(完整版)非常规数列问题及数列中的易错题.docx
- 格式:docx
- 大小:18.58 KB
- 文档页数:2
∑ 数列部分易错题选一、选择题1. 设 s n 是等差数列{ a n } 的前 n 项和, 已知 s 6 =36,s n =324, s n -6 =144 (n >6), 则n=() A 15B16C17D18正确答案:D 错因:学生不能运用数列的性质计算 a 1 +a n =36 + 324 - 14462. 已知 s n 是等差数列{a n }的前 n 项和,若 a 2 +a 4 +a 15 是一个确定的常数,则数列{s n }中是常数的项是()As 7Bs 8Cs 11Ds 13正确答案: D 错因:学生对等差数列通项公式的逆向使用和等差数列的性质不能灵活应用。
3. 设{a n }是等差数列,{b n }为等比数列,其公比 q≠1, 且 b i >0(i=1、2、3…n) 若 a1 =b 1 ,a 11 =b 11 则 ()A a 6 =b 6Ba 6 >b 6Ca 6 <b 6Da 6 >b 6 或 a 6 <b 6正确答案 B 错因:学生不能灵活运用等差中项和等比中项的定义及基本不等式。
4. 已知非常数数列{a },满足 a 2 -a a +a 2 =0 且 a ≠a, i=1、2、3、…n,对于给ni +1i i +1ii +1i -1n -1 定的正整数 n,a 1 =a i +1 ,则aii =1等于( ) A2B-1C1D正确答案:D错因:学生看不懂题目,不能挖掘题目的隐含条件,{a n }的项具有周期性。
5. 某人为了观看 2008 年奥运会,从 2001 年起每年 5 月 10 日到银行存入 a 元定期储蓄, 若年利率为 p 且保持不变,并且每年到期的存款及利息均自动转为新一年定期,到 2008 年将所有的存款和利息全部取回,则可取回的钱的总数(元)为( ).Aa(1+p) 7Ba(1+p) 8C a[(1 + p )7 - (1 + p )]pDa[(1 + p )8 - (1 + p ) ] p正确答案:D 错因: 学生对存款利息的计算方法没掌握。
2021年高考数学复习专题12 数列数列的综合应用易错点
主标题:数列的综合应用易错点
副标题:从考点分析数列的综合应用在高考中的易错点,为学生备考提供简洁有效的备考策略。
关键词:数列,数列的综合应用,易错点
难度:3
重要程度:5
内容:
【易错点】
1.等差数列与等比数列的综合问题
(1)在等差数列{a n}中,首项a1公差d、前n项和S n、通项a n、项数n,这五个元素中只要已知其中的三个,就一定能够求出另外两个.(√)
(2)在等比数列{a n}中,首项a1、公比q、前n项和S n、通项a n、项数n,这五个元素中只要已知其中的三个,就一定能够求出另外两个.(√)
(3)一个细胞由1个分裂为2个,则经过5次分裂后的细胞总数为63.(×)
(4)(xx·重庆卷改编)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=128.(×)
2.增长率与存贷款利息问题
(5)某厂生产总值月平均增长率为q,则年平均增长率为12q.(×)
(6)采用单利计息与复利计息的利息都一样.(×)
剖析
1.一个区别“单利计息”与“复利计息”
单利计息属于等差数列模型,复利计息属于等比数列模型.复利也就是通常说的“利滚利”.计算本利和的公式是本利和=本金×(1+利率)存期,如(6).
2.一个防范数列的实际应用问题,要学会建模,对应哪一类数列,进而求解,如(3)、(5).35173 8965 襥34726 87A6 螦25157 6245 扅 +33472 82C0 苀721863 5567 啧 at33833 8429 萩 \。
【最新】《数列》专题解析一、选择题1.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A B .2C .12D 【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.2.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C.【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.3.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.4.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.5.已知数列{}n a 中,12a =,211n n n a a a +=-+,记12111n nA a a a =++⋯+,12111n nB a a a =⋅⋅⋯⋅,则( ) A .201920191A B +> B .201920191A B +< C .2019201912A B -> D .2019201912A B -< 【答案】C 【解析】 【分析】根据数列{}{},n n A B 的单调性即可判断n n A B -;通过猜想归纳证明,即可求得n n A B +. 【详解】注意到12a =,23a =,37a =,不难发现{}n a 是递增数列. (1)21210n n n n a a a a +-=-+≥,所以1n n a a +≥.(2)因为12a =,故2n a ≥,所以1n n a a +>,即{}n a 是增函数. 于是,{}n A 递增,{}n B 递减, 所以20192121156A A a a >=+=,20192121116B A a a <=⋅=, 所以2019201912A B ->. 事实上,111,A B +=221,A B +=331A B +=, 不难猜想:1n n A B +=. 证明如下:(1)211121111111111111n n n n n n n n a a a a a a a a a a ++-=-+⇒=-⇒++⋅⋅⋅+=----. (2)211n n n a a a +=-+等价于21111n n na a a +=--, 所以1111n n n a a a +-=-, 故12111111n n a a a a +⋅⋅⋯⋅=-, 于是12121111111n n a a a a a a ⎛⎫⋅⋅⋯⋅+++⋯+= ⎪⎝⎭, 即有1n n A B +=. 故选:C. 【点睛】本题考查数列的单调性,以及用递推公式求数列的性质,属综合中档题.6.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.7.已知数列{}n a 满足12n n a a +-=,且134,,a a a 成等比数列.若{}n a 的前n 项和为n S ,则n S 的最小值为( )A .–10B .14-C .–18D .–20【答案】D 【解析】 【分析】利用等比中项性质可得等差数列的首项,进而求得n S ,再利用二次函数的性质,可得当4n =或5时,n S 取到最小值.【详解】根据题意,可知{}n a 为等差数列,公差2d =,由134,,a a a 成等比数列,可得2314a a a =,∴1112()4(6)a a a ++=,解得18a =-.∴22(1)981829()224n n n S n n n n -=-+⨯=-=--. 根据单调性,可知当4n =或5时,n S 取到最小值,最小值为20-. 故选:D. 【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前n 项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当4n =或5时同时取到最值.8.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.9.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺 B .2.5尺C .3.5尺D .4.5尺【答案】C 【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.10.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( ) A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=,根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.11.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n+=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭,依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.12.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.13.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.14.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈, 所以当1n =时,得11a =, 当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.15.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==,∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.16.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715【答案】B 【解析】 【分析】计算出3a 的值,推导出()3n n a a n N *+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和. 【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=,202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B. 【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.17.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[;B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.18.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A 【解析】 【分析】按照程序框图模拟运行即可得解. 【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-,13222S =-+=;4i =,1112x ==--,31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A 【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.设函数()221xf x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9B .11C .92D .112【答案】B 【解析】 【分析】先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值. 【详解】()221xf x =+Q ,()()()22222212121221xx x x x xf x f x --⋅∴+-=+=+++++()2122222211221xx x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-L L ,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B. 【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.20.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦ C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.。
高三数学易错数列多选题 易错题难题专项训练学能测试试题一、数列多选题1.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.2.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是A .68a =B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.3.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.4.下列说法正确的是( )A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列()k N *∈B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,仍为等比数列()k N *∈C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值D .若数列{}n a 满足21159,4n n n a a a a +=-+=,则121111222n a a a +++<--- 【答案】ACD 【分析】根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111233n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =+++,2122k k k k k S S a a a ++-=+++,3221223k k k k k S S a a a ++-=+++,,可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,所以k S ,2k k S S -,32k k S S -,构成等差数列,故A 正确;对于B 中,设数列{}n a 的公比为()0q q ≠,当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;对于D 中,由2159n nn a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----, 所以1212231111111111222333333n n n a a a a a a a a a ++++=-+-++---------- 1111111333n n a a a ++=-=----. 因为14a =,所以2159n nn n a a a a +=-+>,可得14n a +>,所以11113n a +-<-,故D 正确.故选:ACD 【点睛】方法点睛:由2159n nn a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111233n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.5.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.6.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确;121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=, 故D 错误. 故选:AC. 【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.7.已知首项为1的数列{}n a 的前n 项和为n S ,当n 为偶数时,11n n a a --=;当n 为奇数且1n >时,121n n a a --=.若4000m S >,则m 的值可以是( ) A .17 B .18C .19D .20【答案】BCD 【分析】由已知条件得出数列奇数项之间的递推关系,从而得数列21{3}k a -+是等比数列,由此可求得奇数项的表达式(也即得到偶数项的表达式),对2k S 可先求得其奇数项的和,再得偶数项的和,从而得2k S ,计算出与4000接近的和,184043S =,173021S =,从而可得结论.【详解】依题意,2211k k a a -=+,21221k k a a +=+,*k N ∈,所以2211k k a a -=+,2122121212(1)123k k k k a a a a +--=+=++=+,∴()2121323k k a a +-+=+.又134a +=,故数列{}213k a -+是以4为首项,2为公比的等比数列,所以121423k k a --=⋅-,故S 奇()21321141232(44242)43321k k k k k a a a k k -+-===+⨯++⨯--+++-=---,S 偶21232412()242k k k a a a k k a a a +-=+=+++=+++--,故2k S S =奇+S 偶3285k k +=--,故121828454043S =--=,173021S =,故使得4000m S >的最小整数m 的值为18.故选:BCD . 【点睛】关键点点睛:本题考查数列的和的问题,解题关键是是由已知关系得出数列的奇数项满足的性质,求出奇数项的表达式(也可求出偶数项的表达式),而求和时,先考虑项数为偶数时的和,这样可分类求各:先求奇数项的和,再求偶数项的和,从而得所有项的和,利用这个和的表达式估计和n S 接近4000时的项数n ,从而得出结论.8.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列 C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0cD .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确.选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+ ⎪⎝⎭,从而判断,属于中档题.二、平面向量多选题9.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线x y e =和ln y x =上的动点,记12,I AQ AB I BP BA =⋅=⋅,则下列命题不正确的是( ) A .若12I I =,则()PQ AB R λλ=∈ B .若12I I =,则AP BQ = C .若()PQ AB R λλ=∈,则12I I = D .若AP BQ =,则12I I =【答案】ABD 【分析】作出两个函数的图象,利用图象结合平面向量共线知识和平面向量数量积的几何意义分析可得答案. 【详解】根据题意,在直线AB 上取点,P Q '',且满足||||AP BQ ''=,过,P Q ''分别作直线AB 的垂线,交曲线xy e =于1P ,2P ,交曲线ln y x =于12,Q Q ,在曲线xy e =上取点3P ,使13||||AP AP =,如图所示:1||||cos I AQ AB AQ AB QAB =⋅=⋅∠,令||cos ||AQ QAB AQ '∠=,则1||||I AQ AB '=⋅,2||||cos I BP BA BP BA PBA =⋅=⋅∠,令||cos ||BP PBA BP '∠=,则2||||I BP BA '=⋅,若||||AP BQ ''=,则||||AQ BP ''=,若12I I =,则||||AQ BP ''=即可,此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且||||AP BQ ≠,所以A 、B 不正确;对于选项C ,若PQ AB =λ,此时P 与1P 重合,且Q 与1Q 重合,或P 与2P 重合,且Q 与2Q 重合,所以满足12I I =,所以C 正确;对于D ,当P 与3P 重合时,满足13||||AP AP =,但此时3P 在直线AB 上的投影不在P '处,因而不满足||||AQ BP ''=,即12I I ≠,所以D 不正确. 故选:ABD 【点睛】关键点点睛:利用图象结合平面向量共线知识和平面向量数量积的几何意义求解是解题关键.10.已知向量(4,3)a k =,(4,3)b k =,则( ) A .若a b ⊥,则0k = B .若//a b ,则1k =C .若a b >,则1k <D .若a b a b +=-,则a b ⊥【答案】AD 【分析】先根据a b ⊥建立方程44330k k ⨯+⨯=解得0k =,判断选项A 正确;再根据//a b ,建立方程(4,3)(4,3)k k λ=解得1k =±,判断选项B 错误;接着根据a b >建立不等式4(3)(4)3k k +>+解得11k -<<,判断选项C 错误;最后根据a b a b +=-,化简整理得到a b ⊥,判断选项D 正确.【详解】解:因为(4,3)a k =,(4,3)b k =,a b ⊥,则44330k k ⨯+⨯=,解得0k =,故选项A 正确;因为(4,3)a k =,(4,3)b k =,//a b ,则λa b ,即(4,3)(4,3)k k λ=,解得1k =±,故选项B 错误;因为(4,3)a k =,(4,3)b k =,a b >,则>,解得11k -<<,故选项C 错误;因为(4,3)a k =,(4,3)b k =,a b a b +=-,则0a b ⋅=,0a ≠,0b ≠,所以a b ⊥,故选项D 正确. 故答案为:AD. 【点睛】本题考查利用向量垂直求参数、利用向量共线求参数、根据向量的模的大小关系求参数的范围、利用向量的运算判断向量垂直,是中档题.。
数列多选题单元 易错题测试题试题一、数列多选题1.已知等比数列{}n a 首项11a >,公比为q ,前n 项和为n S ,前n 项积为n T ,函数()()()()127f x x x a x a x a =+++,若()01f '=,则( )A .{}lg n a 为单调递增的等差数列B .01q <<C .11n a S q ⎧⎫-⎨⎬-⎩⎭为单调递增的等比数列D .使得1n T >成立的n 的最大值为6【答案】BCD 【分析】令()()()()127g x x a x a x a =+++,利用()()127001f g a a a '===可得3411a a q ==,01q <<,B 正确;由()()111lg lg lg 1lg n n a a q a n q -==+-可得A 错误;由()111111111n n n a a a qS q q q q q --=--=⋅---可得C 正确;由11a >,01q <<,41a =可推出671T T >=,81T <可得D 正确. 【详解】令()()()()127g x x a x a x a =+++,则()()f x xg x =, ()()()f x g x xg x ''∴=+,()()127001f g a a a '∴===,因为{}n a 是等比数列,所以712741a a a a ==,即3411a a q ==,11a >,01q ∴<<,B 正确;()()111lg lg lg 1lg n n a a q a n q -==+-,{}lg n a ∴是公差为lg q 的递减等差数列,A 错误;()111111111n n n a a a q S q q q q q --=--=⋅---,11n a S q ⎧⎫∴-⎨⎬-⎩⎭是首项为101a q q <-,公比为q 的递增等比数列,C 正确;11a >,01q <<,41a =,3n ∴≤时,1n a >,5n ≥时,01n a <<,4n ∴≤时,1n T >,7712741T a a a a ===,8n ∴≥时,78971n n T T a a a T =<=,又75671T T a a =>,7671T T a =>,所以使得1n T >成立的n 的最大值为6,D 正确. 故选:BCD 【点睛】关键点点睛:利用等比数列的性质、通项公式、求和公式、数列的单调性求解是解题关键.2.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nn S a <0,但是随着n 的增大而增大.∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.3.设n S 是公差为()d d ≠0的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( ) A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若对任意*n N ∈,均有0n S >,则数列{}n S 是递增数列D .若数列{}n S 是递增数列,则对任意*n N ∈,均有0n S > 【答案】ABC 【分析】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个选项验证可得. 【详解】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, 选项A ,若0d <,由二次函数的性质可得数列{}n S 有最大项,故正确; 选项B ,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故正确; 选项C ,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,0d >, 可得数列{}n S 是递增数列,故正确;选项D ,若数列{}n S 是递增数列,则对应抛物线开口向上, 但不一定有任意*n ∈N ,均有0n S >,故错误. 故选:ABC . 【点睛】本题考查等差数列的求和公式的应用,()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭可看成是二次函数,然后利用二次函数的性质解决问题,考查分析和转化能力,属于常考题.4.(多选题)数列{}n a 满足()2*1n n n a a a n N+=-+∈,110,2a ⎛⎫∈ ⎪⎝⎭,则以下说法正确的为( ) A .10n n a a +<<B .22221231n a a a a a +++⋅⋅⋅+<C .对任意正数b ,都存在正整数m 使得12311111111mb a a a a +++⋅⋅⋅+>----成立D .11n a n <+ 【答案】ABCD 【分析】对于A ,结合二次函数的特点可确定正误;对于B ,将原式化简为111n a a a +-<,由10n a +>得到结果; 对于C ,结合1a 范围和A 中结论可确定12111111nn a a a ++⋅⋅⋅+>---,由此判断得到结果;对于D ,利用数学归纳法可证得结论. 【详解】对于A ,2211124n nn n a a a a +⎛⎫=-+=--+ ⎪⎝⎭,若10,2n a ⎛⎫∈ ⎪⎝⎭,则110,4n a +⎛⎫∈ ⎪⎝⎭,又110,2a ⎛⎫∈ ⎪⎝⎭,可知0n a >,10n a +>, 又210n n n a a a +-=-<,10n n a a +∴<<,A 正确; 对于B ,由已知得:21n n n a a a +=-,()()()2221212231111n n n n a a a a a a a a a a a a ++∴++⋅⋅⋅+=-+-+⋅⋅⋅+-=-<,B 正确;对于C ,由110,2a ⎛⎫∈ ⎪⎝⎭及A 中结论得:1112na <-<,1121n a <<-, 12111111nn a a a ∴++⋅⋅⋅+>---,显然对任意的正数b ,在在正整数m ,使得m b >,此时12311111111mb a a a a +++⋅⋅⋅+>----成立,C 正确; 对于D ,(i )当1n =时,由已知知:112a <成立, (ii )假设当()n k k N*=∈时,11nan <+成立, 则222111112411n nn n a a a a n n +⎛⎫⎛⎫=-+=--+<-+ ⎪ ⎪++⎝⎭⎝⎭, 又()()()221111012121n n n n n -+-=-<+++++,即()2111121n n n -+<+++, 112n a n +∴<+, 综上所述:当n *∈N 时,112n a n +<+,D 正确.故选:ABCD. 【点睛】关键点点睛:本题考查数列与不等式的综合应用问题,关键在于能够熟练应用不等式的性质与函数的性质进行化简辨析,同时对于数列中的不等式证明问题,可采用数学归纳法进行证明.5.设数列{}n a 前n 项和n S ,且21n n S a =-,21log n n b a +=,则( ) A .数列{}n a 是等差数列 B .12n n aC .22222123213n na a a a -++++= D .122334111111n n b b b b b b b b +++++< 【答案】BCD 【分析】利用n S 与n a 的关系求出数列{}n a 的通项公式,可判断AB 选项的正误;利用等比数列的求和公式可判断C 选项的正误;利用裂项求和法可判断D 选项的正误. 【详解】对任意的n *∈N ,21n n S a =-.当1n =时,11121a S a ==-,可得11a =; 当2n ≥时,由21n n S a =-可得1121n n S a --=-, 上述两式作差得122n n n a a a -=-,可得12n n a a -=,所以,数列{}n a 是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,A 选项错误,B选项正确;()221124n n na --==,所以,22221231441143nn n a a a a --==-++++,C 选项正确; 212log log 2nn n b a n +===,()1111111n n b b n n n n +==-++, 所以,12233411111111111111112233411n n b b b b b b b b n n n +++++=-+-+-++-=-<++, D 选项正确. 故选:BCD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.6.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( ) A.若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】 对于A,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.7.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n = B .1n n b n =+ C .100100101T =D .10099100T =【答案】BC 【分析】 先证明数列1n a 是等差数列得1n a n=,进而得1(1)1n n n b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】 解:因为11nn n a a a +=+,两边取倒数得: 1111n n a a +=+,即1111n na a ,所以数列1n a 是等差数列,公差为1,首项为111a ,故()1111n n n a =+-⨯=,所以1n a n=, 所以1(1)1n n nb n a n ==++,故()211111n b n n n n n ==-++, 所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误; 故选:BC 【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .8.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( ) A .11111n n n a a a +=-+ B .{}n a 是单调递增数列 C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a a a a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n nn n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.9.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-,可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+, 所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC. 【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法:(1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠;(3)通项公式法:n n a p q =⋅(p 、q 为非零常数);(4)前n 项和法:n n S p q p =⋅-,p 、q 为非零常数且1q ≠.10.将()23n n ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221n S n n =+- 【答案】ACD【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D.【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确; ()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确; ()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n n n n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD.【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.。
《数列》中的易错题剖析
《数列》的易错题剖析
一、关于等差数列的题目:
1、若等差数列a2,a5,a8…的公差为d,其中a6=10,则a9的值是多少?在此类题目中,最容易做错的是使用错误的公差。
例如,在题中只指
出a2,a5,a8…,很容易将公差设定成3,而不是d,最后计算出的a9
也将是错误的。
2、若等差数列a1,a2,a3…的公差为d,其中a7=22,则a11的值
是多少?
此类题目容易出现偏离等差数列规律计算出错误答案的情况。
例如,
根据题干可知a1,a2,a3…的公差为d,即a2-a1=d,但有些人会忘记
a3-a2=d,继续成立公式,而计算出错误答案。
二、关于等比数列的题目:
1、若等比数列a1,a2,a3…的公比为q,其中a7 =21,则a11的值是多少?
有些学生会将等比数列的公比设定成a4/a3,而不是q,这样一来,计
算出来的a11就会错误。
2、若等比数列a1,a2,a3…的公比为q,其中a2 =8,则a5的值是
多少?
有些学生会将a5的计算公式写错:a5=a2*q*q,而不是a5=a2*q*q*q,
这样一来,计算出来的a5就会错误。
数列中的易错问题数列中的易错问题
数列是中学数学中的重要内容,有着不同于其他内容的特殊性质.在解决数列问题时,学生往往会出现“会而不对,对而不全”的情况,正确解决这个问题,对提高学生的学习成绩起着至关重要的作用.为此,以下列举数列中几类易错的问题并进行分析,来帮助学生正确全面地解答数列问题.
易错点一:忽视公式an=Sn-Sn-1成立的条件致错
例1 已知数列{an}的前n项和Sn满足log2(Sn+1)=n+1,求数列{an}的通项公式an.
错解由log2(Sn+1)=n+1,得Sn+1=2n+1Sn=2n+1-1,
有an=Sn-Sn-1=2n+1-1-(2n-1)=2n,所以数列{an}的通项公式an=2n.
正解由log2(Sn+1)=n+1,得Sn+1=2n+1Sn=2n+1-1.
(1)当n≥2时,an=Sn-Sn-1=2n+1-1-(2n-1)=2n;
(2)当n=1时,a1=S1=21+1-1=3,所以数列{an}的通项公式an=
错因分析在运用公式an=Sn-Sn-1解题时,这里忽略了n=1的情况导致解答不完整.
易错点二:忽视等比数列中每一项都不为零致错。
高考数学总复习知识点训练:数列中的易错题(含答案)第40练 数列中的易错题一、选择题1.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数也为定值的是( ) A .S 7 B .S 8 C .S 13D .S 152.已知等差数列:1,a 1,a 2,9;等比数列:-9,b 1,b 2,b 3,-1.则b 2(a 2-a 1)的值为( ) A .8 B .-8 C .±8D.893.已知函数y =f (x ),x ∈R ,数列{a n }的通项公式是a n =f (n ),n ∈N *,那么“函数y =f (x )在[1,+∞)上递增”是“数列{a n }是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.(2017·抚州月考)设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 75.(2016·湖北黄冈中学等八校联考)已知实数等比数列{a n }的前n 项和为S n ,则下列结论一定成立的是( ) A .若a 3>0,则a 2 013<0 B .若a 4>0,则a 2 014<0 C .若a 3>0,则S 2 013>0D .若a 4>0,则S 2 014>06.已知数列{a n }满足:a n =⎩⎪⎨⎪⎧(3-a )n -3,n ≤7,a n -6,n >7(n ∈N *),且{a n }是递增数列,则实数a的取值范围是( )A .(94,3)B .[94,3)C .(1,3)D .(2,3)7.(2016·江南十校联考)已知数列{a n }的通项公式为a n =log 3nn +1(n ∈N *),则使S n <-4成立的最小自然数n 为( ) A .83 B .82 C .81D .808.数列{a n }满足a 1=1,a n +1=r ·a n +r (n ∈N *,r ∈R 且r ≠0),则“r =1”是“数列{a n }为等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件二、填空题9.若数列{a n }的前n 项和S n =n 2-2n -1,则数列{a n }的通项公式为________________. 10.(2016·辽宁五校联考)已知数列{a n }满足a n =1+2+3+…+n n ,则数列{1a n a n +1}的前n项和为________.11.已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.12.在数列{a n }中,a 1=1,a 2=2,数列{a n a n +1}是公比为q (q >0)的等比数列,则数列{a n }的前2n 项和S 2n =____________.答案精析1. C [∵a 2+a 8+a 11=(a 1+d )+(a 1+7d )+(a 1+10d )=3a 1+18d =3(a 1+6d )为常数. ∴a 1+6d 为常数.∴S 13=13a 1+13×122d =13(a 1+6d )也为常数.]2.B [a 2-a 1=d =9-13=83,又b 22=b 1b 3=(-9)×(-1)=9, 因为b 2与-9,-1同号,所以b 2=-3. 所以b 2(a 2-a 1)=-8.]3.A [由题意,函数y =f (x ),x ∈R , 数列{a n }的通项公式是a n =f (n ),n ∈N *. 若“函数y =f (x )在[1,+∞)上递增”, 则“数列{a n }是递增数列”一定成立; 若“数列{a n }是递增数列”,则“函数y =f (x )在[1,+∞)上递增”不一定成立,现举例说明,如函数在[1,2]上先减后增,且在1处的函数值小.综上,“函数y =f (x )在[1,+∞)上递增”是“数列{a n }是递增数列”的充分不必要条件,故选A.] 4.D [由(n +1)S n <nS n +1, 得(n +1)·n (a 1+a n )2<n ·(n +1)(a 1+a n +1)2,整理得a n <a n +1,所以等差数列{a n }是递增数列, 又a 8a 7<-1, 所以a 8>0,a 7<0,所以数列{a n }的前7项为负值, 即S n 的最小值是S 7.] 5.C [设a n =a 1q n -1,因为q2 010>0,所以A ,B 不成立. 对于C ,当a 3>0时,a 1>0, 因为1-q 与1-q2 013同号,所以S 2 013>0,选项C 正确,对于D ,取数列:-1,1,-1,1,…,不满足结论, D 不成立,故选C.]6.D [根据题意,a n =f (n )=⎩⎪⎨⎪⎧(3-a )n -3,n ≤7,a n -6,n >7,n ∈N *,要使{a n }是递增数列,必有⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×7-3<a 8-6,解得2<a <3.]7.C [∵a n =log 3nn +1=log 3n -log 3(n +1),∴S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4, 解得n >34-1=80.故最小自然数n 的值为81.] 8.A [当r =1时,易知数列{a n }为等差数列;由题意易知a 2=2r ,a 3=2r 2+r ,当数列{a n }是等差数列时,a 2-a 1=a 3-a 2, 即2r -1=2r 2-r .解得r =12或r =1,故“r =1”是“数列{a n }为等差数列”的充分不必要条件.]9.a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2解析 当n =1时,a 1=S 1=-2; 当n ≥2时,a n =S n -S n -1=2n -3,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.10.2nn +2解析 a n =1+2+3+…+n n =n +12,则1a n a n +1=4(n +1)(n +2)=4(1n +1-1n +2), 所以所求的前n 项和为4[(12-13)+(13-14)+…+(1n +1-1n +2)]=4(12-1n +2)=2n n +2.11.(-3,+∞)解析 因为数列{a n }是单调递增数列, 所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0. 所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ的取值范围为(-3,+∞). 12.⎩⎪⎨⎪⎧3(1-q n)1-q ,q >0且q ≠1,3n ,q =1解析 ∵数列{a n a n +1}是公比为q (q >0)的等比数列, ∴a n +1a n +2a n a n +1=q ,即a n +2a n=q , 这表明数列{a n }的所有奇数项成等比数列, 所有偶数项成等比数列,且公比都是q , 又a 1=1,a 2=2,∴当q ≠1时,S 2n =a 1+a 2+a 3+a 4+…+a 2n -1+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+a 6+…+a 2n )=a 1(1-q n )1-q +a 2(1-q n )1-q =3(1)1n q q--;当q =1时,S 2n =a 1+a 2+a 3+a 4+…+a 2n -1+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+a 6+…+a 2n )(1111)(2222)3n n n =+++++++++=个个综上所述:S 2n =⎩⎪⎨⎪⎧3(1-q n)1-q ,q >0且q ≠1,3n ,q =1.。
高三数学易错数列多选题 易错题难题学能测试试题一、数列多选题1.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅ B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.2.在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【分析】 计算可得2q,故选项A 正确;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 【详解】{}n a 为递增的等比数列,由142332,12,a a a a =⎧⎨+=⎩得23142332,12,a a a a a a ==⎧⎨+=⎩解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列,∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 正确; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项B 正确;所以122n n S +=-,则9822510S =-=,故选项C 正确.又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:ABC. 【点睛】方法点睛:证明数列为等差(等比)数列常用的方法有: (1)定义法; (2)通项公式法 (3)等差(等比)中项法(4)等差(等比)的前n 项和的公式法.要根据已知灵活选择方法证明.3.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】 ∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩, ∵{}n a 为递增数列,∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.4.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.5.将()23nn ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a 31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221nS n n =+-【答案】ACD 【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D. 【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确;()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确;()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n nn n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD. 【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.6.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.7.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,且112n n n S a a +=⋅-,则( )A .12d =B .11a =C .数列{}n a 中可以取出无穷多项构成等比数列D .设(1)nn n b a =-⋅,数列{}n b 的前n 项和为n T ,则2n T n =【答案】AC 【分析】利用已知条件可得11212n n n S a a +++=-与已知条件两式相减,结合{}n a 是等差数列,可求d的值即可判断选项A ,令1n =即可求1a 的值,可判断选项B ,分别计算{}n a 的通项即可判断选项C ,分别讨论两种情况下21212n n b b -+=,即可求2n T 可判断选项D. 【详解】 因为112n n n S a a +=-,所以11212n n n S a a +++=-, 两式相减,得()11212n n n n n a a a a da ++++=-=, 因为0d ≠,所以21d =,12d =,故选项 A 正确; 当1n =时,1111122a a a ⎛⎫=+- ⎪⎝⎭,易解得11a =或112a =-,故选项B 不正确;由选项A 、B 可知,当112a =-,12d =时,()1111222n na n =-+-⨯=-,{}n a 可取遍所有正整数,所以可取出无穷多项成等比数列,同理当()()1111122n a n n =+-⨯=+时也可以取出无穷多项成等比数列,故选项C 正确; 当()112n a n =+时,()221212n n b a n ==+,()212112112n n b a n n --=-=--+=-, 因为21221212n n n n b b a a --+=-+=,所以()()()212342122n n n n T b b b b b b -=++++++=, 当12n n a =-时,2212112n n b a n n ==⨯-=-,2121213122n n n b a n ---⎛⎫=-=--=-⎪⎝⎭, 所以22131122n n b b n n -+=-+-=, 此时()()()22212223212n n n n n nT b b b b b b ---=++++++=, 所以2n T n ≠,故选项D 不正确. 故选:AC. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.8.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列 C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0cD .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+ ⎪⎝⎭,从而判断,属于中档题.二、平面向量多选题9.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线x y e =和ln y x =上的动点,记12,I AQ AB I BP BA =⋅=⋅,则下列命题不正确的是( ) A .若12I I =,则()PQ AB R λλ=∈ B .若12I I =,则AP BQ = C .若()PQ AB R λλ=∈,则12I I = D .若AP BQ =,则12I I =【答案】ABD 【分析】作出两个函数的图象,利用图象结合平面向量共线知识和平面向量数量积的几何意义分析可得答案. 【详解】根据题意,在直线AB 上取点,P Q '',且满足||||AP BQ ''=,过,P Q ''分别作直线AB 的垂线,交曲线xy e =于1P ,2P ,交曲线ln y x =于12,Q Q ,在曲线xy e =上取点3P ,使13||||AP AP =,如图所示:1||||cos I AQ AB AQ AB QAB =⋅=⋅∠,令||cos ||AQ QAB AQ '∠=,则1||||I AQ AB '=⋅,2||||cos I BP BA BP BA PBA =⋅=⋅∠,令||cos ||BP PBA BP '∠=,则2||||I BP BA '=⋅,若||||AP BQ ''=,则||||AQ BP ''=,若12I I =,则||||AQ BP ''=即可,此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且||||AP BQ ≠,所以A 、B 不正确;对于选项C ,若PQ AB =λ,此时P 与1P 重合,且Q 与1Q 重合,或P 与2P 重合,且Q 与2Q 重合,所以满足12I I =,所以C 正确;对于D ,当P 与3P 重合时,满足13||||AP AP =,但此时3P 在直线AB 上的投影不在P '处,因而不满足||||AQ BP ''=,即12I I ≠,所以D 不正确. 故选:ABD 【点睛】关键点点睛:利用图象结合平面向量共线知识和平面向量数量积的几何意义求解是解题关键.10.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .1233BP BA BC =+ C .0PA PC ⋅> D .4S =【答案】BD 【分析】利用向量的共线定义可判断A ;利用向量加法的三角形法则以及向量减法的几何意义即可判断B ;利用向量数量积的定义可判断C ;利用三角形的面积公式即可判断D. 【详解】由20PA PC +=,2QA QB =,可知点P 为AC 的三等分点,点Q 为AB 延长线的点, 且B 为AQ 的中点,如图所示:对于A ,点P 为AC 的三等分点,点B 为AQ 的中点, 所以PB 与CQ 不平行,故A 错误; 对于B ,()22123333BP BA AP BA AC BA BC BA BA BC =+=+=+-=+,故B 正确;对于C ,cos 0PA PC PA PC PA PC π⋅==-<,故C 错误;对于D ,设ABC 的高为h ,132ABC SAB h ==,即6AB h =, 则APQ 的面积1212226423233APQ SAQ h AB h =⋅=⋅⋅=⨯=,故D 正确; 故选:BD【点睛】本题考查了平面向量的共线定理、共线向量、向量的加法与减法、向量的数量积,属于基础题。
1.非常规数列问题及数列中的易错题
2. 已知函数
(3a) x 2, x2
,若数列 { a} 满足 a f (n) ,且
f ( x)2( a 0, a 1)
9 x 11, x
n n
a2x2
{ a n} 是递增数列,则实数 a 的取值范围是___________________
2 .设数列{ a n}的前项和为S n , a11 , 且对任意正整数n,点a n 1,S n在直线2x y 2 0 上.则数列{ a n}的通项公式为________________
2a n ,0 a n1
,且 a16
3.若数列{ a n}满足a n 1
1,则 a2017的值为____________
a n 1,a n7
4. 已知数列
a
n ,当a n为偶数时,
若 a6= 1,a n满足:a1=m(m为正整数), a n 12
3a n1,当a n为奇数时。
则 m所有可能的取值为 _________________
5. 已知数列a n满足: a1
3
(m∈ N ﹡) ,a n 1
a n 3,a n3,
a n的前
m
2a n , a n
,则数列
21 3.
4m+4 项的和S4m4
6. 已知数列{ a n}的各项均为正整数,对于n 1, 2, 3, ,有
5a n27, a n 为奇数
,
N *,当 n
a
n 1a,若存在 m m 且 a n为奇数n a n为偶数.其中k为使 a n 1为奇数的正整数
2k
时, a n恒为常数p ,则 p 的值为_______
3
,a n 120121
7.数列a n足a1a n2 a n 1(n N* ) , m的整数部分是 __________
2i 1a i
8. 已知数列a n的前三分 a1 5 , a2 6 , a3 8 ,且数列 a n的前 n 和 S n
足 S n m 1
(S2n S2m ) (n m)2,其中 m , n 任意正整数.数列a n的通公式2
__________
9. 在数列a n中,a1 3 , a21, (a n 22)(a n2) 2(n N* ),数列前2014
的和
10.下面的数均由三个数成: (1 , 2, 3) , (2 , 4, 6) , (3 , 8, 11) , (4 , 16, 20) ,
(5 , 32, 37) ,⋯, ( a n,b n,c n ) .若数列 { c n } 的前n和S n,S10 =
11.正数列 { a n } 足 a11,a2 2 ,又数列 { a n a n1} 是以2
公比的等比数列 , 使得2
不等式1
1L1
1280成立的最大整
数n a1a2
a
2 n 1
12. 若增数列{ a n}足a n a
n 1
a
n 23n6, 且 a2
1
a1, a1的范是______
2
13.正数列 { a n} 的前n和是 S n,若 { a n } 和{S n } 都是等差数列,且公差相等,
a1
14. 已知数列a n中,a n5n 1 ,n N* ,将数列a n中的整数按原来的序成
数列 b n, b2015
15. 已知 a n,b
n=3n,n N * ,于每一个k∈N *,在 a
+
1
之插入 b k个 3得到
n=3k 与a k
一个数列 { c n} . T n是数列 { c n} 的前 n 和,所有足T m=3c m+1的正整数 m 的。