IC资料-CD4051_4052_4053多路选择模拟开关
- 格式:pdf
- 大小:536.97 KB
- 文档页数:10
用固态继电器更加的不行!4051之类的模拟开关过模拟量不太精确,可考虑使用固态继电器发帖者IP:211.91.211.35发表时间:2003年4月7日13:21:47常用CMOS模拟开关功能和原理(4066,4051-53)二二、典型应用举例1.单按钮音量控制器单按钮音量控制器电路见图6。
VMOS管VT1作为一个可变电阻并接在音响装置的音量电位器输出端与地之间。
VT1的D极和S极之间的电阻随VGS成反比变化,因此控制模拟开关介绍与应用模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。
当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。
模拟开关在电子设备中主要起接通信号或断开信号的作用。
由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。
一、模拟开关的电路组成及工作原理模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。
模拟开关的真值表见表一。
表一模拟开关的工作原理如下:当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。
当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。
当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。
从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。
二、常用的CMOS模拟开关集成电路根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。
现将常用的模拟开关集成电路的型号、名称及特性列入表二中。
表二常用的模拟开关三、CD4066模拟开关集成电路的应用举例CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。
CD4051 CD4052 CD4053中文资料PDF 引脚功能CD4051/CC4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C和I NH输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰值至2 0V的模拟信号。
例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有的通道截止。
三位二进制信号选通8通道中的一通道,可连接该输入端至输出。
CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。
例如,若V DD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH输入端=“1”时,所有通道截止。
二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。
CD4053/CC4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C和INH输入,具有低导通阻抗和低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。
例如若VDD=+5,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有通道截止。
控制输入为高电平时,“0”通道被选,反之,“1”通道被选。
CD4051引脚图CD4052引脚图CD4053引脚图CD4051逻辑图CD4052逻辑图CD4053逻辑图切换时间波形图Absolute Maximum Ratings 绝对最大额定值:Recommended Operating Conditions 建议操作条件:DC Electrical Characteristics 直流电气特性:DC Electrical Characteristics 直流电气特性:AC Electrical Characteristics 交流电气特性:相关下载:cd4051中文资料,。
CD4051中文资料(管脚,功能,参数使用介绍)CD4051功能及使用概述:CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
INH”是禁止端,当“INH”=1时,各通道均不接通。
此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。
例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。
. 使用十六进制代码就可以对CD4051进行操作了。
比如说P1=0X07,这样CD4051就选择的是7号(二进制111)通道了。
如果在八个通道输入一模拟量,在输出端将输出什么,输入什么是自己设定例如,若模拟开关的供电电源VDD=+5V,VSS=0V,只要对此模拟开关施加0~5V的数字控制信号,...这里,ABC数字控制信号就可以使用5V信号了,因为VDD是5v,里面控制部分就都是5V逻辑.当VEE=-5V时,就可控制幅度范围为-5V~+5V的模拟信号。
当Vee=-8V时,就可以可控制幅度范围为-8V~+5V的模拟信号.Vee就是电子开关的8个输入端可以允许的信号范围下限.注意不要超过它的极限参数.峰-峰值达15VCD4051管脚图及逻辑符号图引脚功能描述:A0~A2 地址端I0/O0~I7/O7 输入输出端INH 禁止端O/I 公共输出/输入端VDD 正电源VEE 模拟信号地Vss 数字信号地CD4051逻辑图与真值表CD4051参数电源电压范围…………3V~15V 输入电压范围…………0V~VDD 工作温度范围M类…………-55℃~125℃E 类………….-40℃~85℃极限值:电源电压…...-~18V输入电压……-~VDD+输入电流…………….±10mA储存温度…………-65℃~150℃。
4051芯片手册
4051芯片是一种多路复用器/解复用器,通常用于模拟信号和数字信号的互连。
以下是4051芯片的一些常见应用和功能:
1.多路复用/解复用:4051芯片可以将多个输入通道合并到一个输出通道,或
者将一个输入通道分配到多个输出通道。
这使得它在模拟信号处理和开关
应用中非常有用。
2.数字控制:4051芯片可以通过数字控制信号来选择输入/输出通道之间的连
接。
这使得它可以实现数字开关、数字选择器和解码器等功能。
3.缓冲和驱动:4051芯片可以作为输入和输出缓冲器,用于驱动或吸收电
流,并可提供额外的电压或电流增益。
4.电压或电流检测:4051芯片可以用于检测电压或电流信号,并将其转换为
数字信号,以便于处理和控制。
需要注意的是,具体的4051芯片手册可能会有所不同,具体内容应根据芯片的型号和制造商来确定。
CMOS (CD40、45系列)器件速查来源:全民业务网作者:不详型号器件名称厂牌备注CD4000 双3输入端或非门+单非门 TICD4001 四2输入端或非门 HIT/NSC/TI/GOLCD4002 双4输入端或非门 NSCCD4006 18位串入/串出移位寄存器 NSCCD4007 双互补对加反相器 NSCCD4008 4位超前进位全加器 NSCCD4009 六反相缓冲/变换器 NSCCD4010 六同相缓冲/变换器 NSCCD4011 四2输入端与非门 HIT/TICD4012 双4输入端与非门 NSCCD4013 双主-从D型触发器 FSC/NSC/TOSCD4014 8位串入/并入-串出移位寄存器 NSCCD4015 双4位串入/并出移位寄存器 TICD4016 四传输门 FSC/TICD4017 十进制计数/分配器 FSC/TI/MOTCD4018 可预制1/N计数器 NSC/MOTCD4019 四与或选择器 PHICD4020 14级串行二进制计数/分频器 FSCCD4021 08位串入/并入-串出移位寄存器 PHI/NSCCD4022 八进制计数/分配器 NSC/MOT型号器件名称厂牌备注CD4023 三3输入端与非门 NSC/MOT/TICD4024 7级二进制串行计数/分频器 NSC/MOT/TICD4025 三3输入端或非门 NSC/MOT/TICD4026 十进制计数/7段译码器 NSC/MOT/TICD4027 双J-K触发器 NSC/MOT/TICD4028 BCD码十进制译码器 NSC/MOT/TICD4029 可预置可逆计数器 NSC/MOT/TICD4030 四异或门 NSC/MOT/TI/GOLCD4031 64位串入/串出移位存储器 NSC/MOT/TICD4032 三串行加法器 NSC/TICD4033 十进制计数/7段译码器 NSC/TICD4034 8位通用总线寄存器 NSC/MOT/TICD4035 4位并入/串入-并出/串出移位寄存 NSC/MOT/TICD4038 三串行加法器 NSC/TICD4040 12级二进制串行计数/分频器 NSC/MOT/TI CD4041 四同相/反相缓冲器 NSC/MOT/TICD4042 四锁存D型触发器 NSC/MOT/TICD4043 4三态R-S锁存触发器("1"触发) NSC/MOT/TI CD4044 四三态R-S锁存触发器("0"触发) NSC/MOT/TI CD4046 锁相环 NSC/MOT/TI/PHICD4047 无稳态/单稳态多谐振荡器 NSC/MOT/TI型号器件名称厂牌备注CD4048 4输入端可扩展多功能门 NSC/HIT/TICD4049 六反相缓冲/变换器 NSC/HIT/TICD4050 六同相缓冲/变换器 NSC/MOT/TICD4051 八选一模拟开关 NSC/MOT/TICD4052 双4选1模拟开关 NSC/MOT/TICD4053 三组二路模拟开关 NSC/MOT/TICD4054 液晶显示驱动器 NSC/HIT/TICD4055 BCD-7段译码/液晶驱动器 NSC/HIT/TICD4056 液晶显示驱动器 NSC/HIT/TICD4059 “N”分频计数器 NSC/TICD4060 14级二进制串行计数/分频器 NSC/TI/MOT CD4063 四位数字比较器 NSC/HIT/TICD4066 四传输门 NSC/TI/MOTCD4067 16选1模拟开关 NSC/TICD4068 八输入端与非门/与门 NSC/HIT/TICD4069 六反相器 NSC/HIT/TICD4070 四异或门 NSC/HIT/TICD4071 四2输入端或门 NSC/TICD4072 双4输入端或门 NSC/TICD4073 三3输入端与门 NSC/TICD4075 三3输入端或门 NSC/TI型号器件名称厂牌备注CD4076 四D寄存器CD4077 四2输入端异或非门 HITCD4078 8输入端或非门/或门CD4081 四2输入端与门 NSC/HIT/TICD4082 双4输入端与门 NSC/HIT/TICD4085 双2路2输入端与或非门CD4086 四2输入端可扩展与或非门CD4089 二进制比例乘法器CD4093 四2输入端施密特触发器 NSC/MOT/STCD4094 8位移位存储总线寄存器 NSC/TI/PHICD4095 3输入端J-K触发器CD4096 3输入端J-K触发器CD4097 双路八选一模拟开关CD4098 双单稳态触发器 NSC/MOT/TICD4099 8位可寻址锁存器 NSC/MOT/STCD40100 32位左/右移位寄存器CD40101 9位奇偶较验器CD40102 8位可预置同步BCD减法计数器CD40103 8位可预置同步二进制减法计数器CD40104 4位双向移位寄存器CD40105 先入先出FI-FD寄存器型号器件名称厂牌备注CD40106 六施密特触发器 NSC\TICD40107 双2输入端与非缓冲/驱动器 HAR\TICD40108 4字×4位多通道寄存器CD40109 四低-高电平位移器CD40110 十进制加/减,计数,锁存,译码驱动 STCD40147 10-4线编码器 NSC\MOTCD40160 可预置BCD加计数器 NSC\MOTCD40161 可预置4位二进制加计数器 NSC\MOTCD40162 BCD加法计数器 NSC\MOTCD40163 4位二进制同步计数器 NSC\MOTCD40174 六锁存D型触发器 NSC\TI\MOTCD40175 四D型触发器 NSC\TI\MOTCD40181 4位算术逻辑单元/函数发生器CD40182 超前位发生器CD40192 可预置BCD加/减计数器(双时钟) NSC\TI CD40193 可预置4位二进制加/减计数器 NSC\TICD40194 4位并入/串入-并出/串出移位寄存 NSC\MOT CD40195 4位并入/串入-并出/串出移位寄存 NSC\MOT CD40208 4×4多端口寄存器型号器件名称厂牌备注CD4501 4输入端双与门及2输入端或非门CD4502 可选通三态输出六反相/缓冲器CD4503 六同相三态缓冲器CD4504 六电压转换器CD4506 双二组2输入可扩展或非门CD4508 双4位锁存D型触发器CD4510 可预置BCD码加/减计数器CD4511 BCD锁存,7段译码,驱动器CD4512 八路数据选择器CD4513 BCD锁存,7段译码,驱动器(消隐) CD4514 4位锁存,4线-16线译码器CD4515 4位锁存,4线-16线译码器CD4516 可预置4位二进制加/减计数器CD4517 双64位静态移位寄存器CD4518 双BCD同步加计数器CD4519 四位与或选择器CD4520 双4位二进制同步加计数器CD4521 24级分频器CD4522 可预置BCD同步1/N计数器CD4526 可预置4位二进制同步1/N计数器CD4527 BCD比例乘法器型号器件名称厂牌备注CD4528 双单稳态触发器CD4529 双四路/单八路模拟开关CD4530 双5输入端优势逻辑门CD4531 12位奇偶校验器CD4532 8位优先编码器CD4536 可编程定时器CD4538 精密双单稳CD4539 双四路数据选择器CD4541 可编程序振荡/计时器CD4543 BCD七段锁存译码,驱动器CD4544 BCD七段锁存译码,驱动器CD4547 BCD七段译码/大电流驱动器CD4549 函数近似寄存器CD4551 四2通道模拟开关CD4553 三位BCD计数器CD4555 双二进制四选一译码器/分离器CD4556 双二进制四选一译码器/分离器CD4558 BCD八段译码器CD4560 "N"BCD加法器CD4561 "9"求补器CD4573 四可编程运算放大器CD4574 四可编程电压比较器CD4575 双可编程运放/比较器CD4583 双施密特触发器CD4584 六施密特触发器CD4585 4位数值比较器CD4599 8位可寻址锁存器CD22100 4×4×1交叉点开关。
八路模拟开关cd4051与输入信号滤波电路设计原理八路模拟开关CD4051与输入信号滤波电路设计原理如下:
CD4051是一个8路模拟开关,其工作原理基于电压分压和开关电容。
内部有一系列的电压分压器和开关电容,通过S0、S1和S2的选择信号,连接
所需的电压分压器和开关电容。
在给定通道的情况下,CD4051将所选通道的输入信号与内部的电压分压器和开关电容连接起来,然后将分压和开关结果输出到相应的输出引脚。
当选择不同通道时,CD4051会自动切换所需的电压分压器和开关电容,以保证输出的模拟信号的准确性和稳定性。
输入信号滤波电路设计原理是用于减少信号中的噪声和干扰,提高信号的纯度和稳定性。
常见的输入信号滤波电路有低通滤波器、高通滤波器和带通滤波器等。
滤波器通过选择适当的电路元件和参数,实现对特定频率范围的信号进行增强或抑制,以实现信号的平滑处理和噪声的减小。
CD4051与输入信号滤波电路结合使用时,首先将输入信号通过滤波电路进行平滑处理,减少噪声和干扰。
然后,将处理后的信号输入到CD4051中
进行选择和处理。
CD4051根据需要选择相应的通道,通过内部的电压分压器和开关电容对信号进行分压和开关处理,并将结果输出到相应的输出引脚。
这种结合使用可以实现对多个信号源的灵活控制和处理,同时保证信号的质量和稳定性。
以上信息仅供参考,如有需要建议查阅模拟开关的相关书籍或咨询专业人士。
cd4053的芯片技术手册
CD4053是一种CMOS三通道多路复用器/解复用器芯片,常用于
模拟信号开关和数字信号开关的应用。
它具有低功耗、高噪声抑制、高速操作和广泛的工作电压范围等特点。
该芯片的技术手册包括以
下内容:
1. 产品概述,介绍CD4053芯片的基本信息,包括芯片功能、
引脚描述、工作电压范围等。
2. 电气特性,详细描述CD4053的静态和动态电气特性,包括
工作电压、输入/输出电流、开关时间、串扰等参数。
3. 典型应用电路,展示CD4053在典型应用中的电路连接方式
和使用方法,例如模拟信号开关、模拟信号多路复用、数字信号开
关等。
4. 封装信息,介绍CD4053芯片的封装类型、尺寸和引脚排列,以便用户在PCB设计中进行布局。
5. 绝对最大额定值,列出CD4053芯片的工作条件下的绝对最
大额定值,包括工作温度范围、电源电压等。
6. 应用注意事项,提供在使用CD4053芯片时需要注意的一些技术细节,例如输入保护、静电放电防护等。
7. 订购信息,包括CD4053芯片的订购型号、封装类型、订购数量等信息。
总的来说,CD4053的技术手册会详细介绍该芯片的规格参数、应用电路、使用注意事项等内容,帮助工程师和设计师更好地了解和应用这款芯片。
如果你需要更详细的信息,可以查找CD4053的官方技术手册或者相关的参考资料。
模拟开关CD4051,CD4052,CD4053中文资料模拟开关CD4051,CD4052,CD4053中文资料CD4051/CC4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C和INH 输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰值至20V的模拟信号。
例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V 的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有的通道截止。
三位二进制信号选通8通道中的一通道,可连接该输入端至输出。
CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH 输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰峰值至20V 的模拟信号。
例如,若V DD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V 的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH输入端=“1”时,所有通道截止。
二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。
CD4053/CC4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C和INH 输入,具有低导通阻抗和低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰-峰值至20V 的数字信号。
例如若VDD=+5,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V 的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有通道截止。
CD4051,CD4052,CD4053中文资料CD4051,CD4052,CD4053中文资料CD4051/CC4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C和INH输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰值至20V的模拟信号。
例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有的通道截止。
三位二进制信号选通8通道中的一通道,可连接该输入端至输出。
CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。
例如,若V DD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH 输入端=“1”时,所有通道截止。
二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。
CD4053/CC4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C和INH输入,具有低导通阻抗和低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。
例如若VDD=+5,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INHCD4051逻辑图CD4051引脚图CD4052逻辑图 CD4052引脚图CD4053逻辑图 CD4053引脚图。
cd4051工作原理CD4051是一种多路模拟开关IC,它具有广泛的应用。
本文将探讨CD4051的工作原理及其在电子领域中的应用。
CD4051的工作原理是基于模拟开关技术。
它有8个模拟开关通道,可以实现8:1的模拟多路复用。
在工作时,CD4051的控制引脚(S0、S1、S2)用于选择要连接的通道。
通过控制这些引脚的电平,可以选择不同的通道进行连接。
CD4051还有一些其他引脚,如VCC、GND、INHIBIT和COM,用于供电和控制。
CD4051的输入引脚(IN0-IN7)用于接收模拟信号,输出引脚(OUT)用于输出所选通道的模拟信号。
当控制引脚选择了某个通道时,该通道的输入信号就会传递到输出引脚上。
CD4051的工作原理可以通过一个简单的例子来说明。
假设有8个传感器,每个传感器测量一种不同的物理量。
通过CD4051,我们可以选择任意一个传感器的输出信号进行处理,而无需使用多个模拟输入引脚。
在实际应用中,CD4051广泛应用于模拟信号的选择、多通道数据采集、模拟信号开关以及模拟信号的切换等领域。
例如,它可以用于音频和视频信号的选择,实现多路音频和视频信号的切换,以满足不同场景下的需求。
CD4051还可以用于电压、电流和温度等传感器的多路选择。
它可以将多个传感器的输出信号连接到一个模拟转换器中,通过一个模拟输入引脚进行选择,从而减少了引脚的使用数量,简化了电路设计。
CD4051还可以与微控制器或其他数字电路相结合,实现数字信号与模拟信号的转换。
例如,当需要将数字信号转换为模拟信号时,可以使用CD4051将数字信号输入到模拟转换器中,然后将模拟转换器的输出连接到需要的模拟电路中。
总结起来,CD4051是一种多路模拟开关IC,通过选择不同的通道,可以实现模拟信号的选择和切换。
它在电子领域中有广泛的应用,可以用于音频、视频、传感器信号的选择和切换,以及数字信号与模拟信号的转换等方面。
通过合理利用CD4051,可以简化电路设计,提高系统的灵活性和可靠性。
CD4051中文材料(管脚,功效,参数应用介绍) CD4051中文材料(管脚,功效,参数应用介绍)CD4051功效及应用概述:CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决议.INH”是制止端,当“INH”=1时,各通道均不接通.此外,CD4051还设有别的一个电源端VEE,以作为电平位移时应用,从而使得平日在单组电源供电前提下工作的 CMOS电路所供给的数字旌旗灯号能直接掌握这种多路开关,并使这种多路开关可传输峰-峰值达15V的交换旌旗灯号.例如,若模仿开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模仿开关施加0~5V的数字掌握旌旗灯号,就可掌握幅度规模为-5V~+5V的模仿旌旗灯号. . 应用十六进制代码就可以对CD4051进行操纵了.比方说P1=0X07,如许CD4051就选择的是7号(二进制111)通道了.假如在八个通道输入一模仿量,在输出端将输出什么,输入什么是本身设定例如,若模仿开关的供电电源VDD=+5V,VSS=0V,只要对此模仿开关施加0~5V的数字掌握旌旗灯号,... 这里,ABC数字掌握旌旗灯号就可以应用5V旌旗灯号了,因为VDD是5v,里面掌握部分就都是5V逻辑. 当VEE=-5V时,就可掌握幅度规模为-5V~+5V的模仿旌旗灯号. 当Vee=-8V时,就可以可掌握幅度规模为-8V~+5V的模仿旌旗灯号. Vee就是电子开关的8个输入端可以许可的旌旗灯号规模下限. 留意不要超出它的极限参数.峰-峰值达15VCD4051管脚图及逻辑符号图引脚功效描写:A0~A2 地址端I0/O0~I7/O7 输入输出端INH 制止端O/I 公共输出/输入端VDD 正电源VEE 模仿旌旗灯号地Vss 数字旌旗灯号地CD4051逻辑图与真值表CD4051参数电源电压规模…………3V~15V输入电压规模…………0V~VDD工作温度规模M类…………-55℃~125℃E 类………….-40℃~85℃输入电流…………….±10mA储存温度…………-65℃~150℃。
模拟开关CD4051,CD4052,CD4053中文资料模拟开关CD4051,CD4052,CD4053中文资料CD4051/CC4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C 和INH输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰值至20V的模拟信号。
例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有的通道截止。
三位二进制信号选通8通道中的一通道,可连接该输入端至输出。
CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。
例如,若V DD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH输入端=“1”时,所有通道截止。
二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。
CD4053/CC4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C 和INH输入,具有低导通阻抗和低的截止漏电流。
幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。
例如若VDD=+5,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。
这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。
当INH输入端=“1”时,所有通道截止。
控制输入为高电平时,“0”通道被选,反之,“1”通道被选。
多路模拟开关
模拟开关是一种能够按照控制指令模拟信号传输进行通、断控制的电子器件。
CC4051是一个允许双向使用的CMOS多路开关集成芯片,它既可用于8路到1路的切换(用于A/D),又可用于1路到8路的切换(用于D/A)。
其原理电路如下左图所示,芯片管脚分布图如下右图所示:
左图中,左侧三个信号VDD、Vss、VEE是芯片供电电源。
上面A、B、C分别为三位数字信号控制输入端,它们组成的二进制数ABC决定了8路模拟开关的其中1路处于导通状态,其它7路处于断开状态。
三位二进制数正好组成8种电路状态,与8路开关状态相对应。
INH为数字信号ABC输入高电平参考电压输入端。
下面0~7为八路模拟输入(或输出),OUT/IN为一路模拟输出(或输入)。
3路二选一模拟开关概 述CD4053是一块带有公共使能输入控制位的3路二选一模拟开关电路。
每一个多路选择开关都有两个独立的输入/输出(Y 0和Y 1),一个公共的输入/输出端(Z ),和选择输入(S n )。
每一路都包含了两个双向模拟开关,开关的一边连接到独立输入/输出(Y 0或Y 1),另一边连接到公共输入/输出端(Z )。
当E 为低电平时,两个开关中的其中一个被S n 选通(低阻导通态)。
当E 为高电平时,所有开关都处于高阻关断态,与S A ~S C 无关。
V DD 和V SS 是连接到数字控制输入(S A ~S C 和E 的电源电压。
)(V DD -V SS )的范围是3~9V 。
模拟输入输出(Y 0,Y 1和Z )能够在最高V DD ,最低V EE 之间变化。
V DD -V EE 不会超过12V 。
对于用做数字多路选择开关。
V EE 和V SS 是连在一起的(通常接地)。
应 用⏹ 模拟多路选择开关 ⏹ 数字多路选择开关 ⏹ 信号选通管脚图12111B 1615141312345678910Y E0B Y 0C Y EE V SSV DD V 1A Y A Z 0A Y B S S C1C Y C Z A S B Z管脚说明功能框图电路图(一个开关)逻辑图功能表注:1. H是高电平状态(较高的正电压)2. L是低电平状态(较低的正电压)3."×"是任意状态4.n=A, B, C电路工作区域极限参数符号参数条件最小最大单位V DD电源电压范围-0.5 +9 VV DD- V EE电源电压范围-0.5 +12 V2 =12VI Q 静态电流V DD-V EEμA V I输入电压范围-0.5V DD+0.5 V |I IH| 高电平输入电流V DD=5V,V I= V DD 1μA |I IL| 低电平输入电流V DD=5V,V I= 0V 1 μAV IO输入输出电压范围V EE-0.5 V DD+0.5 V±20 mAI IK输入钳位电流V I<-0.5V或V I>V DD+0.5V -I IOK输入输出钳位电流V IO<V EE-0.5V或V IO>V DD+0.5V - ±20 mA±25 mAI T开关导通电流V O= -0.5V~V DD+0.5V -I DD,I GND V DD或GND电流- ±50 mAP D 功耗500mW℃T STG贮存温度-65+150 T OP 工作温度-40℃+85 T L 焊接温度 10-20秒250℃推荐工作条件符号参数条件最小典型最大单位V6.0V DD电源电压 3.05.0V V EE电源电压-6.0 0V V DD- V EE电源电压 3.0 12.0 V I输入电压0V DD V-V IO输入输出电压V EE - V DD V1000ns-= 3.0V -V CCtr,tf 输入上升、下降时间ns= 5.0V - 500V CCV CCns400= 6.0V --℃+85-T OP工作温度-40直流特性图1 导通电阻的测试图2 导通电阻是输入电压的函数(I is=200μΑ V S S=V E E=0V)交流特性(VS S=V E E=0V;T amb=25℃;输入转换时间小于20ns)V DD(V)功率计算公式(µW)一块电路的动态功率耗散(P)592500f i+∑(f0C L)×V DD211500f i+∑(f0C L)×V DD2f i 是输入频率(MHz)f0是输出频率(MHz)C L 是负载电容(pF)∑(f0C L)是输出之和V DD是电源电压(9V) V DD(V)符号典型最大单位备注高到低59t PHL10 205 10ns注释1传输延时Vis→V os 低到高59t PLH15 305 10ns注释1 高到低59t PHL200 40085 170ns注释2传输延时S n→V os 低到高59t PLH275 555100 200ns注释2注释:Vis是Y或Z端的输入电压,V os是Y或Z端的输出电压1. R L=10KΩ到V EE ;C L=50pF到V EE ;E=V SS;Vis=V DD (方波);如图3所示2. R L=10KΩ;C L=50pF到V EE ;E= V SS;S n =V DD (方波);Vis=V DD和R L到V EE用来测量t PLH ;Vis=V EE和R L到V DD用来测量t PHL ;如图3所示3. R L=10KΩ;C L=50pF到V EE ;E= V DD (方波); Vis=V DD和R L到V EE用来测量t PHZ和t PZH ;Vis=V EE和R L到V DD用来测量t PLZ 和t PZL;如图3所示4. R L=10KΩ;C L=15Pf;通道开;Vis=V DD(P-P)/2(正弦波,在V DD/2处对称),fis=1KHz;如图4所示5. R L=1KΩ;Vis=V DD(P-P)/2(正弦波,在V DD/2处对称);20lg(V os/Vis)=-50dB;如图5所示6. R L=10KΩ到V EE ;C L=15pF到V EE ;E或S n =V DD (方波);干扰是│V os│(峰值);如图3所示7. R L=1KΩ;C L=5pF;通道关;Vis=V DD(P-P)/2(正弦波,在V DD/2处对称);20lg(V os/Vis)=-50dB;如图4所示8. R L=1KΩ;C L=5pF;通道开;Vis=V DD(P-P)/2(正弦波,在V DD/2处对称);20lg(V os/Vis)=-3dB;如图4所示图3图4图5封装图(DIP16-300-2.54)封装图(SOP16-150-1.27)。