UPLC色谱柱技术介绍
- 格式:pdf
- 大小:3.12 MB
- 文档页数:86
超高效液相色谱(UPLC)超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。
在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。
基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。
它不但需要耐压、稳定的小颗粒填料(可达1.7µm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。
这就需要对系统所有硬件和软件的进行全面创新。
世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。
图1:填料技术的沿革1.小颗粒填料改善分离的理论与科学基础液相色谱30年的发展史是颗粒技术的发展史。
颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。
由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。
事实上,上述规律的理论基础是著名的Van Deemeter方程。
Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。
Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。
由Van Deemeter方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。
还应该注意到1.7 µm颗粒的HETP最小值区域扩大了(见图2),这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。
小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。
然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。
小颗粒技术的运用,不但要求仪器在超出目前限度(6000 psi/ 400 bar)的压力下工作,同时要求仪器系统的死体积要更小,以便不影响梯度性能,而且还要检测器能高速检测出峰宽只有几秒的色谱峰。
UPLC超高效液相色谱(沃特世)主要特点超高速度1.小颗粒填料色谱柱能超乎寻常地提高分析速度而不降低分离度2.显著增加样品的通量,提高工作效率,降低分析成本3.节省以往一向耗时的方法开发与认证的时间超高灵敏度1.小颗粒技术和整体化的仪器设计,UPLC®能在改善分离度的同时提高灵敏度2.更高的柱效和更窄的色谱峰,意味着更高的色谱峰高和更高的灵敏度3.在得到超高分离度和超高速度的同时能够得到超高灵敏度超高分离度1.利用高效创新小颗粒填料(1.7μL),获得超强分离能力2.超低扩散体积,充分发挥小颗粒填料分离能力3.超高分离度,适合复杂混合物的分离分析超级创新为满足色谱实验室对历史追踪不断增长的需求,每根ACQUITY UPLC®色谱柱出售时均带一个永久性的eCord,它能记录进样次数,最高的反压和柱温,其中还含有由沃特世公司提供的该色谱柱的分析测试合格证书。
色谱柱安装后,智能化的芯片会自动地把关键参数采集进入色谱柱的历史文档,并记录色谱柱整个寿命周期的历史。
该记录不能被删除。
技术参数最大操作压力:15000psi(1mL/min)溶剂输送精度:0.075%RSD或0.02minSD流速范围:0.010-2.000mL/min,增量0.001mL/min梯度曲线:11种。
包括线性、凹线、凸线和两种步进梯度变化有效系统体积:<140μL,与系统反压无关。
带标准混合器溶剂选择:最多四种。
可在A1与A2和B1和B2之间选择交叉污染:0.005%或2nL进样范围:0.5-50μL进样精度:<0.3%RSD进样线性:>0.999样品室温度控制:4 - 40℃色谱柱历史追踪:使用eCord技术检测器配置:紫外可见检测器、光电二极管矩阵检测器、蒸发光散射检测器以及所有质谱检测器超高速度,超高灵敏度,超高分离度,超级创新为满足色谱实验室对历史追踪不断增长的需求,每根ACQUITY UPLC®色谱柱出售时均带一个永久性的eCord,它能记录进样次数,最高的反压和柱温,其中还含有由Waters公司提供的该色谱柱的分析测试合格证书。
waters uplc 超高液相色谱仪使用方法概述及解释说明1. 引言1.1 概述本文旨在介绍和解释Waters UPLC超高液相色谱仪的使用方法。
超高液相色谱技术作为一种快速、高效、灵敏的分析方法,已广泛应用于生命科学、环境监测、药物研发等领域。
而Waters UPLC超高液相色谱仪则作为当前市场上领先的仪器之一,拥有先进的特点和优势。
1.2 文章结构本文将按照如下结构来进行介绍和说明:首先,在第2部分中,我们将对Waters UPLC超高液相色谱仪进行详细的介绍,包括其工作原理、构成和组件以及特点和优势。
然后,在第3部分中,我们将概述超高液相色谱分析方法的基本步骤,并重点讨论样品准备工作、色谱柱和流动相选择与优化以及仪器参数设置与调节等方面的内容。
接着,在第4部分中,我们将详细解释使用Waters UPLC超高液相色谱仪的具体步骤和操作说明,包括开机与准备工作、样品处理与注射操作以及方法运行与数据分析等方面。
最后,在第5部分中,我们将总结使用过程中的经验和解决技巧,并展望超高液相色谱在分析领域中的发展方向和应用前景。
1.3 目的本文旨在帮助读者全面了解Waters UPLC超高液相色谱仪的使用方法,包括仪器介绍、分析方法概述以及具体操作步骤。
通过阅读本文,读者将能够熟练运用该仪器进行高效、准确的样品分析,并对超高液相色谱技术在各个领域中的应用前景有更深入的了解。
同时,我们也希望通过分享使用经验和问题解决技巧,能够为相关科研人员提供一些实用的参考和指导。
2. Waters UPLC超高液相色谱仪介绍2.1 原理Waters UPLC(Ultra Performance Liquid Chromatography)超高液相色谱仪是一种高效的色谱分析技术。
其原理基于传统液相色谱,通过使用减小粒径和增强填充剂的方式,实现更高的分离效率和分辨率。
UPLC仪器利用高压泵将样品溶液加速通过色谱柱,在极短的时间内完成分离、富集和检测。
超高效液相色谱(UPLC)超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。
在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。
基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。
它不但需要耐压、稳定的小颗粒填料(可达1.7µm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。
这就需要对系统所有硬件和软件的进行全面创新。
世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。
图1:填料技术的沿革1.小颗粒填料改善分离的理论与科学基础液相色谱30年的发展史是颗粒技术的发展史。
颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。
由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。
事实上,上述规律的理论基础是著名的Van Deemeter方程。
Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。
Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。
由Van Deemeter方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。
还应该注意到1.7 µm颗粒的HETP最小值区域扩大了(见图2),这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。
小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。
然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。
小颗粒技术的运用,不但要求仪器在超出目前限度(6000 psi/ 400 bar)的压力下工作,同时要求仪器系统的死体积要更小,以便不影响梯度性能,而且还要检测器能高速检测出峰宽只有几秒的色谱峰。
UPLC色谱柱沃特世科技(上海)有限公司赵嘉胤Jiayin_zhao@ACQUITY UPLC色谱柱背景知识简介—UPLC色谱柱技术—VanGuard™ 保护柱如何选择ACQUITY UPLC色谱柱—ACQUITY UPLC BEH色谱柱—ACQUITY UPLC HSS色谱柱—ACQUITY UPLC CSH色谱柱色谱柱使用维护ACQUITY UPLC色谱柱背景知识简介—UPLC色谱柱技术—VanGuard™ 保护柱如何选择ACQUITY UPLC色谱柱—ACQUITY UPLC BEH色谱柱—ACQUITY UPLC HSS色谱柱—ACQUITY UPLC CSH色谱柱色谱柱使用维护原产厂家化学键合厂柱填充厂分销商硅胶颗粒和杂化颗粒合成填料键合Source & control of silica gel can make a big difference in your chromatography填料键合Waters分拨与销售柱填充分拨与销售柱填充分拨与销售分拨与销售柱填充•Manufactures under cGMP , ISO 9001 and ISO 13485 guidelines •Registered with FDA as a medical device manufacturer填料颗粒的合成坚固高效的1.7 µm BEH 、CSH 和1.8 µm HSS 颗粒迄今为止技术最先进的全多孔颗粒柱效最高,PH 使用范围最宽和卓越的机械强度设计特点全新硬件设计低谱带展宽新型过滤片色谱柱装填柱床稳定,耐受UPLC 工作压力沃特世专有的新型装填技术新的测试仪器软件采用eCord TM 技术无纸追踪色谱柱使用历史支架系绳包嵌式16 mm 微芯片eCord 永久附在色谱柱上智能芯片自动下载关键参数到色谱柱历史文件提供色谱柱全程使用历史 信息不可删除存在芯片上的信息可减少记录纸张色谱柱无纸使用记录VanGuard™ 保护柱特为UPLC®使用而设计ACQUITY UPLC色谱柱背景知识简介—UPLC色谱柱技术—VanGuard™ 保护柱如何选择ACQUITY UPLC色谱柱—ACQUITY UPLC BEH色谱柱—ACQUITY UPLC HSS色谱柱—ACQUITY UPLC CSH色谱柱色谱柱使用维护BEH亚乙基桥杂化颗粒130Å, 200Å, 300ÅHSS高强度硅胶颗粒100ÅCSH表面带电杂化颗粒130Å行业领先的化学稳定性•宽pH范围,耐受性最强•通用性极佳•固定相种类与柱规格丰富•除通用于小分子化合物,还有专用于生物制药行业的BEH柱产品提高选择与保留•T3 :增强对极性分子的反相保留能力•C18:提供常规硅胶C18选择性•C18SB:高硅醇活性以增强对碱性分析物的保留,而同时维持好的峰形•Cyano,PFP:提供不同的选择性同时保证色谱峰形使选择性最大化•独特的选择性•低离子强度酸性条件下,对碱性化合物的高载量与优异峰形•较宽pH范围,高低pH条件切换时平衡迅速BEH C 18BEH C 8BEH Phenyl BEH Shield RP18BEH HILICFive particle substrates•130Å, 200Å and 300Å BEH [Ethylene Bridged Hybrid], HSS [HighStrength Silica] and CSH [Charged Surface Hybrid]•All are available in HPLC and UPLC particle sizes Wide and growing selection of column chemistries•15 stationary phases•BEH 130Å C 18, C 8, Shield RP 18, Phenyl, HILIC and Amide •BEH 300Å C and C BEH Amide CSH C 18CSH Fluoro-Phenyl 184•BEH 200Å SEC•HSS C 18, T3, C 18SB,PFP ,Cyano•CSH C 18, Fluoro-Phenyl and Phenyl-HexylProven application-based solutions•AAA, OST, PST, PrST and GlycanTransferability between HPLC and UPLCXBridge HPLC and ACQUITY UPLC BEH columns HSS HPLC and ACQUITY UPLC HSS columnsXSelect HPLC and ACQUITY CSH columnsVanGuard Pre-columns CSH Phenyl-HexylHSS T3HSS C 18HSS C 18SB HSS PFP HSS CyanoACQUITY UPLC色谱柱背景知识简介—UPLC色谱柱技术—3.0mm ID UPLC色谱柱—VanGuard™ 保护柱如何选择ACQUITY UPLC色谱柱—ACQUITY UPLC BEH色谱柱—ACQUITY UPLC HSS色谱柱—ACQUITY UPLC CSH色谱柱UPLC-HPLC方法无缝转换UPLC生物分子分析方案New 2.5 µm eXtended Performance Columns 介绍U.S. Patent No. 6,686,035 B2Bridged Ethanes within a silica matrixWide pH range (1-12)High pressure toleranceEnhanced efficiency (1.7 µm)XTerra ®MS C 18BEH C 18测试终止(估计>250 h)测试终止(估计>250 h)BEH HILIC 050100150200250300在50mM TEA 中实验时数(pH 10, 50°C)Symmetry ® C 18Silica C 18–品牌A Silica C 18–品牌BOH -OH -•仅需打断四个硅氧键即可腐蚀一个硅单位•表面腐蚀所产生的硅酸离子在流动相中溶解度大,使硅胶基体溶解的反应向右移动, 从而加快了溶解速度•pH >7时上述腐蚀过程容易发生•须同时断裂六个键才可以去除经乙基桥键连接的两个硅单位(该过程极难发生)•填料基体溶解所产生的有机硅离子在流动相中的溶解度较低, 因此容易累积在填料微孔表面, 有时可能会重新连接回颗粒表面, 形成所谓的‘自我修复’机制。
超高效液相色谱(UPLC TM):重新定义液相色谱分离科学的能力随着首次成功地使用小颗粒得到惊人的分离能力而进入了一个新的时空。
这个新的色谱领域,所谓超高效液相色谱(UPLC TM),与传统的HPLC技术相比提供了更高的效率,因而具有更强的分离能力。
作为世界第一个商品化UPLC TM产品的Waters ACQUITY UPLC TM超高效液相色谱系统,利用创新技术进行整体设计,大幅度地改善了液相色谱的分离度、样品通量和灵敏度。
UPLC TM的商品化,是分离科学和技术的巨大进步,液相色谱亦由此进入了全新的时代。
基于1.7 μm小颗粒技术的UPLC TM,与人们熟知的HPLC技术具有相同的分离原理。
不同的是:UPLC TM不仅比传统HPLC具有更高的分离能力,而且结束了人们多年不得不在速度和分离度之间取舍的历史。
使用UPLC TM可以在很宽的线速度、流速和反压下进行高效的分离工作,并获得优异的结果。
小颗粒分离的理论与科学基础图1:填料技术的沿革液相色谱30年的发展史是颗粒技术的发展史。
颗粒度的改变直接影响到柱效,从而对分离结果产品直接影响。
由上图可知:随着颗粒度的不断降低,色谱分离度不断提高。
事实上,上述规律的理论基础是著名的范德米特(van Deemeter)方程――这是全世界所有从事色谱研究的科学家熟知的理论。
由此得到的范德米特(van Deemeter)曲线,亦是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。
该曲线预测最佳柱效与相应的流动相流速。
由曲线得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。
还应该注意到1.7 μm颗粒的HETP最小值区域扩大了,这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来优化流速(分析速度)。
小颗粒为色谱分离带来如此的高柱效和速度优势,使利用小颗粒技术成为色谱科学家梦寐以求的目标。
然而HPLC系统的设计,一直苦于难于发挥出最小颗粒的优点。