2第二章 计量经济学的统计学基础知识
- 格式:ppt
- 大小:324.51 KB
- 文档页数:3
计量经济学的统计学基础引言计量经济学是经济学的一个分支,它研究如何利用统计学方法和经济理论来分析经济现象。
在计量经济学中,统计学是非常重要的基础,它为我们提供了估计经济模型参数的工具。
本文将介绍计量经济学中的统计学基础知识,包括概率分布、假设检验和回归分析。
1. 概率分布概率分布是描述随机变量可能取值的概率的函数。
在计量经济学中经常使用的两个概率分布是正态分布和 t 分布。
1.1 正态分布正态分布是一种对称的连续型概率分布,它的特点是均值和标准差可以完全描述该分布。
正态分布在计量经济学中的应用非常广泛,例如在回归分析中,我们通常假设误差项服从正态分布。
在Markdown文本中,我们可以使用数学公式来表示正态分布的概率密度函数如下:$$f(x;\\mu,\\sigma) = \\frac{1}{\\sqrt{2\\pi}\\sigma} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}$$其中,x是随机变量,$\\mu$ 是均值,$\\sigma$ 是标准差。
1.2 t 分布t 分布是一种对称的连续型概率分布,它的形状和正态分布很类似。
t 分布与正态分布的不同之处在于 t 分布有一个称为自由度的参数。
在计量经济学中,t 分布通常用于小样本情况下的假设检验。
给定一个自由度为v的 t 分布,其概率密度函数可以表示为:$$f(x;v) = \\frac{\\Gamma(\\frac{v+1}{2})}{\\sqrt{\\pi v}\\Gamma(\\frac{v}{2})} \\left(1+\\frac{x^2}{v}\\right)^{-\\frac{v+1}{2}}$$其中,$\\Gamma(\\cdot)$ 表示 gamma 函数。
2. 假设检验假设检验是计量经济学中常用的统计推断方法之一,它用于判断某个经济假设是否成立。
在假设检验中,我们首先提出一个原假设,然后根据样本数据来判断是否拒绝原假设。
第一章统计概念1.什么是计量经济学计量经济学是对经济的测度,利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学。
2.计量经济学的方法论(计量经济分析步骤)(1)建立理论假说。
(2)收集数据。
(3)假定数学模型。
(4)设立统计或计量模型。
(5)估计经济模型参数(6)核查模型的适用性:模型设定检验。
(7)检验源自模型的假定(8)利用模型进行预测4.数据类型(1)时间序列数据:按时间跨度获得的数据。
特征是一般变量如 Y t、X t下标为t。
(2)截面数据:同一时点上的一个或多个变量的数据集合。
如:各地区2002年人口普查数据。
(3)合并数据:既包括时间序列数据有包括截面数据。
例:20年间10个国家的失业数据。
20年失业数据是时间序列,10个国家又是截面数据。
(4)面板数据:同一个横截面的单位的跨期调查数据。
例:对相同的家庭数量在几个时间间隔内进行的财务状况调查。
5.理解回归关系回归关系是一种统计上的相关关系,并不意味着自变量和因变量之间存在着因果关系。
第二章线性回归的基本思想1.回归分析的含义: 回归分析是反映的自变量和因变量之间的统计关系,回归分析是在自变量给定条件下的因变量的变化,是一种条件回归分析E(Y i|X i)=B1+B2X i2.随机误差项的性质(为什么要引入随机误差项)(1)随机误差项代表着未纳入模型变量对因变量的影响(2)即使模型包括了影响因变量的所有因素,模型也有不可避免的随机性。
(3)μ还代表着度量误差(4)模型设定应该尽可能简单,只要不遗漏重要变量,把因变量的次要影响因素归于随机项 μ 。
(奥卡姆剃刀原则)3.参数估计方法———普通最小二乘法的基本思想 选择参数使得残差平方和最小——Min ∑e i 2=Min ∑(Y i −Yi ̌)2=Min ∑(Y i −b 1−b 2X i )^24.根据Ols 法得出参数 b 1 b 2 称为最小二乘估计量,最小二乘估计量的性质: (1)Ols 方法获得样本回归直线过样本均值点(X ,Y ) (2)残差的均值总为0,(3)残差项与解释变量的乘积求和为0,即残差项与解释变量不相关。
第二章 数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)第二节 分布函数(Distribution Function),数学期望(Expectation)及方差(Variance) 第三节 数理统计(Mathematical Statistics ) 第一节 矩阵及其二次型(Matrix and its Quadratic Forms)2.1 矩阵的基本概念与运算 一个m ×n 矩阵可表示为:v a a a a a aa a a a A mn m m n n ij ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡== 212222111211][矩阵的加法较为简单,若C=A +B ,c ij =a ij +b ij但矩阵的乘法的定义比较特殊,若A 是一个m ×n 1的矩阵,B 是一个n 1×n 的矩阵,则C =AB 是一个m ×n 的矩阵,而且∑==nk kj ikij b ac 1,一般来讲,AB ≠BA ,但如下运算是成立的:● 结合律(Associative Law ) (AB )C =A (BC ) ● 分配律(Distributive Law ) A (B +C )=AB +AC 问题:(A+B)2=A 2+2AB+B 2是否成立?向量(Vector )是一个有序的数组,既可以按行,也可以按列排列。
行向量(row ve ctor)是只有一行的向量,列向量(column vector)只有一列的向量。
如果α是一个标量,则αA =[αa ij ]。
矩阵A 的转置矩阵(transpose matrix)记为A ',是通过把A 的行向量变成相应的列向量而得到。
显然(A ')′=A ,而且(A +B )′=A '+B ',● 乘积的转置(Transpose of a production ) A B AB ''=')(,A B C ABC '''=')(。
计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。
其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。
其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。
一般说来,随机项来自以下几个方面:1、变量的省略。
由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。
2、统计误差。
数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。
3、模型的设定误差。
如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。
4、随机误差。
被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。
若相互依赖的变量间没有因果关系,则称其有相关关系。
对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。
他们各有特点、职责和分析范围。
相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。
回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。
第一章:绪论1.计量经济学的学科属性、计量经济学与经济学、数学、统计学的关系;2.计量经济研究的四个基本步骤(1)建立模型(依据经济理论建立模型,通过模型识别、格兰杰因果关系检验、协整关系检验建立模型);(2)估计模型参数(满足基本假设采用最小二乘法,否则采用其他方法:加权最小二乘估计、模型变换、广义差分法等);(3)模型检验:经济意义检验(普通模型、双对数模型、半对数模型中的经济意义解释,见例1、例2),统计检验(T 检验,拟合优度检验、F 检验,联合检验等);计量经济学检验(异方差、自相关、多重共线性、在时间序列模型中残差的白噪声检验等);(4)模型应用。
例1:在模型中,y 某类商品的消费支出,x 收入,P 商品价格,试对模型进行经济意义检验,并解释21,ββ的经济学含义。
t t t P x y 31.0ln 25.0213.0ln -+=∧,其中参数21,ββ都可以通过显著性检验。
经济意义检验可以通过(商品需求与收入正相关、与商品价格负相关)。
商品消费支出关于收入的弹性为0.25()/ln(25.0)/ln(11-∧-=t t t t x x y y );价格增加一个单位,商品消费需求将减少31%。
例2:研究金融发展与贫富差距的关系,认为金融发展先使贫富差距加大(恶化),尔后会使贫富差距降低(好转),成为倒U 型。
贫富差距用GINI 系数表示,金融发展用(贷款余额/存款总额)表示。
回归结果为: 229.164.034.2t t t x x GINI -+=∧,模型参数都可以通过显著性检验。
在x 的有意义的变化范围内,GINI 系数的值总是大于1,细致分析后模型变的毫无意义;同样的模型还有:GINI 系数的值总是为负231.1412.734.13t t t x x GINI -+-=∧。
3.计量经济学中的一些基本概念数据的三种类型:横截面数据、时间序列数据、面板数据;线性模型的概念;模型的解释变量与被解释变量,被解释变量为随机变量(如 果一个变量为随机变量,并与随机扰动项相关,这个变量称为内生变量),被解释变量为内生变量,有些解释变量也为内生变量。