PID 水箱水位PLC控制
- 格式:ppt
- 大小:3.10 MB
- 文档页数:44
基于PLC的水位PID控制系统设计摘要可编程控制器是近年来发展迅速,应用广泛的工业控制装置,是一种专为工业应用而设计的数字电子控制系统。
它采用了灵活、方便,快捷的可编程序控制形式和结构,通过数字量或模拟量的输入与输出过程中的信号转换,完成控制中的各类生产和生活过程。
基于PLC的PID水位控制系统已经广泛应用于人们的日常生产生活中,它成功的解决水箱对恒定水位的要求。
在工业和生活供水方面有它独特的应用,具有成本低,精度高,稳定性好,易于操作和管理,劳动强度低等优点。
基于PLC的PID水位控制系统采用西门子S7-200系列中PLC-CPU226为基础,结合模拟量模块E231、液位传感器、输入控制液压阀、输出控制液压阀等,组成一个基于S7-200系列中PCL-CPU226的水箱水位控制系统,对水箱的水位进行监测与控制。
设计主要包括两个部分:硬件部分和软件部分。
硬件部分:CPU 模拟量块液位传感器输入控制液压阀输出控制液压阀等软件部分:PID逻辑控制梯形图控制程序关键词:PLC,PID,水箱水位,自动控制PLC-BASED PID CONTRAI YSTEM FOR THEWATER LEVELABSTRACTProgrammable logic controller is developed rapidly in recent years, the application of a wide range of industrial control devices, is a specially designed for industrial applications of the digital electronic control system. It uses a flexible, convenient and efficient process control can be made available for the form and structure, through digital or analog input and output signal conversion process to complete the control process of various types of production and life.PLC based on water level control system PID of already widely used in the production of people's day-to-day life, its success to solve the constant level water tank requirements. Water supply in the industrial and life has its unique application of low cost and high precision, good stability, ease of operation and management, and low labor intensity.PLC-based control system the PID level S7-200 series PLC-CPU226-based light simulation module E235, liquid level sensors, type of hydraulic control valves, hydraulic valves, such as output control, based on the formation of a S7-200 series PCL-CPU226 tank water level control system, the water level of the water tank monitoring and control.Design mainly includes two parts: hardware and software parts.Hardware components: CPU block level analog sensor input to control the output of hydraulic control valves such as hydraulic valvesSoftware: PID control ladder logic control programKEY WORDS: PLC,PID,level water tank,control目录前言 (1)第1章PLC概述 (2)1.1 PLC的产生 (2)1.2可编程控制器的发展 (2)1.3 PLC的特点 (3)1.4 PLC的基本构成 (3)1.5 PLC的各组成部分 (4)1.6 PLC的工作原理 (5)1.7PLC的主要应用 (6)第2章系统硬件设计 (7)2.1系统要求 (7)2.2系统设计思路 (8)2.3可编程控制器的选择 (8)2.4 CPU226型PLC的特点 (9)2.5 EM235模拟量模块 (10)2.6液位传感器 (12)2.7流量控制阀 (12)2.8 PLC输入和输出分配表 (13)2.9接线图 (14)2.10手动供水电路图 (15)2.11报警系统 (16)第3章PID控制 (17)3.1 PID控制介绍 (17)3.2 PLC实现PID控制的方式 (20)3.3 PLC PID控制算法 (20)3.4 PID指令及回路表 (22)3.5模拟量信号转换 (23)第4章软件设计 (24)4.1软件系统概况 (24)4.2水位PID控制的逻辑设计 (24)4.3梯形图编程 (27)4.4联机和运行 (30)结论 (32)谢辞 (33)参考文献 (34)前言可编程控制器(Programmable logic controller,PLC)是近年来发展迅速,应用广泛的控制装置,是一种为工业和生活应用而设计的数字电子控制系统。
1.绪论液位控制问题是工业生产过程中的一类常见问题,例如在饮料、食品加工,溶液过建,化工生产等多种行业的生产加工过程都需要对液位进行适当的控制。
双溶水箱液位的控制作为过程控制的一种,由于其自身存在滞后,对象随负荷变化而表现非线性特性及控制系统比较复杂的特点,传统的控制不能达到满意的控制效果。
以PLC、组态软件为单元,可以组成从简单到复杂的各种工业控制系统。
PLC可以实现复杂的逻辑编程及简单的算法编程,但是对于先进控制算法,如模糊控制算法等涉及到矩阵运算,由于算法本身的复杂性,单纯依靠PLC编程功能已经不能满足要求;在这组态软件编程语言可以弥补它的不足,因为运用此方法非常简单。
本文在S7-200环境中编写了传统的PID控制算法,实现了对二阶水箱液位的控制。
1.1本设计主要研究内容(1)水箱液位串级控制系统总体设计(2)PLC程序设计(3)MCGS监控画面设计(4)PLC与MCGS变量连接和通讯(5)PID参数的整定2.串级控制系统设计2.1水箱系统组成水箱系统由两个串联水箱、一个大水箱、一个水泵、两个压力变送器、管道及若干阀组成。
两个压力变送器通过分别检测两个水箱压力来确定水位高度。
2.2信号间转换关系压力变送器检测水箱压力在0~5000pa范围内,经过压力变送器转换成1~5V模拟量电压信号; 1~5V模拟量信号经过转换成6400~32000数量信号,再将其输送到PLC 中;经过程序控制,对应0~50cm水箱水位。
本设计用PLC检测到下水箱压力变送器传来的数字量信号为3200~16000,其对应的水箱水位在0~30cm之间。
2.3二阶水箱系统结构二阶水箱液位控制系统的逻辑结构如图2.3.1图2.3.1本系统是由上下两个水箱串联组成,下水箱的液位为系统的主控制量,上水箱的液位为副控制量。
本系统的控制目的,不仅要使下水箱的液位等于给定值,而且当扰动出现在上水箱时,由于它们的时间常数均小于下水箱,故在下水箱的液位未发生明显变化前,扰动所产生的影响已通过内回路的控制及时地被消除。
PLC水箱液位控制系统毕业设计PLC水箱液位控制系统是一种基于可编程逻辑控制器(PLC)的自动控制系统,用于监测和调节水箱中的液位。
这个系统可以应用于各种场景,比如工业生产中的水箱液位控制、建筑物的水池液位控制等。
在本篇文章中,将详细介绍PLC水箱液位控制系统的设计和实现。
首先,我们需要对PLC水箱液位控制系统的硬件进行设计。
其中包括传感器模块、执行器模块和PLC控制器。
传感器模块用于监测水箱中的液位,可以选择合适的液位传感器,如浮球开关、超声波传感器等。
执行器模块用于控制水箱中的液位,可以选择水泵或阀门等执行器。
PLC控制器用于接收传感器模块的信号,根据预设的控制策略来控制执行器模块的工作。
同时,还需要考虑电源模块、通信模块等其他辅助模块。
接下来,我们需要对PLC水箱液位控制系统的软件进行设计。
PLC控制器通常使用Ladder Diagram(梯形图)进行编程。
在本设计中,我们可以根据液位传感器的信号来控制执行器的开关。
当液位低于一定阈值时,PLC控制器可以启动水泵或打开阀门,以增加水箱中的液位。
当液位高于一定阈值时,PLC控制器可以停止水泵或关闭阀门,以减少水箱中的液位。
同时,我们还可以增加一些安全措施,如设置最大液位和最小液位报警,当液位超出范围时,PLC控制器可以发出警报信号或采取相应的措施。
在实际应用中,我们还可以通过人机界面(HMI)来对PLC水箱液位控制系统进行监控和操作。
通过HMI,我们可以实时查看水箱中的液位,修改控制策略,记录操作日志等。
同时,我们还可以将PLC水箱液位控制系统与上位机进行通信,实现远程监控和控制。
最后,我们需要对PLC水箱液位控制系统进行实验验证。
在实验中,我们可以模拟不同的液位情况,观察PLC控制器的响应和执行器的工作情况。
通过实验,我们可以测试系统的稳定性、精度和可靠性,并对系统进行优化和改进。
总结而言,PLC水箱液位控制系统是一种自动控制系统,用于监测和调节水箱中的液位。
精选文档过程控制系统课程设计基于PID的上水箱液位控制系统设计一、课程设计任务书1.设计内容针对某厂的液位控制过程与要求实现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。
具体设计内容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。
2.设计要求1、以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。
2、PLC控制器采用PID算法,各项控制性能满足要求:超调量20%,稳态误差≤±0.1;调节时间ts≤120s;3、组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线;4、选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数;5、通过S7-200PLC编程软件Step7实现PLC程序设计与调试;6、分析系统基本控制特性,并得出相应的结论;7、设计完成后,提交打印设计报告。
3.参考资料1.邵裕森,戴先中主编.过程控制工程(第2版).北京:机械工业出版社.20032.崔亚嵩主编.过程控制实验指导书(校内)3.廖常初主编.PLC编程及应用(第2版).北京:机械工业出版社.20074.吴作明主编.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.20074.设计进度(2010年12月27日至2011年1月9日)时间设计内容2010年12月27日布置设计任务、查阅资料、进行硬件系统设计2010年12月28日~2010年12月29日编制PLC控制程序,并上机调试;2010年12月30日~2010年12月31日利用MCGS组态软件建立该系统的工程文件2011年1月2日~2011年1月4日进行MCGS与PLC的连接与调试进行PID参数整定2011年1月5日~2011年1月6日系统运行调试,实现单容水箱液体定值控制2011年1月7日~2011年1月9日写设计报告书5.设计时间及地点设计时间:周一~周五,上午:8:00~11:00下午:1:00~4:00设计地点:新实验楼,过程控制实验室(310)电气工程学院机房(320)二、评语及成绩课程设计成绩:指导教师:过程控制系统课程设计报告班级:姓名:学号:指导教师:撰写日期:目录第一章绪论 (1)第二章系统组态设计 (3)2.1 MCGS组态软件概述 (3)2.2 新建工程 (4)2.3 设备配置 (5)2.4新建画面 (5)2.5 定义数据对象 (9)2.6设备连接 (12)2.7 控制面板的设计 (14)第三章 PLC设计 (18)3.1 PLC概述 (18)3.2系统设计PLC程序 (20)第四章课设总结 (25)参考文献 (26)附录 (27)第一章绪论可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。
研发设计I RESEARCH DESIGN摘要:文章就P L C水箱水位自动控制系统的设计思路进行简单论述,该设计思路是采用西门子S7-200P L C为主控制机的多泵恒 压供水控制系统。
在传统水箱供水的基础上,加入了 P L C、变频器等器件,以实现恒压供水。
关键词:P L C:恒压供水;自动控制I基于P L C水箱水位自动控制系统的设计思路■文水是生命之源,水对人民生活与工业生产的影响非常大,同时人们对供水系统的质量和可靠性的要求也很高。
变频恒 压供水系统是集变频技术、PLC技术、现代控制技术等多种 技术于一体,可靠地为人民生活和工业生产提供优质水服务 的一项技术。
1. 恒压供水系统的意义及设计思路众所周知,水是生产生活中不可缺少的重要组成部分。
企业生产和人民生活对水的需求非常大,对来水的量和来水 的压力都有严格的要求。
同时,企业生产和人民生活对水需 求的时段有所不同,企业生产可能是全时段,而人民生活基 本上是在白天。
夏季人民的生活用水就会多些,冬季就会少 些。
这就需要一套系统,既能保证企业生产和人民生活的用 水量和用水压力,又能识别哪个季节哪个时段的用水。
综上 所述,在设计上只要把上述需求转换到水压上就能够解决难 题。
该设计就是从这个点出发,利用PLC对通过压力传感 器采集过来的信息进行分析处理,给出合理的控制信息,进 行恒压供水。
把PLC技术运用在水箱水位控制系统中,具 有很大的发展空间和应用价值。
2.自动控制系统相关组件2. 1PLC组件PLC是可编程逻辑控制器,它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计 数与算术操作等面向用户的指令,并通过数字或模拟式输入 和输出控制,各种类型的机械或生产过程。
当前,P L C已是 适用于工业现场工作的标准设备。
2.2变频器组件变频器是应用变频技术与微电子技术,通过改变电机工 作电源频率方式来控制交流电动机的电力控制设备。
西门子S7-1200PLC水箱水位控制程序案例先说明一下案例的控制要求:1、该控制项目为水箱水位控制系统,系统中一共有3隔水箱,每隔水箱抖音一个液位传感器、输出的信号为0~10V电压信号,检测液位的高度为0~3m,液位为0.2m时为低液位,液位为2.5时为高液位。
2、每个水箱有三个进水阀和三个出水阀,进水阀分别是Y1、Y3、Y5,出水阀分别是Y2、Y4、Y6,每个水箱都有出水阀开和出水阀关两个按钮,出水阀开按钮分别是SB1、SB3、SB5,出水阀关按钮分别是SB2、SB4、SB6。
3、我们通过按SB1SB3SB5可以分别对各个水箱进行防水操作,顺序是随机的,当系统检测到水箱的“空”信号时,系统会自动打开水箱进水阀进行注水,当检测到水箱“满”信号时停止进水。
水箱注水和水箱放空的顺序是相同的,而且每次只能对一个水箱进行注水的操作。
首先进行IO分配:IO分配好之后根据IO分配的点进行接线即可,还需注意液位传感器需要接到模拟量输入模块,一共有三个液位传感器,那么可以选择SM1231 AI04的模块,分别接到通道1、通道2、通道3即可。
PLC控制程序设计:(案例源程序获取,请看文末)1、首先进行硬件组态、配置模拟量模块的参数(案例源程序获取,请看文末)我们选用CPU1214C DC/DC/DC型号的PLC,此外因为需要对三个水箱的水位进行采集,要使用到模拟量输入模块,我们选用的是SM1231 AI04模块,设备组态配置图如下图。
因为使用到了模拟量模块,还需要设置相应的模拟量输入信号的参数。
根据液位继电器的输出信号类型进行配置,我们配置测量类型为电压,电压范围是正负10V,滤波为4个周期,启用溢出诊断和下溢诊断。
通道0对应的地址是IW96,通道1对应的地址是IW98,通道2对应的地址是IW100。
2、编写模拟量处理程序模拟量转换程序,是用来把采集到的模拟量信号转换成实际的液位,并将它与低液位和高液位做比较,从而输出是否达到低液位信号和高液位信号。
FX5U PLC在PID控制方面的应用非常广泛,以下是一个基本的PID控制案例:案例:水箱液位PID控制一、系统描述此案例为一个单容水箱液位控制系统,其目标是通过PID控制算法来维持水箱内的液位在设定值。
当液位低于设定值时,PID控制器将增加进水阀的开度,以增加进水量;当液位高于设定值时,PID控制器将减小进水阀的开度,以减少进水量。
二、硬件配置FX5U PLC:作为主控制器,负责接收液位传感器的信号,并根据PID算法计算结果控制进水阀的开度。
液位传感器:采用模拟量输出型液位传感器,其输出信号为4-20mA,对应液位的0-100%。
进水阀:采用电动调节阀,其开度可通过PLC输出的模拟量信号进行控制。
三、软件编程PLC程序需要首先读取液位传感器的模拟量输入信号,并将其转换为实际的液位值。
由于FX5U的PLC本体模拟量输入是电压类型,所以需要通过外部电路将传感器的4-20mA电流信号转换为0-10V的电压信号,然后再通过PLC的A/D转换功能将其转换为数字量。
在获取到实际的液位值后,PLC程序需要将其与设定值进行比较,并根据偏差值计算出PID 控制器的输出。
FX5U PLC内置了PID控制功能块,可以直接调用进行PID计算。
PLC程序最后将PID控制器的输出转换为电动调节阀的开度控制信号,通过PLC的D/A转换功能将其转换为模拟量电压信号输出给电动调节阀。
四、调试与优化在系统投入运行前,需要对PID控制器的参数进行调试与优化。
一般来说,PID控制器的参数包括比例增益、积分时间和微分时间三个部分。
这三个参数的设置需要根据系统的实际情况进行调整,以达到最佳的控制效果。
在调试过程中,可以先将积分时间和微分时间设为0,只调整比例增益,使系统达到基本的稳定状态;然后再逐步增加积分时间和微分时间,以改善系统的动态性能。
在调整参数时,需要注意观察系统的响应情况,避免出现超调或振荡等不稳定现象。
摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工,溶液过滤,化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度,既不能太满溢出造成浪费,也不能过少而无法满足需求。
因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果. PID控制(比例、积分和微分控制)是目前采用最多的控制方法.本文主要是对一水箱液位控制系统的设计过程,涉及到液位的动态控制、控制系统的建模、PID算法、传感器和调节阀等一系列的知识。
作为单容水箱液位的控制系统,其模型为一阶惯性函数,控制方式采用了PID算法,调节阀为电动调节阀。
选用合适的器件设备、控制方案和算法,是为了能最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。
利用Matlab仿真,整定PID参数,得出仿真曲线,得到整定参数,控制效果很好,实现了水箱液位的控制.关键词: PID控制过程控制液位控制 Matlab目录摘要 (I)第一章绪论 (1)1.1过程控制的定义 (1)1.2过程控制的目的 (1)1.3过程控制的特点 (2)1.4过程控制的发展与趋势 (2)第二章水箱液位控制系统的原理 (3)2.1 人工控制与自动控制 (3)2.2 水箱液位控制系统的原理框图 (4)2.3 水箱液位控制系统的数学模型 (5)第三章水箱液位控制系统的组成 (8)3.1 被控制变量的选择 (8)3.2 执行器的选择 (8)3.3 PID控制器的选择 (11)3.4 液位变送器的选择 (12)第四章 PID控制规律 (14)4.1 比例控制 (14)4.2积分控制(I) (16)4.3微分控制(D) (16)4.4比例积分控制(PI) (17)4.5比例积分微分控制(PID) (17)第五章利用MATLAB进行仿真设计 (18)5.1 MATLAB设计 (18)5.2 MATLAB设计任务 (18)5.3 MATLAB设计要求 (18)5.4 MATLAB设计任务分析 (19)5.4 MATLAB设计任务分析 (20)5.5 MATLAB设计内容 (24)5.5.1主回路的设计 (24)5.5.2副回路的设计 (24)5.5.3主、副回路的匹配 (24)5.5.4 单回路PID控制的设计 (25)5.5.5串级控制系统的设计 (30)心得体会 (33)参考文献 (34)第一章绪论1.1过程控制的定义生产过程自动化,一般是指石油、化工、冶金、炼焦、造纸、建材、陶瓷及电力发电等工业生产中连续的或按一定程序进行的生产过程的自动控制。