假和对例题的拓展,引导学生发现数学结论的另一个途径,教会学善于从正反两个不同的角度研究问题;四是通过积累活动经验,进一步理解“观察——猜想——概括——论证”这一数学发现的过程,同时为后续的有关三角形、四边形中相关定理的证明提供了经验储备和证明依据。
【教学目标】1.能证明等腰三角形的性质定理和判定定理;了解分析与思考的方法。
2.经历思考、猜想以及对操作活动的合理性进行证明的过程,不断感受证明的必要性,同时积累数学活动经验,发展逻辑推理能力。
第一章图形与证明(二)1.1 等腰三角形的性质和判定Ⅰ.核心知识点扫描1.等腰三角形和等边三角形的性质和判定性质判定等腰三角形⑴等腰三角形两个底角相等(简称“等边对等角”) .⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).⑴如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).⑵定义:如果一个三角形中有两条边相等,那么这个三角形是等腰三角形.图示(1)在△ABC中,∵AB=AC ∴∠B=∠C;(2)在△ABC中,AB=AC.若∠BAD=∠CAD,那么AD⊥BC,BD=CD;若BD=CD,那么∠BAD=∠CAD,AD⊥BC;若AD⊥BC,那么∠BAD=∠CAD,BD=CD.在△ABC中,∵∠B=∠C ∴AB=AC.等边三角形⑴等边三角形是特殊的等腰三角形,因此等边三角形具有等腰三角形的所有性质,并且,在每条边上都有“三线合一”;⑵等边三角形的每个内角都等于60°.⑴定义:三条边都相等的三角形是等边三角形.⑵有一个角是60°等腰三角形是等边三角形.⑶三个角都相等的三角形是等边三角形.图示∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°.(1)∵AB=BC=AC,∴△ABC是等边三角形;(2) ∵AB=BC,∠A=60°,∴△ABC是等边三角形;(3)∵∠A=∠B=∠C,∴∴△ABC是等边三角形.Ⅱ.知识点全面突破知识点1:等腰三角形性质(重点)⒈等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”);可用符号语言表述如下:如图1-1-1,在△ABC中,∵AB=AC ∴∠B=∠C.已知:如图1-1-1,在△ABC中, AB=AC.求证:∠B=∠C.图1-1-3定理的证明分析:利用分析法思考证明的过程:如下所示:作顶角的平分线AD.()AB AC B C ABD ACD SAS BAD CAD AD AD =⎧⎪∠=∠⇐≅⇐∠=⎨⎪=⎩,具体证明过程略.此外,我们还可以用AAS 、ASA 、SSS 证明这一性质.如取BC 的中点D ,连接AD,在△ABD 和△ACD中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴B C ∠=∠.2.等腰三角形的性质定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).可用符号语言表述如下:如图1-1-2,在△ABC 中,AB=AC.若∠BAD=∠CAD ,那么AD ⊥BC ,BD=CD ; 若BD=CD ,那么∠BAD=∠CAD ,AD ⊥BC ;若AD ⊥BC ,那么∠BAD=∠CAD ,BD=CD.详解:①等腰三角形是特殊的三角形,它拥有一般三角形所具有的所有的性质.同时它还具有一般三角形所没有的特点和性质;②定理1常用来证明同一个三角形中的两个角相等;定理2实际上是等腰三角形中的两个结论,已知其中任意一个可以得到另两个结论,常用来证明角相等、线段相等或垂直;③将这两条性质用在特殊的等腰三角形即等边三角形中,可得等边三角的性质:等边三角形的各角都相等,并且都等于60°;等边三角形每一条边上的中线高都与所对的角平分线互相重合.例1.如图1-1-3,房屋的顶角∠BAC=100O ,过屋顶A 的立柱,屋椽AB=AC 求∠B ,∠C ,∠BAD ,∠CAD 的度数.解:在△ABC 中, AB=AC(已知).∴∠B=∠C(等边对等角) .∴∠B=∠C=21(180O -∠BAC) 图1-1-1图1-1-2=21(180O -100O )=40O (三角形内角和定理) .又∵AD ⊥BC ,∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合),∴∠BAD=∠CAD=50O .点拨:已知等腰三角形的顶角,根据等边对等角及三角形的内角和定理可求出∠B 与∠C 的度数,再根据等腰三角形的三线合一,可得AD 是顶角的平分线,则∠BAD 与∠CAD 的度数即可求.例2:(2010,山东济南)(一题多解)如图1-1-4,已知AB AC AD AE ==,.求证BD CE =.证明:方法1 如图1-1-5过点A 作AH ⊥BC ,交BC 于点H . ∵AB=AC ,AD=AE ,AH ⊥BC , ∴BH=CH , DH=EH∴BH 一DH=CH 一EH 即BD=CE 方法2 ∵AB=AC ∴∠B=∠C ∵AD=AE ∴∠ADE=∠AED∴180O-∠ADE=180O-∠AED 即∠ADB=∠AEC ∵AB=AC ,∠B=∠C ,∠ADB=∠AEC ∴△ABD ≌△ACE ∴BD=CE .点拨:在等腰三角形中,虽然顶角平分线、底边上的中线、底边上的高互相重合,但如何添加,要根据具体情况来定.本题中适合高AH AH ,利用等腰三角形的“三线合一”来解决这个问题。
第16讲等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求21P COBAPCO BADABC abccD。
初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。
一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。
两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。
2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。
(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。
2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。
三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。
(2)一边的中线等于这条边的一半,这个三角形是直角三角形。
(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。
等腰三角形的性质与判定等腰三角形是初中数学中经常遇到的一个重要概念,它具有一些独特的性质和判定方法。
在本文中,我将为大家详细介绍等腰三角形的性质以及如何判定一个三角形是否为等腰三角形。
一、等腰三角形的性质等腰三角形是指两条边相等的三角形。
它具有以下几个重要的性质:1. 顶角平分线:等腰三角形的顶角平分线也是底边的中线。
这意味着等腰三角形的顶角平分线与底边相等,并且平分线的中点与底边的中点重合。
2. 底角相等:等腰三角形的两个底角是相等的。
这是等腰三角形最基本的性质之一,也是判定一个三角形是否为等腰三角形的重要依据。
3. 高线重合:等腰三角形的两条高线重合于底边中点。
这意味着等腰三角形的两条高线相等,并且它们的交点与底边的中点重合。
二、判定等腰三角形的方法判定一个三角形是否为等腰三角形,我们可以运用以下几种方法:1. 两边相等:如果一个三角形的两边相等,那么它就是一个等腰三角形。
这是最简单的判定方法,只需要比较两条边的长度即可。
2. 底角相等:如果一个三角形的两个底角相等,那么它就是一个等腰三角形。
这个方法也比较简单,只需要用量角器或直尺测量两个角的度数即可。
3. 顶角平分线:如果一个三角形的顶角平分线与底边的中线重合,那么它就是一个等腰三角形。
这个方法需要用到直尺和量角器,先画出顶角平分线,再测量底边中线的长度,如果两者重合,就可以判定为等腰三角形。
三、实际应用等腰三角形在现实生活中有许多实际应用。
例如,在建筑设计中,我们经常会遇到等腰三角形的形状,比如屋顶的斜面。
通过了解等腰三角形的性质和判定方法,我们可以更好地理解和应用这些形状。
此外,等腰三角形还与数学中的其他概念有着密切的联系。
例如,等腰三角形的顶角平分线与底边的中线重合这一性质,与中位线的性质有着相似之处。
通过比较和分析这些概念之间的关系,我们可以更深入地理解数学知识。
总结:等腰三角形是初中数学中的重要概念,它具有独特的性质和判定方法。
等腰三角形的性质与判定等腰三角形是我们初中数学学习的重要内容之一。
它具有一些独特的性质和判定方法,本文将详细介绍等腰三角形的相关概念和定理,并提供一些实例以帮助读者更好地理解和应用这些知识。
一、等腰三角形的定义等腰三角形是指两边边长相等的三角形。
具体而言,等腰三角形拥有以下特点:1. 两个底边边长相等(a = b)2. 两个底边所对的角度相等(∠A = ∠B)3. 顶点角可以是锐角、直角或钝角,但不可能是等边三角形的顶点角二、等腰三角形的性质1. 顶角平分线:等腰三角形的顶角平分线也是它的高线,且它们重合于等腰三角形的底边中点。
2. 底角相等:等腰三角形的底角(底边所对的角)相等。
3. 对称性:等腰三角形具有对称性。
即,以等腰三角形的顶点为中心,底边为轴进行对称变换,可以得到另一个完全相同的等腰三角形。
4. 面积计算:等腰三角形的面积可通过底边长度和高(顶角平分线)的关系公式计算,即S = 1/2 * b * h。
三、等腰三角形的判定1. 边长判定:若三角形的两边边长相等,则该三角形为等腰三角形。
2. 角度判定:若三角形的两个角度相等,则该三角形为等腰三角形。
3. 边角关系判定:若三角形的一个角度和一个边边长与另一个角度和另一边边长相等,则该三角形为等腰三角形。
实例一:已知三角形ABC,AB = AC,∠B = ∠C。
判断该三角形是否为等腰三角形。
解:根据等腰三角形的定义,若两边边长相等且两个底角相等,则该三角形为等腰三角形。
根据题目给出的已知条件,可以得出AB = AC,∠B = ∠C。
因此,三角形ABC为等腰三角形。
实例二:已知三角形DEF,DF = EF,∠E = 60°。
判断该三角形是否为等腰三角形。
解:根据等腰三角形的定理,若两边边长相等且两个底角相等,则该三角形为等腰三角形。
根据题目给出的已知条件,可以得出DF = EF,∠E = 60°。
因此,三角形DEF为等腰三角形。
等腰三角形的性质,等腰三角形的判定等腰三角形的性质,等腰三角形的判定等腰三角形是指具有两边相等的三角形,它有一些特殊的性质和判定方法。
本文将详细介绍等腰三角形的性质以及如何判定一个三角形是否是等腰三角形。
一、等腰三角形的性质1. 两边相等:等腰三角形的两个底边相等,记作AB=AC。
2. 两角相等:等腰三角形的顶角与底边相对的两个底角相等,即∠B=∠C。
3. 对称轴:等腰三角形的对称轴是通过顶角和底边中点的垂直平分线。
二、等腰三角形的判定判定一个三角形是否是等腰三角形,可以通过以下几种方式进行判定。
1. 两边相等:如果已知一个三角形的两边相等,可以判断这个三角形是等腰三角形。
例如,若已知AB=AC,则可得出三角形ABC是等腰三角形。
2. 两角相等:如果已知一个三角形的两个角相等,可以判断这个三角形是等腰三角形。
例如,若已知∠B=∠C,则可得出三角形ABC是等腰三角形。
3. 辅助线:通过画辅助线,可以判断一个三角形是否是等腰三角形。
例如,可以在顶角上作一条中位线,若中位线与底边重合,则可判定该三角形是等腰三角形。
三、等腰三角形的应用等腰三角形在几何学中有着广泛的应用,以下是其中一些应用场景。
1. 建筑设计:等腰三角形的稳定性使其在建筑中常被用于设计坚固的结构,例如建筑物的屋顶、柱子等。
2. 制图:在地图和平面设计中,等腰三角形可以用于定位和测量,方便绘制和计算。
3. 数学推导:等腰三角形的性质常常被用于解决各种几何问题,例如判断角度、求解边长等。
综上所述,等腰三角形具有两边相等和两角相等的特点。
我们可以通过两边相等或两角相等来判定一个三角形是否为等腰三角形。
等腰三角形在实际生活和数学推导中有着广泛的应用,具有重要的意义。
理解等腰三角形的性质和判定方法有助于我们更好地应用和理解几何学知识。
等腰三角形的性质与判定等腰三角形是指两条边长度相等的三角形。
在几何学中,等腰三角形具有一些独特的性质和判定方法。
本文将介绍等腰三角形的性质,并提供几种判定等腰三角形的方法。
一、等腰三角形的性质1. 两底角相等:等腰三角形的两个底角(底边对应的两个角)相等。
假设等腰三角形的两边长分别为a,底角为∠A,顶角为∠B,则有∠A = ∠B。
2. 顶角平分底边:等腰三角形的顶角(顶边对应的角)等于底边上的两个底角之和的一半。
即∠B = (∠A + ∠A) / 2。
3. 等腰直角三角形是等边三角形:当等腰三角形的底角是90度时,即为等腰直角三角形。
在等腰直角三角形中,两个等边也是等于斜边的长度。
二、判定等腰三角形的方法1. 通过边长判定:如果三角形的两个边长相等,则可以判断它为等腰三角形。
例如,当三角形的两边长都为3cm,底角为60度时,即可判定该三角形为等腰三角形。
2. 通过角度判定:如果三角形的两个角度相等,则可以判断它为等腰三角形。
例如,当三角形的底角和顶角均为45度时,即可判定该三角形为等腰三角形。
3. 通过边角关系判定:如果三角形的两个底角相等,则可以判断它为等腰三角形。
例如,当三角形的两个底角均为60度时,即可判定该三角形为等腰三角形。
三、等腰三角形的应用1. 建筑设计:等腰三角形常被用于建筑设计中,例如设计等腰三角形的屋顶或者窗户。
2. 数学计算:在数学中,等腰三角形的性质可用于解决各种几何问题,如计算其面积、周长以及三角形内外接圆的半径等。
3. 测量工具:在实际测量中,等腰三角形也被应用于测量工具的设计,如三角板、量角器等。
总结:等腰三角形的性质和判定方法是几何学中的基础知识。
熟练掌握这些知识,不仅可以帮助我们解决数学问题,还可以应用于实际生活中的建筑设计和测量工作中。
通过本文的介绍,相信读者对等腰三角形有了更深入的了解,能够正确判定和应用等腰三角形。
等腰三角形的性质与判定【知识梳理】1.等腰三角形的概念:有 相等的三角形,叫做等腰三角形, 叫做腰,另一条边叫做 .两腰所夹的角叫做 ,底边与腰所夹的角叫做 .2.等腰三角形性质定理:(1)等腰三角形的两个 相等,也能够说成 .. (3)等腰三角形是 图形.3.等腰三角形的判定:(1)有 相等的三角形是等腰三角形. (2)假如一个三角形有两个角相等,那么这两个角 也相等.简写成 .【例题讲解】例1等腰三角形ABC 中,AB =AC ,一腰上的中线BD •将这个等腰三角形周长分成15和6两局部,求这个三角形的腰长及底边长.例2如图,在△ABC 中,AB =AC ,∠ABD =∠ACD .求证:△DBC 是等腰三角形.例3 如图,AB =AE ,BC =ED , ∠B =∠E .求证:∠C =∠D .例4如图,AB =AC ,BD ⊥AC 于D . 求证:∠BAC =2∠DBC .例5 相关等腰三角形的基本图形.(1)如图3,若OD 平分∠AOB ,DE ∥OB交OA 于E .求证:EO =ED .提问:这个结论的逆命题是否准确?(2)如图 3,若 OD 平分∠AOB , EO =ED ,求证: DE ∥OB . (3)如图 3,若 DE ∥OB 交OA 于E , EO =ED ,求证: OD 平分∠AOB .总结:图3是相关等腰三角形的一个很常用的基本图形.以上三个小题说明:在图3中,“角平分线.平行线.等腰三角形”这三者中,若有两条成立,则第三条必成立.熟悉这个结论,对解决包含该图形的较复杂的题目是很有协助的.相关的题组练习.(1)如图4,AD ∥BC , BD 平分∠ABC .求证: AB =AD .(2)已知:如图5(a ),AB =AC ,BD 平分∠ABC ,CD 平分∠ACB .问:①图中有几个等腰三角形?②如图5(b ),若过D 作EF ∥BC 交AB 于E ,交AC 于F ,图中又增加了几个等腰三角形? (3)如图5(c ),若将第(2)题中的△ABC 改为不等边三角形,其它条件不变,情况会如何?还可证出哪些线段的和差关系?(4)对第(3)题中“两内角平分线”可作怎样的推广?相对应的线段和差关系如何?推广①当过△ABC 的一个内角和一个外角平分线的交点作这两角的公共边的平行线时,如图5(d ).推广②当过△ABC 的两个外角平分线上一点作这两个角的公共边的平行线时,如图5(e ).(5)如图6,若BD ,CD 分别平分∠ABC 和∠ACB ,过D 作DE ∥AB 交BC 于E ,作DF ∥AC 交BC 于F .求证:BC 的长等于△DEF 的周长.【课后巩固】1.在△ABC 中,AB =AC ,若∠B =56º,则DCBAED CBADCB A 3334∠C =__________.2. 若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________.3. 若等腰三角形的两边长分别为x cm 和(2x-6)cm ,且周长为17cm ,则第三边的长为________.4. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,若∠CAD =25°,则∠ABE = ,若BC =6,则CD = .5.△ABC 中,AB =AC ,∠ABC =36°,D .E 是BC 上的点,∠BAD =∠DAE =∠EAC ,则图中等腰三角形有______个6.等腰三角形一腰上的高与底边夹角为20°,则其顶角的大小为___________. 7.如图,∠ABC =50°,∠ACB =80°,延长CB 到D ,使BD =AB ,延长BC 到E ,使CE =CA ,连接AD .AE ,则∠DAE =_______.EDCB A8.如下列图,△MNP 中,∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 .9.△ABC 中,∠C =∠B ,D .E 分别是AB .AC上的点,•AE =•2cm ,•且DE •∥BC ,•则AD =______10.如图,∠AOB 是一个钢架且∠AOB =10°,为了使钢架更加牢固,需在内部添加一些钢管EF ,FG ,GH ,…,添加的钢管长度都与OE 相等,则最多能添加这样的钢管______根.11.如图△ABC 中,AB =AC ,AD 、BE 是△ABC 的高,它们相交于H ,且AE=BE . 求证:AH =2BD . 12.△ABC 为非等腰三角形,分别以AB 、AC 为 向△ABC 外作等腰直角三角形ABD 和等腰直角三角 形ACE ,且∠DAB =∠EAC =90°. 求证:(1)BE =CD ;(2)BE ⊥CD .13.如图,点D 、E 在ABC ∆的边BC 上,AB AC =,AD AE =. 求证:BD CE = 14.如图,AB AC =,30BAD ∠=,且AD AE =.求EDC ∠的度数.15.如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 平分BAC ∠交CD 于F ,交BC 于E ,求证:CEF ∆是等腰三角形.16.Rt ABC ∆中,AB AC =,90BAC ∠=,O 为 AB 中点,若点M .N 分别在线段AB .AC 上移 动,且在移动过程中保持AN BM =,试判断 OMN ∆的形状,并证明你的结论.17.已知:如图,△ABC 中,D 在AB 上,E 在AC 延长线上,且BD =CE ,DE 交BC 于M ,MD =ME ,求证:△ABC 是等腰三角形.18.已知一个等腰三角形,从它的一个顶点出发引一条直线将它分成两个等腰三角形,这样的等腰三角形有几种情况?画出图形并写出原等腰三角形各角度数. E D C B AP QM N G 35E M DCB A36。
初中数学知识归纳等腰三角形的性质与判定等腰三角形是指具有两条边相等的三角形。
在初中数学中,等腰三角形是一个重要的概念。
本文将归纳等腰三角形的性质与判定方法。
通过学习本文,你将更好地理解等腰三角形的特点和运用方法。
一、等腰三角形的性质等腰三角形具有以下几个性质:1. 两底角相等:等腰三角形的两个底角(即底边两侧的角)相等。
记等腰三角形底角为α,则底角α=底角α'。
2. 两腰相等:等腰三角形的两条腰(即与底边相对的两边)相等。
记等腰三角形的腰长为a,则两腰a=腰a'。
3. 顶角平分底角:等腰三角形的顶角(即顶点处的角)平分底角。
记等腰三角形的顶角为β,则顶角β是底角α和α'的平分线。
二、等腰三角形的判定在判定一个三角形是否为等腰三角形时,可以利用以下几种方法:1. 对边判定法:当一个三角形的两边相等时,可以判断它为等腰三角形。
即若AB=AC,则△ABC为等腰三角形。
2. 对角判定法:当一个三角形的两个角相等时,可以判断它为等腰三角形。
即若∠B=∠C,则△ABC为等腰三角形。
3. 垂直平分线判定法:当一个三角形的顶角的角平分线同时也是底边中点的垂直平分线时,可以判断它为等腰三角形。
即若BD为垂直平分线,且BD是AC的中线,则△ABC为等腰三角形。
三、等腰三角形的例题示例下面通过两个例题来进一步加深对等腰三角形的理解。
例题1:在△ABC中,AB=AC,∠B=70°,求∠C和∠A的度数。
解:根据等腰三角形的性质,可知∠B=∠C,而∠A+∠B+∠C=180°。
由于∠B=70°,所以∠C=70°。
又因为∠A+70°+70°=180°,所以∠A=40°。
例题2:已知△ABC为等腰三角形,AB=AC,垂直平分线BD同时也是AC的中线,求∠B、∠C和∠A的度数。
解:根据等腰三角形的性质,可知∠B=∠C。
由于BD是垂直平分线,且BD同时也是AC的中线,所以∠BDC=∠CDB=90°,BD=DC。