基于ASPEN PLUS的煤气化模拟与有效能分析
- 格式:pdf
- 大小:4.44 MB
- 文档页数:89
华中科技大学硕士学位论文基于Aspen plus的煤气化链式燃烧整体联合循环模拟研究姓名:张倩申请学位级别:硕士专业:热能工程指导教师:柳朝晖2011-01-08华中科技大学硕士学位论文摘要人类活动产生温室气体CO2的最大来源是煤、石油和天然气等化石燃料燃烧,所以研究这些化石燃料的充分利用和CO2零排放对能源和环境都有着非常重要的意义。
本文以水煤浆为燃料,NiO/NiAl2O4为氧载体,基于Aspen plus软件对新型煤气化链式燃烧联合循环系统进行研究,实现燃煤发电的高效近零排放。
针对以水煤浆为燃料,氧载体为NiO/NiAl2O4,基于Aspen plus软件对新型煤气化链式燃烧联合循环系统按照模块化分析方法对其中的增压气流床水煤浆气化炉、CLC(化学链燃烧)、GT(燃气轮机)、HRST(余热锅炉)汽水循环分别建模研究。
分别讨论选取气化部分主要参数----气化压力和温度及水煤比,CLC部分主要参数----燃料反应器温度、最小载氧体的质量,由此得出各部分优化的运行条件和参数。
将上述煤气化、链式燃烧和联合循环三部分耦合后,实现了对该系统的整体模拟。
讨论分析了空气反应器温度、补燃温度、冷却空气率等关键参数对系统性能的影响规律。
伴随AR温度T AR的上升,系统效率下降(约0.76个百分点),补燃率下降,烟气中CO2的捕集率上升,CO2的排放量减小(约80g/kWh)。
伴随补燃温度的上升,系统净效率上升,补燃率上升,CO2捕集率降低。
伴随冷却空气量的增大,系统的效率呈降低的势头,CO2排放量略有降低,大约1.7%。
在各部分优化的运行工况下,得到系统主要的性能技术指标。
结果表明得系统净效率达到39.9%LHV,CO2捕集率为93.2%,CO2排放量为132.7 g/kWh。
与氧载体为Fe2O3/MgAl2O4时的系统、超超临界系统、IGCC系统相应参数进行对比,化学链燃烧联合循环系统在CO2捕集方面有着巨大的优越性,效率也较高。
ASPENPLUS反应器的模拟与优化解读ASPEN Plus是一种流程模拟软件,广泛应用于化工工程、能源工程等领域。
它可以帮助工程师通过建立模型和进行仿真,预测和优化化工流程。
在化工生产过程中,反应器是一个重要的组件,ASPEN Plus能够进行反应器的模拟和优化解读,从而帮助工程师改进反应器的设计和操作条件,提高生产效率和产品质量。
首先,ASPEN Plus可以帮助工程师建立反应器的模型。
在ASPENPlus中,用户可以选择适当的反应器模型,如气相反应器、液相反应器、固相反应器等。
然后,用户可以输入反应器的物理和化学性质的数据,如反应器中的反应物浓度、反应速率常数、活化能等。
根据这些数据,ASPEN Plus可以进行数值求解,得到反应器中物质的浓度、温度、压力等参数的变化情况。
接下来,ASPEN Plus可以进行反应器的仿真。
在仿真过程中,ASPEN Plus可以帮助工程师分析反应物的转化率、选择性和产率等重要指标。
通过改变反应器的操作条件,如温度、压力、进料流量等,工程师可以观察到这些指标的变化情况。
如果仿真结果与实际情况相符,工程师可以进一步进行优化解读。
最后,ASPEN Plus可以进行反应器的优化解读。
优化是指通过改变操作变量,使得一些目标函数达到最优的过程。
在反应器中,可以将产物收率、能耗、废料生成量等作为目标函数,通过改变反应器的操作变量,如反应温度、催化剂用量等,使目标函数最优化。
ASPEN Plus提供了多种优化算法,如遗传算法、模拟退火算法等,可以自动最优解。
通过ASPEN Plus的模拟与优化解读,工程师可以获得以下信息和结果:1. 反应器的性能评估:ASPEN Plus可以帮助工程师评估反应器的表现,如转化率、选择性和产率等。
这些信息对于确定反应器的效果并进行性能改进至关重要。
2. 最优操作条件:通过优化解读,ASPEN Plus可以帮助工程师确定反应器的最佳操作条件,如温度、压力、进料流量等。
基于Aspen Plus软件的燃煤烟气脱碳系统本文将介绍基于Aspen Plus软件的燃煤烟气脱碳系统。
燃煤烟气脱碳技术是减少二氧化碳等大气污染物排放的关键技术之一。
脱碳技术可采用碱液吸收法、活性炭吸附法、膜分离法等多种方法,但碱液吸收法是最为普遍的一种方法。
本文将介绍基于Aspen Plus软件的碳酸钠吸收法脱碳系统。
首先,在Aspen Plus软件中建立物料流程图,该系统包括燃煤锅炉、除尘器、SO2吸收器和脱碳吸收器等部分。
其中,燃煤锅炉是煤燃烧释放烟气的来源,烟气经过除尘器去除颗粒物后,进入SO2吸收器。
这一阶段主要是利用碱液吸收SO2,并在此过程中生成硫酸钠。
随后,烟气进入脱碳吸收器,利用碳酸钠溶液吸收CO2,生成碳酸钠。
最后,再经过氢氧化钠吸收器进一步净化,去除残留SO2,并通过尾气治理设备排放。
接下来,需要为化学反应建立热力学模型。
碳酸钠吸收CO2反应公式为:CO2(g)+Na2CO3(aq)→NaHCO3(aq)该反应为放热反应,需要热量计算。
在Aspen Plus中设定反应器后,输入反应物的进料流量和组成,系统可计算出放热情况和反应物质量平衡。
为了更准确地模拟整个系统,还需要设置最佳操作条件。
这可以通过调节几个关键参数来实现,包括流量、浓度等。
通过时间驱动的仿真,可以为各个部分设定最佳操作条件,进而提高系统产量和效率。
最后,需要进行系统优化,以尽量减少能耗和净化成本。
优化方案包括增加碱液浓度、减少脱碳吸收器温度等。
Aspen Plus软件可以对不同方案进行评估,系统将自动计算不同方案的成本效益,并根据结果确定最佳方案。
在完成以上步骤后,可以对整个系统进行性能评估。
通过Aspen Plus软件,可以评估系统的排放减少程度和能源消耗情况,并根据数据结果做出相应的优化调整。
总之,基于Aspen Plus软件的燃煤烟气脱碳系统,可实现对烟气的净化和捕捉二氧化碳的功能,具有相当的实用性和经济性。
第47卷第9期热力发电V ol.47 No.9基于Aspen Plus的煤炭空气部分气化联合循环发电系统模拟叶超1,王勤辉1,俞利锋2,方梦祥1,唐健2,骆仲泱1(1.浙江大学能源清洁利用国家重点实验室,浙江杭州310027;2.华电国际电力股份有限公司浙江分公司,浙江杭州310016)[摘要]煤炭空气部分气化联合循环发电技术采用循环流化床反应器作为气化炉和燃烧炉,煤由给料装置送入气化炉中与空气发生反应,产生燃气然后送入燃气轮机中发电;反应剩余的半焦则送入循环流化床燃烧炉中燃烧发电。
本文采用甘肃华亭煤为设计煤种,利用Aspen Plus软件对煤炭空气部分气化联合循环发电技术进行模拟研究,得出了空气煤比、碳转化率对气化温度、燃气组分、燃气热值、气化效率、发电效率等因素的影响。
结果表明:随着空气煤比的增大,气化温度升高,燃气热值、发电效率及气化效率降低;随着碳转化率增大,燃气的热值提高,气化效率及发电效率均增加;系统发电效率随着碳转化率增加而增加,然而当碳转化率大于80%时,发电效率的增加幅度大幅减小,因此将碳转化率选为80%较为合适,此时的发电效率约为57%,这相较于现有的煤粉燃烧发电系统有极大的提高。
[关键词]煤炭;部分气化;联合循环发电;循环流化床;Aspen Plus[中图分类号]TQ523.6 [文献标识码]A [DOI编号]10.19666/j.rlfd.201711129[引用本文格式]叶超, 王勤辉, 俞利锋, 等. 基于Aspen Plus的煤炭空气部分气化联合循环发电系统模拟[J]. 热力发电, 2018, 47(9): 63-68. YE Chao, WANG Qinhui, YU Lifeng, et al. Simulation of combined-cycle power system of coal/air partial gasification based on Aspen Plus[J]. Thermal Power Generation, 2018, 47(9): 63-68.Simulation of combined-cycle power system of coal/air partial gasificationbased on Aspen PlusYE Chao1, WANG Qinhui1, YU Lifeng2, FANG Mengxiang1, TANG Jian2, LUO Zhongyang1(1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;2. Huadian Power International Corporation Limited Zhejiang Branch, Hangzhou 310016, China)Abstract: Combined-cycle power generation technology of coal/air partial gasification uses the circulating fluidized bed (CFB) reactor as a gasifier and a combustion furnace. Coal is fed into the gasifier by the feed device and reacts with the air to produce gas which is then sent to the gas turbine for power generation. And the remaining semicoke is then fed to the circulating fluidized bed combustion furnace for combustion and power generation. This study uses Gansu Huating coal as design coal. And a simulation study on combined-cycle power generation technology of coal/air partial gasification is conducted by using Aspen Plus. The effects of air-coal ratio, carbon conversion rate on factors such as gasification temperature, gas composition, gas calorific value, gasification efficiency and power generation efficiency are studied. The results show that, when the air-coal ratio increases, gasification temperature increases and the gas calorific value, power generation efficiency and gasification efficiency decreases. Both the gasification efficiency and power generation efficiency increases when the carbon 收稿日期:2017-11-10基金项目:国家重点研发计划项目(2016YFE0102500-05)Supported by:National Key Research and Development Program(2016YFE0102500-05)第一作者简介:叶超(1991—),男,主要研究方向为固体燃料转化技术,11327071@。