2016-2017年黑龙江省哈尔滨六十九中九年级上学期期中数学试卷及答案(五四学制)
- 格式:doc
- 大小:855.50 KB
- 文档页数:29
2016—2017学年度(上)69中学校数学学科试卷一、选择题(每题 3分,共计 30分) 1.以下各数中,最小的实数是( )A .-3B .-21C .-2D .312.以下运算正确的选项是( )A .x 2+x 4=x 6B .x 2·x 3=x 6C .(x 3) 3=x 6D .25+35=553.以下交通标志中既是中心对称图形,又是轴对称图形的是( )A . B. C. D. 4.如图,四边形ABCD 的对角线相互平分,要使它成为矩形,那么需要添加的条件是( )A .AB =CD B .AD =BC C .AB =BCD .AC =BD5. 抛物线c bx ax y ++=2的开口向下,极点坐标为(2,-3) ,那么该抛物线有( ) A. 最小值 -3B. 最大值-3C. 最小值2D. 最大值26.如图,已知AB ∥CD ∥EF ,那么以下结论正确的选项是( ) A .AD DF =BC CEB .BC CE =DF AD C .CD EF =BC BED .CD EF =AD AF7.某型号的电话持续两次降价,每一个售价由原先的1185元降到了580元,设平均每次降价的百分率为x ,列出方程正确的选项是( )A 、580(1+x )2=1185 B 、1185(1+x )2=580 C 、580(1-x )2=1185 D 、1185(1-x )2=580 8.已知反比例函数xk y =通过抛物线y =2(x -1)2-3的极点,那么k 的值为( ). A .1 B .3 C .-1D .-39.如图,已知钝角三角形ABC ,将△ABC 绕点A 按逆时针方向旋转110°得△AB ´C ´, 连接BB ´,若AC ´∥BB ´,那么∠CAB ´的度数为( )A. 55°B. 65°C.75°D.85° 10.六月PCB'A BC'ABOCD第4题(第16题)CAE D B市连降大雨,某军队前去救援,搭车行进一段路程以后,由于道路受阻,汽车无法通行,军队短暂休整后决定步行前去,那么能反映军队离开驻地的距离S (千米)与时刻t (小时)之间的函数关系的大致图象是( )A B C D二、填空题(每题3分,共计30分)11.690 000用科学记数法表示为_____________. 12.分解因式=-92x . 13.函数124y x =-中,自变量x 的取值范围是 . 14.计算:58-28 =__________. 15.分式方程xx 321=-的解是 . 16.如图,D ,E 别离是△ABC 的边AC 和BC 的中点,已知DE =2,那么AB 的长为 17.不等式组431x x +>⎧⎨⎩≤ 的解集为 .18. 一套运动装标价200元,按标价的八折销售,那么这套运动装的实际售价 为 元.19. 矩形的一个角的平分线分一边为3cm 和4cm 两部份,那么那个矩形的对角线的长 为 cm.20.如图,在矩形ABCD 中,AD=6,AB=4,点E 、G 、H 、F 别离在AB 、BC 、CD 、AD 上,且AF=CG=2,BE=DH=1,点M 在线段DF 上,点N 在线段BG 上,MN ∥AB ,点P 线段MN 上,连接PE 、PF 、PG 、PH , 那么△PEF 和△PGH 的面积和等于 .三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分) 21.(此题7分)化简,求值:1112122-÷+--x x x x ,其中x =2-1. 22. (此题7分)如下图是10×8的网格,网格中每一个小正方形的边长均为1,A 、B 、C 三点在小正方形的极点上,请在图①、②中各画一个凸四边形,使其知足以下要求:⑴请在图①中取一点D (点D 必需在小正方形的极点上),使以A 、B 、C 、DOt/小时 s/千米O t/小时 s/千米O t/小时 s/千米O t/小时s/千米为极点的四边形是中心对称图形,但不是轴对称图形;⑵请在图②中取一点D (点D 必需在小正方形的极点上),使以A 、B 、C 、D 为极点的四边形是轴对称图形,但不是中心对称图形.23. (此题8分)为了丰硕校园文化生活,某校打算在午间校园广播台播放“百家讲坛”的部份内容.为了了解学生的喜好,抽取假设干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请依照统计图提供的信息回答以下问题: (1)抽取了多少学生;(2)该校有3000名学生,估量喜爱收听易中天《品三国》的学生有多少名; 24.(此题8分)如图,已知点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE=CF. (1)求证:四边形ABCD 是平行四边形; (2)直接写出图中所有相等的线段(AE=CF 除外).25. (此题10分)冬季即以后临,是流感的多发期,某中学踊跃进行班级环境消毒,总务处购买甲、乙两种消毒液共100瓶,购买这两种消毒液共用780元,其中甲种消毒液共用240元,且乙种消毒液的单价是甲种消毒液单价的1.5倍4564264383015301020女男 刘心武评《红楼梦》 易中天的《品三国》于丹析《论语》 故宫博物院 于丹析《庄子》内容学生数706050403020100第23题图A BCABCAEFC第24题图(1)求甲、乙两种消毒液的单价各为多少元?(2)该校预备再次购买这两种消毒液(不包括已购买的100瓶),共140瓶,且所需费用不超过1210元,问甲种消毒液至少要购买多少瓶?26.(此题10分)△ABD中,DA=DB,C为BD延长线上一点,BE AC⊥于点E,作ADB∠的角平分线DF交BE于点F,连接AF.(1)如图1,求证:FAB FBA∠=∠;(2)如图2,假设∠ADB=90°,点G与点D关于直线AC对称,连接AG,判定∠GAC与∠EAF的数量关系,并证明你的结论.(3)如图3,在(2)的条件下,假设AE=2,DG=6,求AB的长.27.(此题10分)已知:如图,抛物线y=ax2+4ax+c,与x轴负半轴交于A、B,与y轴正半轴交于C,OC=3,AB =2,(1)求抛物线的解析式;(2)点P为第二象限对称轴左侧抛物线上一点,过P作x轴的垂线垂足为G,连接AC,E为线段AC上一点,连接EG,将EG绕着E点顺时针旋转90°,取得EN,连接NA求证:PG‖NA;(3)在(2)的条件下,延长NE到F,使EN=EF,过F点作y轴的垂线FM,连接PE、PC,假设直线FM通过抛物线的极点D,连接BC,∠EPC+90°=∠ABC,求E点的坐标.图1 图3图2答案一、选择题CDDDB ADDCA 二、填空题11、6.9×10512、(x+3)(x-3) 13、x ≠2 14、36 15、x=3 16、4 17、-1<x ≤1 18、160 19、5865或 20、7 三、解答题21、原式=x+1=2,化简结果5分,代入1分,结果1分 22、第一个图3分,第二个图4分 23、(1)300 4分 (2)1060 4分24、(1)△ADE ≌△BFC 4分 (2)DE=BF 、AB=CD 、AD=BC 、EC=AF 4分 25、(1)设甲x 元,1005.1240780240=-+xx x=6 5分(2)设甲a 瓶 6a+9(140-a)≤1210 3216≥a ∵a 为整数,∴a 的至少为17,∴甲种消毒液至少要购买17瓶 5分26、解:(1)△ADE ≌△BFC 3分(2)证明∠CAD=∠DAF ,2∠GAC=∠EAF 3分(3)过D 作DH ⊥DE 交EB 于H ,EB=GD+AE ,AB=217 4分27、(1)y=x 2+4x+3 2分 (2)过E 作AB 、AN 的垂线,证全等 3分(3)FM 过极点得P (-4,3) ∠EPC+90°=∠ABC ,得∠EPC=∠BCO ,E (-1,2) 5分。
2016年黑龙江省哈尔滨六十九中中考数学模拟试卷(5月份)一、选择题(每小题3分,共计30分)1.(3分)4的平方根是()A.±2 B.2 C.±D.2.(3分)下列运算中,结果正确的是()A.2a+3b=5ab B.a2•a3=a6 C.(a+b)2=a2+b2D.2a﹣(a+b)=a﹣b3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个4.(3分)下列几何体的主视图、左视图、俯视图都相同的是()A.B.C.D.5.(3分)对于双曲线y=,当x>0时,y随x的增大而减小,则k的取值范围是()A.k<3 B.k≤3 C.k>3 D.k≥36.(3分)下列关于x的方程一定有实数解的是()A.2x=m B.x2=m C.=m D.=m7.(3分)如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.2l°B.30°C.58°D.48°8.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.9.(3分)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7m,则树高BC为(用含α的代数式表示)()A.7sinαB.7cosαC.7tanαD.10.(3分)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的长为x米,宽为y米,则可列方程(组)①y(y+10)=200,②x (x﹣10)=200,③,④以上4种列法中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共计30分)11.(3分)某市常住人口约为5245000人,数字5245000用科学记数法表示为.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)计算:﹣=.14.(3分)分解因式:a2y﹣4y=.15.(3分)不等式组的解集是.16.(3分)一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是.17.(3分)如图,将长为14cm的铁丝AB首尾相接围成半径为2cm的扇形,则S扇形等于cm2.18.(3分)某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下调的百分率是.19.(3分)已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为.20.(3分)如图,将正方形ABCD沿直线MN折叠,使B点落在CD边上,AB 边折叠后与AD边交于F,若三角形DEF与三角形ECM的周长差为3,则DE的长为.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共60分)21.(6分)先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.22.(6分)如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?并说明理由.23.(6分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?24.(6分)如图,△ABC中,AB=AC,∠BAC=90°,E、G为AC上两点,且AE=CG,△CDG沿直线BC翻折到△CDF,连结AF交BC于Q,(1)求证:AF⊥BE;(2)若AE=EG,D为BC中点,求tan∠DAQ.25.(8分)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元,购买两种球共100个,则该专卖店最多购买多少个篮球.26.(8分)已知AB为⊙O的直径,C为⊙O上一点,AF垂直过C点的切线,垂足为F,连接AC、BC.(1)求证:∠FAC=∠BAC;(2)过F点作FD⊥AC交AB于D,过D点作DE⊥FD交FC延长线于E,求证:CF=CE;(3)在(2)的条件下,延长FA交⊙O于H,连接OE,若CD=2,AH=3,求OE 的长.27.(10分)抛物线y=ax2+bx﹣8与x轴交于A、B,与y轴交于C,D为抛物线的顶点,AB=2,D点的横坐标为3.(1)求抛物线的解析式;(2)若H为射线DA与y轴的交点,N为射线AB上一点,设N点的横坐标为t,△DHN的面积为S,求S与t的函数关系式;(3)在(2)的条件下,G为线段DH上一点,过G作y轴的平行线交抛物线于F,Q为抛物线上一点,连接GN、NQ、AF、GF,若NG=NQ,NG⊥NQ,且∠AGN=∠FAG,求GF的长.2016年黑龙江省哈尔滨六十九中中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)4的平方根是()A.±2 B.2 C.±D.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.(3分)下列运算中,结果正确的是()A.2a+3b=5ab B.a2•a3=a6 C.(a+b)2=a2+b2D.2a﹣(a+b)=a﹣b【解答】解:A、2a+3b不是同类项不能相加减,故本选项错误,B、a2•a3=a5,故本选项错误,C、(a+b)2=a2+2ab+b2,故本选项错误,D、2a﹣(a+b)=a﹣b,故本选项正确,故选:D.3.(3分)下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:图1、图5都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图3不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图2、图4既是轴对称图形,又是中心对称图形.故选B.4.(3分)下列几何体的主视图、左视图、俯视图都相同的是()A.B.C.D.【解答】解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;B、长方体的三视图不相同,故此选项错误;C、圆锥的主视图和左视图都是等腰三角形,故此选项错误;D、球的主视图和左视图、俯视图都是圆,故此选项正确;故选:D.5.(3分)对于双曲线y=,当x>0时,y随x的增大而减小,则k的取值范围是()A.k<3 B.k≤3 C.k>3 D.k≥3【解答】解:∵双曲线y=,当x>0时,y随x的增大而减小,∴k﹣3>0,解得k>3.故选C.6.(3分)下列关于x的方程一定有实数解的是()A.2x=m B.x2=m C.=m D.=m【解答】解:A.2x=m,一定有实数解;B.x2=m,当m<0时,无解;C.=m,当m=0或﹣时无解;D.=m,当m<0时,无解;故选A.7.(3分)如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.2l°B.30°C.58°D.48°【解答】解:过C作CD∥m,∵m∥n,∴CD∥n,∴∠ACD=42°,∠BCD=∠α,∵AC⊥BC,即∠ACB=90°,∴∠ACD+∠BCD=90°,∴∠α=90°﹣42°=48°.故选D.8.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C 和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.【解答】解:∵AD∥BE∥CF,∴,即:,∴DE=3,故选B.9.(3分)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7m,则树高BC为(用含α的代数式表示)()A.7sinαB.7cosαC.7tanαD.【解答】解:在Rt△ABC中,t anα=,则BC=AC•tanα═7tanαm,故选:C.10.(3分)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的长为x米,宽为y米,则可列方程(组)①y(y+10)=200,②x (x﹣10)=200,③,④以上4种列法中正确的个数为()A.1个 B.2个 C.3个 D.4个【解答】解:①设长方形的宽为y,则长为(y+10),所以其面积为:y(y+10)=200,故:选项①正确.②设长方形的长为x,则宽为(x﹣10),所以其面积为:x(x﹣10)=200,故:选项②正确.③设长方形长为x,宽为y,则由长与宽的关系、长方形的面积公式得,故:选项C正确.④因为长方形的长比宽多10米,则长=宽+10,面积=长×宽,所以,故:选项D正确.故:选D二、填空题(每小题3分,共计30分)11.(3分)某市常住人口约为5245000人,数字5245000用科学记数法表示为5.245×106.【解答】解:将5245000用科学记数法表示为5.245×106.故答案为:5.245×106.12.(3分)在函数y=中,自变量x的取值范围是x≠3.【解答】解:根据题意知3﹣x≠0,解得:x≠3,故答案为:x≠3.13.(3分)计算:﹣=.【解答】解:原式=2﹣=.故答案为:.14.(3分)分解因式:a2y﹣4y=y(a+2)(a﹣2).【解答】解:a2y﹣4y,=y(a2﹣4),=y(a+2)(a﹣2).故答案为:y(a+2)(a﹣2).15.(3分)不等式组的解集是<x<2.【解答】解:由①,得x<2,由②,得x>,故原不等式组的解集是,故答案为:<x<2.16.(3分)一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是.【解答】解:如图:,共30种情况,摸出两个白球的情况有2种,摸出两个球为白球的概率为:=.故答案为:.17.(3分)如图,将长为14cm的铁丝AB首尾相接围成半径为2cm的扇形,则S扇形等于10cm2.【解答】解:由题意知,弧长=14﹣2×2=10cm,扇形的面积是×10×2=10cm2,故答案为:10.18.(3分)某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下调的百分率是40%.【解答】解:设平均每次下调的百分率为x,依题意得250(1﹣x)2=90,(1﹣x)2=,1﹣x=±,x1=40%,x2=160%(舍去).答:平均每次下调的百分率为40%.故答案为:40%.19.(3分)已知:等腰三角形ABC的面积为30m2,AB=AC=10m,则底边BC的长度为2或6.【解答】解:作CD⊥AB于D,则∠ADC=∠BDC=90°,△ABC的面积=AB•CD=×10×CD=30,解得:CD=6,∴AD==8m;分两种情况:①等腰△ABC为锐角三角形时,如图1所示:BD=AB﹣AD=2m,∴BC==2;②等腰△ABC为钝角三角形时,如图2所示:BD=AB+AD=18m,∴BC==6;综上所述:BC的长为2或6.故答案为:2或6.20.(3分)如图,将正方形ABCD沿直线MN折叠,使B点落在CD边上,AB 边折叠后与AD边交于F,若三角形DEF与三角形ECM的周长差为3,则DE的长为3.【解答】解:作BH⊥EG于H,连接BF、BE,由翻折变换的性质可知,MB=ME,∴∠MBE=∠MEB,∴∠ABE=∠FEB,∵AB∥CD,∴∠ABE=∠BEC,∴∠FEB=∠BEC,在△BHE和△BCE中,,∴△BHE≌△BCE,∴EH=EC,BH=BC,在Rt△BAF和RT△BHF中,,∴Rt△BAF≌RT△BHF,∴FA=FH,三角形DEF的周长﹣三角形ECM的周长=DE+DF+EF﹣(EC+CM+EM)=DE+DF+AF+EC﹣(EC+CM+BM)=DE+AD+EC﹣EC﹣BC=DE=3,故答案为:3.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共60分)21.(6分)先化简,再求代数式的值:,其中a=tan60°﹣2sin30°.【解答】解:原式=.(2分)当a=tan60°﹣2sin30°=﹣2×=时,(2分)原式=.(1分)22.(6分)如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)猜想:∠OAB的度数为多少?并说明理由.【解答】解:(1)如图所示,△OA1B1即为所求;(2)如图所示△OA2B2即为所求;(3)∠OAB=45°,理由:∵A1(﹣3,6),A(6,3)∴OA=OA1=3,又∵∠AOA1=90°,∴△A1AO为等腰直角三角形,∴∠OAB=45°.23.(6分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.24.(6分)如图,△ABC中,AB=AC,∠BAC=90°,E、G为AC上两点,且AE=CG,△CDG沿直线BC翻折到△CDF,连结AF交BC于Q,(1)求证:AF⊥BE;(2)若AE=EG,D为BC中点,求tan∠DAQ.【解答】解:(1)如图1所示:记AF与BE的交点为O.∵△ABC中,AB=AC,∠BAC=90°,∴∠ACB=45°.∵由翻折的性质可知:∠DCF=∠DCG=45°,CF=GC,∴∠GCF=90°.∵FC=AE,CF=GC,∴AE=CF.在△BAE和△ACF中,,∴△BAE≌△ACF.∴∠FAC=∠EBA.∵∠AEB+∠EBA=90°,∴∠AEB+∠FAC=90°.∴∠AOE=90°.∴AF⊥BE.(2)如图2所示:记GF与BC的交点为O,过点F作FH⊥AD,垂足为H.∵D是BC的中点,AB=AC,∴AD⊥CB,∠DAC=∠DAB=45°.∴AC=AD,DC=AD.∵AE=EG=GC,∴FC=GC=.由翻折的性质可知:GC⊥DC,∠OCF=45°.∴OC=OF=FC=AD=AD.∴AH=AD+AD=AD,FH=DO=CD﹣CO=AD﹣AD=AD.∴tan∠DAQ===.25.(8分)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元,购买两种球共100个,则该专卖店最多购买多少个篮球.【解答】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,答:该专卖店最多购买35个篮球.26.(8分)已知AB为⊙O的直径,C为⊙O上一点,AF垂直过C点的切线,垂足为F,连接AC、BC.(1)求证:∠FAC=∠BAC;(2)过F点作FD⊥AC交AB于D,过D点作DE⊥FD交FC延长线于E,求证:CF=CE;(3)在(2)的条件下,延长FA交⊙O于H,连接OE,若CD=2,AH=3,求OE 的长.【解答】(1)证明:连结OC,如图(1),∵FC为切线,∴OC⊥FC,∵CF⊥AF,∴AF∥OC,∴∠OCA=∠FAC,∵OC=OA,∴∠OCA=∠OAC,∴∠FAC=∠BAC;(2)证明:如图(2),∵FD⊥AC,∠FAC=∠BAC,∴AC平分FD,即AC垂直平分DF,∴CF=CD,∴∠CFD=∠CDF,∵FD⊥DE,∴∠EFD+∠E=90°,∠CDF+∠CDE=90°,∴∠CDE=∠E,∴CD=CE,∴CF=CE;(3)连结OC,如图(3),∵CF=CE=CD,∴CF=CE=2,∵CF为切线,FH为割线,∴FC2=FA•FH,即22=FA(FA+3),解得FA=1或FA=﹣4(舍去),∵AC垂直平分DF,∴AF=AD=1,CF=CD,∴∠AFD=∠ADF,∠CFD=∠CDF,∴∠ADF+∠CDF=∠AFD+∠CFD=90°,∴CD⊥AB,∵AB为直径,∴∠ACB=90°,即∠ACD+∠BCD=90°,∵∠ACD+∠CAD=90°,∴∠CAD=∠BCD,∴Rt△ADC∽Rt△CDB,∴AD:CD=CD:BD,即1:2=2:BD,解得BD=4,∴AB=AD+BD=5,∴OC=,∵OC⊥CE,∴在Rt△OCE中,OE===.27.(10分)抛物线y=ax2+bx﹣8与x轴交于A、B,与y轴交于C,D为抛物线的顶点,AB=2,D点的横坐标为3.(1)求抛物线的解析式;(2)若H为射线DA与y轴的交点,N为射线AB上一点,设N点的横坐标为t,△DHN的面积为S,求S与t的函数关系式;(3)在(2)的条件下,G为线段DH上一点,过G作y轴的平行线交抛物线于F,Q为抛物线上一点,连接GN、NQ、AF、GF,若NG=NQ,NG⊥NQ,且∠AGN=∠FAG,求GF的长.【解答】解:(1)∵抛物线y=ax2+bx﹣8与x轴交于A、B,与y轴交于C,D为抛物线的顶点,AB=2,D 点的横坐标为3, ∴A (2,0),B (4,0), ∴,解得,∴抛物线解析式为y=﹣x 2+6x ﹣8;(2)如图1中,连接OD .抛物线顶点D 坐标(3,1),H (0,﹣2).∵S=S △OND +S △ONH ﹣S △OHD =×t ×1+×t ×2﹣×2×3=t ﹣3. ∴S=x ﹣3;(3)如图2中,延长FG 交OB 于M .∵OH=OA ,∴∠OAH=∠OHA=45°, ∵FM ∥OH ,∴∠MGA=∠OHA=∠MAG=45°, ∴MG=MA , ∵∠FAG=∠NGA , ∴∠MAF=∠MGN ,,∴△MAF ≌△MGB , ∴FM=BM .设M (m ,0), ∴﹣(﹣m 2+6m ﹣8)=4﹣m , 解得m=1或4(舍弃), ∴FM=3,MG=1, ∴GF=FM ﹣MG=2.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
黑龙江省哈尔滨市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·重庆期中) 方程(x-1)2=16的解是()A . x1=5,x2=-3B . x1=-5,x2=4C . x1=17,x2=-15D . x1=5,x2=-52. (2分)用配方法把代数式x2-4x+5变形,所得结果是()A . (x-2)2+1B . (x-2)2-9C . (x+2)2-1D . (x+2)2-53. (2分)(2018·福田模拟) 下列平面图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A . (1,﹣5)B . (3,﹣13)C . (2,﹣8)D . (4,﹣20)5. (2分) (2016九上·萧山期中) 在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图像可能是()A .B .C .D .6. (2分)(2017·濉溪模拟) 方程x2=3x的解为()A . x=3B . x=0C . x1=0,x2=﹣3D . x1=0,x2=37. (2分) (2017九上·满洲里期末) 如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B 的对应点D恰好落在BC边上.若AB=1,∠B=60°,则CD的长为()A . 0.5B . 1.5C .D . 18. (2分) (2016九上·路南期中) 把方程x2﹣8x+3=0配方成如下的形式,则正确是()A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=199. (2分)近年来,欧债危机严重影响了世界经济,受欧债危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A . 200(1+a%)2=148B . 200(1-a%)2=148C . 200(1-2a%)=148D . 200(1-a2%)=14810. (2分)(2018·巴中) 一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A . 此抛物线的解析式是y=﹣ x2+3.5B . 篮圈中心的坐标是(4,3.05)C . 此抛物线的顶点坐标是(3.5,0)D . 篮球出手时离地面的高度是2m二、填空题 (共6题;共7分)11. (1分) (2019九上·南关期末) 如果关于x的方程x2-x+k=0(k为常数)有两个相等的实数根,那么k=________.12. (1分) (2017九上·柳江期中) 已知方程5x2+kx﹣10=0的一个根是﹣5,则它的另一个根是________.13. (1分) (2016九上·溧水期末) 如图是某拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为________米.14. (1分) (2017七上·瑞安期中) 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是________.15. (2分)(2019·天台模拟) 在矩形ABCD中,AB=3,BC=4,点E、F分别在BC与CD上,且∠EAF=45°.如图甲,若EA=EF,则EF=________;如图乙,若CE=CF,则EF=________.16. (1分) (2017八下·福州期末) 若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=________.三、解答题 (共8题;共95分)17. (10分)解方程:(1) x2﹣2x﹣5=0;(2)(2x+1)2=3(2x+1)18. (10分) (2019七下·丰县月考) 如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图1中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图2,MN与CD相交于点E,求∠CEN 的度数;(2)将图1中的三角尺OMN绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,求在第几秒时,边MN恰好与边CD平行?(友情提醒:先画出符合题意的图形,然后再探究)19. (10分)手机下载一个APP,缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行…最近的网红非“共享单车”莫属.共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、大卸八块等毁坏单车的行为也层出不穷.某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.(1)一月份该公司投入市场的自行车至少有多少辆?(2)二月份的损坏率达到20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为引起了一场国民素质的大讨论,三月份的损坏率下降 a%,三月底可使用的自行车达到7752辆,求a的值.20. (15分) (2017九上·顺义月考) 如图,用一段长30米的篱笆围成一个一边靠墙(墙的长度为20米)的矩形鸡场ABCD,设BC边长为x米,鸡场的面积为y平方米.(1)求y与x的函数关系式;(2)写出其二次项、一次项、常数项;(3)写出自变量x的取值范围.21. (10分) (2016九上·临海期末) 已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2) 0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.22. (10分) (2020八上·长兴期末) 如图,已知AC平分∠BAD,CE⊥AB于点E,CF⊥AD于点F,且BC=CD。
黑龙江省哈尔滨市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选。
(共10题;共20分)1. (2分)(2016·南通) 下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A . 4个B . 3个C . 2个D . 1个2. (2分) (2020八下·射阳期中) 定义新运算,,若a、b是方程()的两根,则的值为()A . 0B . 1C . 2D . 与m有关3. (2分)将二次函数y=x2﹣1的图象向右平移一个单位,向下平移2个单位得到()A . y=(x﹣1)2+1B . y=(x+1)2+1C . y=(x﹣1)2﹣3D . y=(x+1)2+34. (2分)用配方法解一元二次方程时,此方程可变形为()A .B .C .D .5. (2分) (2019九上·合肥月考) 共享单车为市民出行带来了方便,某单车公式第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A . y=a(1+x)2B . y=a(1﹣x)2C . y=(1﹣x)2+aD . y=x2+a6. (2分) (2015九上·新泰竞赛) 如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB 方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿QC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()A .B . 2C .D . 37. (2分) (2018九上·卢龙期中) (-1,y1),(2,y2)与(3,y3)为二次函数y=-x2-4x+5图象上的三点,则y1 , y2 , y3的大小关系是()A .B .C .D .8. (2分) (2017七下·港南期末) 如图所示的直角三角形ABC向右翻滚,下列说法:(1)①到②是旋转;(2)①到③是平移;(3)①到④是平移;(4)②到③是旋转,其中正确的有()A . 1个B . 2个C . 3个D . 4个9. (2分) (2018九上·绍兴月考) 下列图形中阴影部分的面积相等的有()A . ①②B . ②③C . ③④D . ①④10. (2分)(2020·滨湖模拟) 二次函数的图象如图所示,对称轴是直线 .下列结论:① ;② ;③ ;④ ( 为实数).其中结论正确的个数为()A . 1个B . 2个C . 3个D . 4个二、细心填一填。
2016-2017学年某某省某某156中九年级(上)期中数学试卷一、选择题(每小题3分,共计30分)1.在3,﹣l,0,π 这四个数中,最大的数是()A.3 B.﹣1 C.0 D.π2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x73.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.5.下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等6.反比例函数y=﹣的图象经过点(﹣2,3),则k的值为()A.3 B.﹣6 C.6 D.﹣37.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣18.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.9.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个二、填空题((每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是千米.12.使分式有意义的x的取值X围是.13.计算:﹣=.14.把多项式ax2+2ax+a分解因式的结果是.15.二次函数y=x2+2x﹣7的对称轴是直线.16.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.17.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC=.18.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).19.在矩形ABCD中,AD=10,AB=8,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为G,则∠ABG的正切值是.20.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC为边在△ABC外作等边△ACD,则BD的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.22.如图的方格纸中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图中画出以AB为边的钝角三角形ABC,使点C在格点上,并且在直线AB的上方,满足tan∠BAC=,且△ABC的面积为9;(2)以AC为斜边画Rt△ACD,使D点在AC上方,且满足tan∠ACD=2;(3)直接写出线段CD的长.23.小林初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,每位同学只能报重高、普高、职高中的一种.她通过采集数据绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把条形统计图补充完整;(3)如果小林所在年级共有260名学生,请你估计该年级报考普高的学生人数.24.兴趣小组在一次数学实践活动中,为了测量如图所示的小山顶的塔高,进行了如下的操作,首先在A处测得塔尖D的仰角为30°,然后沿AC方向前进72米到达山脚B处,此时测得塔尖D的仰角为60°,塔底E的仰角为45°,求塔高.(结果保留根号)25.某某市政府大力扶持大学生创业.李民在政府的扶持下投资销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定销售利润率不能超过80%.(1)如果李民想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设李民每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?26.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB 于点F;过D作⊙O的切线,交CA延长线于点E.(1)求证:AB∥DE;(2)写出AC、CD、BC之间的数量关系,并加以证明.(3)若tan∠B=,DF=5,求DE的长.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,与y轴交于点C,过B、C两点的直线解析式为y=﹣x+b.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,过点P作PD⊥BC于点D,垂足为点D.设P 点的横坐标为t,线段PD的长为d,求d与t的函数关系.(3)过A作射线AQ,交抛物线的对称轴于点M,点N是x轴正半轴上B点右侧一点;BN的垂直平分线交射线AQ于点G,点G关于x轴的对称点恰好在抛物线上.若=,求当(2)中的d最大时直线PN与x轴所夹锐角的正切值.2016-2017学年某某省某某156中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.在3,﹣l,0,π 这四个数中,最大的数是()A.3 B.﹣1 C.0 D.π【考点】实数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<3<π,∴在3,﹣1,0,π这四个数中,最大的数是π.故选D.2.下列运算正确的是()A.2x2•x3=2x5B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x7【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.【解答】解:A、2x2•x3=2x5,故本选项正确;B、应为(x﹣2)2=x2﹣4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.3.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选C.4.在Rt△ABC中,∠C为直角,AC=6,BC=8,则sinA=()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】首先利用勾股定理求得AB的长,然后利用正弦函数的定义即可求解.【解答】解:AB===10,则sinA===.故选D.5.下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】三角形的内切圆与内心;确定圆的条件;切线的判定.【分析】根据确定圆的条件、三角形内心和外心以及切线的判定定理即可进行判断.【解答】解:A、在同一直线上的三点不能确定一个圆,所以A选项错误;B、经过圆心的直线是圆的对称轴,所以B选项正确;C、经过半径的外端点,且垂直于半径的直线是圆的切线,所以C选项错误;D、三角形的外心到三角形三个顶点距离相等,所以D选项错误.故选B.6.反比例函数y=﹣的图象经过点(﹣2,3),则k的值为()A.3 B.﹣6 C.6 D.﹣3【考点】反比例函数图象上点的坐标特征.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:∵反比例函数y=﹣的图象经过点(﹣2,3),∴﹣2k=﹣2×3=﹣6,∴k=3,故选A.7.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2+2的顶点坐标为(0,2),根据点平移的规律得到点(0,2)平移后得到对应点的坐标为(﹣1,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),把点(0,2)先向下平移1个单位,再向左平移1个单位得到对应点的坐标为(﹣1,1),所以所得新抛物线的解析式为y=(x+1)2+1.故选B.8.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【解答】解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A、三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.9.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+,则下列结论:(1)柱子OA的高度为m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的应用.【分析】在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题.【解答】解:当x=0时,y=,故柱子OA的高度为m;(1)正确;∵y=﹣x2+2x+=﹣(x﹣1)2+2.25,∴顶点是(1,2.25),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是2.25米;故(2)正确,(3)错误;解方程﹣x2+2x+=0,得x1=﹣,x2=,故水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外,(4)正确.故选:C.二、填空题((每小题3分,共计30分)11.太阳的半径约是69000千米,用科学记数法表示约是×104千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×104,×104.12.使分式有意义的x的取值X围是x≠﹣.【考点】分式有意义的条件.【分析】根据分式有意义的条件可知2x+1≠0,再解不等式即可.【解答】解:由题意得:2x+1≠0,解得:x≠﹣,故答案为:x≠﹣13.计算:﹣=.【考点】实数的运算.【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=﹣2=﹣.故答案为:﹣.14.把多项式ax2+2ax+a分解因式的结果是a(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,再利用完全平方公式分解因式得出答案.【解答】解:ax2+2ax+a=a(x2+2x+1)=a(x+1)2.故答案为:a(x+1)2.15.二次函数y=x2+2x﹣7的对称轴是直线x=﹣1 .【考点】二次函数的性质.【分析】把函数解析式化为顶点式可求得其对称轴.【解答】解:∵y=x2+2x﹣7=(x+1)2﹣8,∴抛物线对称轴为x=﹣1,故答案为:x=﹣1.16.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5 .【考点】概率的意义.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5,故答案为:0.5.17.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC=.【考点】圆周角定理;坐标与图形性质;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,故答案为:.18.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C在OA上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).【考点】扇形面积的计算;弧长的计算.【分析】首先要明确S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF,然后依面积公式计算即可.【解答】解:连接OF,∵∠AOD=45°,四边形CDEF是正方形,∴OD=CD=DE=EF,于是Rt△OFE中,OE=2EF,∵OF=,EF2+OE2=OF2,∴EF2+(2EF)2=5,解得:EF=1,∴EF=OD=CD=1,∴S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF=﹣×1×1﹣1×1=.19.在矩形ABCD中,AD=10,AB=8,点E、F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为G,则∠ABG的正切值是或.【考点】解直角三角形;菱形的性质;矩形的性质.【分析】两种情况:①由矩形的性质得出CD=AB=8,BC=AD=10,∠ADB=∠CDF=90°,由菱形的性质得出CF=EF=BE=BC=10,由勾股定理求出DF,得出GF,即可求出AG;②同①得出AE=6,求出GE,即可得出AG的长,然后解直角三角形即可求得.【解答】解:分两种情况:①如图1所示:∵四边形ABCD是矩形,∴CD=AB=8,BC=AD=10,∠ADC=∠CDF=90°,∵四边形BCFE为菱形,∴CF=EF=BE=BC=10,∴DF==6,∴AF=AD+DF=16,∵G是EF的中点,∴GF=EF=5,∴AG=AF﹣DF=16﹣5=11,∴tan∠ABG==;②如图2所示:同①得:AE=6,∵G是EF的中点,∴GE=5,∴AG=AE﹣GE=1,∴tan∠ABG==;故答案为:或.20.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,以AC为边在△ABC外作等边△ACD,则BD的长为14 .【考点】勾股定理;等边三角形的性质.【分析】以AB为边作等边三角形AEB,连接CE,如图所示,由三角形ABE与三角形ACD都为等边三角形,利用等边三角形的性质得到AE=AB,AD=AC,且∠EAB=∠DAC=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EAC与三角形BAD全等,利用余弦定理求出EC的长就是BD的长.【解答】解:以AB为边作等边三角形AEB,连接CE,如图所示,∵△ABE与△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△EAC和△BAD中,,∴△EAC≌△BAD(SAS),∴BD=EC,∵∠EBA=60°,∠ABC=60°,∴∠EBC=120°,在△EBC中,BC=10,EB=6,过点E做BC的垂线交BC于点F,则∠EBF=60°,∠FEB=30°,∴EF=3,FB=3,FC=10+3=13,∴EC2=FC2+EF2=196,∴BD=EC=14.故答案为:14.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21.先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】分别化简代数式和x的值,代入计算.【解答】解:原式=.∵x=4sin45°﹣2cos60°==2﹣1,∴原式===.22.如图的方格纸中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图中画出以AB为边的钝角三角形ABC,使点C在格点上,并且在直线AB的上方,满足tan∠BAC=,且△ABC的面积为9;(2)以AC为斜边画Rt△ACD,使D点在AC上方,且满足tan∠ACD=2;(3)直接写出线段CD的长.【考点】作图—应用与设计作图;勾股定理.【分析】(1)根据钝角三角形ABC,满足tan∠BAC=,且△ABC的面积为9进行作图;(2)根据Rt△ACD,满足tan∠ACD=2进行画图即可;(3)根据勾股定理求得线段CD的长.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△ADC即为所求;(3)如图所示,CD==.23.小林初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,每位同学只能报重高、普高、职高中的一种.她通过采集数据绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把条形统计图补充完整;(3)如果小林所在年级共有260名学生,请你估计该年级报考普高的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用重高人数除以重高人数所占的百分比即可得到该班人数;(2)用全班人数减去重高和职高的人数,求出普高的人数,然后补全条形统计图;(3)利用样本估计总体,用260乘以普高所占的百分比,即可得出答案.【解答】解:(1)根据题意得:25÷62.5%=40(人),答:该班的总人数是40人;(2)普高的人数是:40﹣25﹣5=10(人);补图如下:(3)根据题意得:260×=65(人),答:该年级报考普高的学生人数有65人.24.兴趣小组在一次数学实践活动中,为了测量如图所示的小山顶的塔高,进行了如下的操作,首先在A处测得塔尖D的仰角为30°,然后沿AC方向前进72米到达山脚B处,此时测得塔尖D的仰角为60°,塔底E的仰角为45°,求塔高.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】先由三角形外角的性质求出∠ADB=∠CBD﹣∠BAD=60°﹣30°=30°=∠BAD,根据等角对等边得出BD=AB=72米,再解Rt△BCD,得出BC=BD•cos60°=36,CD=BD•sin60°=36,解Rt△BCE,得出CE=BC=36,于是塔高DE=CD﹣EC=36﹣36.【解答】解:∵∠ADB=∠CBD﹣∠BAD=60°﹣30°=30°=∠BAD,∴BD=AB=72米.在Rt△BCD中,∵∠BCD=90°,∠DBC=60°,∴BC=BD•cos60°=72×=36,CD=BD•sin60°=72×=36.在Rt△BCE中,∵∠BCE=90°,∠EBC=45°,∴CE=BC=36,∴塔高DE=CD﹣EC=36﹣36.答:塔高DE为(36﹣36)米.25.某某市政府大力扶持大学生创业.李民在政府的扶持下投资销售一种进价为每件20元的护眼灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=﹣10x+500.物价部门规定销售利润率不能超过80%.(1)如果李民想要每月获得2000元的利润,那么销售单价应定为多少元?(2)设李民每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润为多少元?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以得关于x的一元二次方程,从而可以解答本题,注意价部门规定销售利润率不能超过80%;(2)根据题意可以写出w关于x的函数关系式,从而可以求得函数的最大值,本题得以解决.【解答】解:(1)设销售单价定为x元,(x﹣20)(﹣10x+500)=2000,解得,x1=30,x2=40,∵x≤20+20×80%=36,∴x=30,即如果李民想要每月获得2000元的利润,那么销售单价应定为30元;(2)由题意可得,w=(x﹣20)(﹣10x+500)=﹣10(x﹣35)2+2250,∵20≤x≤36,∴当x=35时,w取得最大值,此时w=2250,即当销售单价定为35元时,每月可获得最大利润,最大利润为2250元.26.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,交AB 于点F;过D作⊙O的切线,交CA延长线于点E.(1)求证:AB∥DE;(2)写出AC、CD、BC之间的数量关系AC+BC=CD ,并加以证明.(3)若tan∠B=,DF=5,求DE的长.【考点】圆的综合题.【分析】(1)连接BD.根据直径所对的圆周角是90°,可知:∠ACB=90°,从而可求得∠ABD=∠ACD=∠DCB=45°由弦切角定理可知:∠CDE=∠CBA+45°,由三角形外角的性质可知∠CFA=∠CBA+45°,故此∠AFC=∠EDC,从而可证明AB∥ED,(2)先根据角平分线的性质定理得出DG=DM,CM=CG,进而得出CG=CD再判断出Rt△ADG ≌Rt△BDM,最后等量代换即可;(3)先根据三角函数得出BC=2x,AB=x,再用角平分线定理得出AF和BF,借助(2)结论得出CF,CD,进而用相交弦定理建立方程求出x,最后用平行线分线段成比例定理得出DE.【解答】解:(1)如图1,∵AB是圆O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠DCB=45°.∴∠ABD=∠ACD=45°.由弦切角定理可知:∠CDE=∠CBD=∠CBA+∠ABD=∠CBA+45°.∵∠CFA=∠FCB+∠CBA=∠CBA+45°,∴∠AFC=∠EDC.∴AB∥ED,(2)AC+BC=CD理由:如图2,连接BD,AD,过点D作DG⊥AC,DM⊥BM,∵∠ACD=∠BCD,∴DG=DM,CM=CG由(1)知,AB∥DE,且DE是⊙O的切线,∴点D是半圆的中点,∵AB是直径,∴AD=BD,在Rt△ADG和Rt△BDM中,,∴Rt△ADG≌Rt△BDM,∴AG=BM,在Rt△CDG中,∠DCG=45°,∴CD=CG,∴CG=CD∴AC+BC=AC+CM+BM=AC+CM+AG=CM+CG=2CG=CD;即:AC+BC=CD故答案为:AC+BC=CD(3)设AC=x,∵tan∠B==,∴BC=2x,∴AB=x,∵CD平分∠ACB,∴=,∴AF=x,BF=x,由(2)知,CD=AC+BC=3x,∴CD=x,∵DF=5,∴CF=CD﹣DF=x﹣5,根据相交弦定理得,DF×CF=AF×BF,∴5(x﹣5)=x•x,∴x=6或x=,当x=6时,AF=2,BF=4,CD=9,CF=4,∵AB∥DE,∴,∴,∴DE=,当x=,AF=,CF=,CD=,∵AB∥DE,∴,∴,∴DE=.即:DE的长为.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax+3与x轴交于A、B两点,与y轴交于点C,过B、C两点的直线解析式为y=﹣x+b.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,过点P作PD⊥BC于点D,垂足为点D.设P 点的横坐标为t,线段PD的长为d,求d与t的函数关系.(3)过A作射线AQ,交抛物线的对称轴于点M,点N是x轴正半轴上B点右侧一点;BN的垂直平分线交射线AQ于点G,点G关于x轴的对称点恰好在抛物线上.若=,求当(2)中的d最大时直线PN与x轴所夹锐角的正切值.【考点】二次函数综合题.【分析】(1)利用抛物线的解析式求出点C坐标,即可求出b,推出点A、B两点坐标,利用待定系数法即可求出a.(2)如图1中,作PE⊥AB于F,交BC于E.设P(t,﹣t2+2t+3),则E(t,﹣t+3).首先证明△PDE是等腰直角三角形,推出PD=PE,由此即可解决问题.(3)如图2中,设BN的垂直平分线交x轴于H,抛物线的对称轴交x轴于D,作ML⊥GH 于L.首先证明cos∠GML=cos∠GAH=,由AH=GH,列出方程即可解决问题.【解答】解:(1)∵抛物线y=ax2﹣2ax+3与y轴交于点C,∴C(0,3)∵直线解析式为y=﹣x+b过B、C.∴C(0,b),B(b,0),∴b=3,∴B(3,0),∵抛物线的对称轴为x=1,A、B关于对称轴对称,∴A(﹣1,0),把A(﹣1,0)代入抛物线的解析式3a+3=0,∴a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1中,作PE⊥AB于F,交BC于E.设P(t,﹣t2+2t+3),则E(t,﹣t+3).∵OC=OB=3,∠COB=90°,∴∠COB=∠EFB=90°,∴∠FEB=∠PED=45°,∴d=PD=PE=(﹣t2+2t+3+t﹣3)=﹣t2+t.(0<t<3).∴d=﹣t2+t.(0<t<3).(3)如图2中,设BN的垂直平分线交x轴于H,抛物线的对称轴交x轴于D,作ML⊥GH 于L.∵GM:AN=5:8,设GM=5k,AN=8k,∵AB=4,BD=2,∴BN=8k﹣4,BH=4k﹣2,DH=DB+BH=4k,∴cos∠GML==,∵ML∥AH,∴∠GML=∠GAH,∴cos∠GAH=,∴AH=GH,设G点横坐标为m,∵点G关于x轴的对称点恰好在抛物线上,∴G(m,m2﹣2m﹣3),∴(m+1)=m2﹣2m﹣3,解得m=或﹣1(舍弃),∴点H(,0),N(,0).∵d=﹣t2+t=﹣(t﹣)2+,∵﹣<0,∴t=时,d有最大值,此时P(,),∴此时直线PN与x轴所夹锐角的正切值==.。
黑龙江省哈尔滨2017届九年级(上)段考数学试卷(9月份)(五四学制)(解析版)一、选择题1.﹣3的倒数是()A.3 B.﹣3 C.﹣ D.2.下列计算正确的是()A.﹣()﹣2=9 B.(﹣2a3)2=4a6C.=﹣2 D.a6÷a3=a23.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如果反比例函数y=的图象经过点(﹣2,﹣3),则k的值是()A.7 B.5 C.﹣6 D.65.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.6.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2 7.如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=8.如图,将矩形纸片ABCD沿EF折叠(E、F分别是AD、BC上的点),使点B 与四边形CDEF内一点B′重合,若∠B′FC=50°,则∠AEF等于()A.110°B.115°C.120° D.130°9.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°10.我市某县在实施“村村通”工程中,决定在A、B两村之间修筑一条公路,甲、乙两个工程队分别从A、B两村同时相向开始修筑.乙队修筑了840米后,因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.两队开工8天时,所修道路的长度都为560米,甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的关系图象如图所示.下列说法:①乙工程队每天修路70米;②甲工程队后12天中每天修路50米;③该公路全长1640米;④若乙工程队不提前离开,则两队只需要13天就能完成任务,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题11.将数字1270000000用科学记数法可表示为.12.函数y=中,自变量x的取值范围是.13.计算﹣3的结果是.14.分解因式:2ab2+4ab+2a=.15.不等式组的解集是.16.在Rt△ABC中,∠C=90°,AC=6,BC=8,则sinA的值为.17.某果园2014年水果产量为100吨,2016年水果产量为144吨,设该果园水果产量的年平均增长率为x%.则x=.18.二次函数y=x2﹣2x+3的最小值是.19.在Rt△ABC中,∠ACB=90°,tan∠CAB=,AB=10,点P在直线AB上,PB=6,则PC=.20.在Rt△ABC中,∠ACB=90°,∠A=30°,D为AB上一点,DC=DE交CB的延长线上于点E,若AD=7,BE=2,则∠BDE的正切值为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分)21.(7分)先化简,再求值:÷(x﹣),其中x=2sin60°+2cos60°.22.(7分)如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求线段BB2的长.23.(8分)随着春季的到来,我国北方地区又进入了火灾多发季节.为此,某校在全校1200名学生中随机抽取一部分人进行“安全防火,警钟长鸣”知识问卷调查活动.对问卷调查成绩按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了如图扇形统计图和条形统计图.(1)本次活动共抽取了多少名同学?(2)补全条形统计图;(3)根据以上调查结果分析,估计该校1200名学生中,对“安全防火”知识了解较差的学生约有多少名.24.(8分)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.25.(10分)中小学标准化建设工程中,学校计划购进一批电脑和电子白板.经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元:(2)根据学校实际,需购进电脑和电子白板共30台,如果总费用不超过30万元,那么至少购进电脑多少台?26.(10分)已知:正方形ABCD中,E为BC延长线上一点,BG⊥DE于点G,交DC于F,连接GC.(1)求证:BF=DE;(2)求∠CGE的度数;(3)已知:DG=2,GE=3,求线段AG的长.27.(10分)直线y=﹣x+8交x轴于A,交y轴于B,经过O、A两点的抛物线y=ax2+bx交直线AB于另外一点C,且点C的横坐标为2.(1)求抛物线的解析式;(2)M为直线AC上方抛物线上一点,MD∥OC交AC于D,设MD=d,求d与点M的横坐标t之间的函数关系式;(3)在(2)的条件下,当d最大值,抛物线上是否存在点R使得∠MCO+∠MCR=180°,若存在,求点R的坐标,若不存在,请说明理由.2016-2017学年黑龙江省哈尔滨九年级(上)段考数学试卷(9月份)(五四学制)参考答案与试题解析一、选择题1.﹣3的倒数是()A.3 B.﹣3 C.﹣ D.【考点】倒数.【分析】根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选C.【点评】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.﹣()﹣2=9 B.(﹣2a3)2=4a6C.=﹣2 D.a6÷a3=a2【考点】同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,积的乘方等于乘方的积,算术平方根是非负数,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、﹣(﹣)﹣2=﹣(﹣3)2=﹣9,故A错误;B、积的乘方等于乘方的积,故B正确;C、算术平方根是非负数,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项错误,C、是轴对称图形,不是中心对称图形,故此选项错误,D、既是轴对称图形,又是中心对称图形,故此选项正确,故选:D.【点评】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合,难度适中.4.如果反比例函数y=的图象经过点(﹣2,﹣3),则k的值是()A.7 B.5 C.﹣6 D.6【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣2,﹣3)代入反比例函数y=即可得出k的值.【解答】解:∵反比例函数y=的图象经过点(﹣2,﹣3),∴﹣3=,解得k=7.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于俯视图为三角形.主视图为两个长方形和左视图为长方形可得此几何体为三棱柱.故选:A.【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.6.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2【考点】二次函数图象与几何变换.【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选:A.【点评】本题考查了二次函数图象与几何变换,函数图象右移减、左移加,上移加、下移减是解题关键.7.如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.= C.= D.=【考点】平行线分线段成比例.【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【解答】解:∵AB∥CD∥EF,∴,∴A选项正确,故选A.【点评】本题考查平行线分线段成比例定理,找准对应关系是解题的关键.8.如图,将矩形纸片ABCD沿EF折叠(E、F分别是AD、BC上的点),使点B 与四边形CDEF内一点B′重合,若∠B′FC=50°,则∠AEF等于()A.110°B.115°C.120° D.130°【考点】平行线的性质;翻折变换(折叠问题).【分析】先根据平角的性质及折叠的性质可求出∠EFB′的度数,再根据平行线的性质解答即可.【解答】解:∵四边形A′EFB′是四边形ABFE折叠而成,∴∠BFE=∠EFB′,∵∠B'FC=50°,∴∠EFB===65°,∵AD∥BC,∴∠AEF=180°﹣∠EFB=115°.故选B.【点评】本题考查的是折叠的性质及平行线的性质:(1)折叠的性质:图形折叠后与原图形完全重合;(2)平行线的性质:两直线平行,同旁内角互补.9.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.【点评】此题主要考查了旋转的性质,关键是熟练掌握旋转前、后的图形全等,进而可得到一些对应角相等.10.我市某县在实施“村村通”工程中,决定在A、B两村之间修筑一条公路,甲、乙两个工程队分别从A、B两村同时相向开始修筑.乙队修筑了840米后,因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.两队开工8天时,所修道路的长度都为560米,甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的关系图象如图所示.下列说法:①乙工程队每天修路70米;②甲工程队后12天中每天修路50米;③该公路全长1640米;④若乙工程队不提前离开,则两队只需要13天就能完成任务,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】根据函数图象可以判断题目中的各种说法是否正确,从而可以解答本题.【解答】解:由图象可得,乙工程队每天修路:560÷8=70米,故①正确;甲工程队后12天每天修路:(560﹣360)÷(8﹣4)=50米,故②正确;该公路全长为:840+360+50×(16﹣4)=840+360+600=1800米,故③错误;若乙工程队不提前离开,则两队需要的时间为:12+(1800﹣840×2)÷(50+70)=13天,故④错误;【点评】本题考查一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答问题.二、填空题11.将数字1270000000用科学记数法可表示为 1.27×109 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:1270000000=1.27×109.故答案为:1.27×109.【点评】此题考查科学记数法表示较大数的方法,准确确定a 与n 值是关键.12.函数y=中,自变量x 的取值范围是 x ≠2 . 【考点】函数自变量的取值范围;分式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x ﹣2≠0,解得:x ≠2.故答案为:x ≠2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.13.计算﹣3的结果是 2 .【考点】二次根式的加减法.【分析】先把各二次根式化为最减二次根式,再合并同类项即可.【解答】解:原式=3﹣故答案为:2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.分解因式:2ab2+4ab+2a=2a(b+1)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取2a,再利用完全平方公式分解即可.【解答】解:原式=2a(b2+2b+1)=2a(b+1)2,故答案为:2a(b+1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.不等式组的解集是x≥2.【考点】解一元一次不等式组.【分析】分别求出不等式组中两个不等式的解集,再求出其公共部分即可.【解答】解:,由①得,x>﹣1由②得,x≥2;∴不等式组的解集为x≥2.故答案为:x≥2.【点评】此题主要考查了解一元一次不等式,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.在Rt△ABC中,∠C=90°,AC=6,BC=8,则sinA的值为.【考点】勾股定理;锐角三角函数的定义.【分析】先利用勾股定理计算出AB的长,然后根据正弦的定义即可求解.【解答】解:∵∠C=90°,AC=6,BC=8,∴AB==10,∴sinA===;故答案为:.【点评】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比.也考查了勾股定理.17.某果园2014年水果产量为100吨,2016年水果产量为144吨,设该果园水果产量的年平均增长率为x%.则x=20.【考点】一元二次方程的应用.【分析】2016年的水果产量=2014年的水果产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:根据题意,得100(1+0.01x)2=144,解这个方程,得x1=20,x2=﹣220.经检验x2=﹣220不符合题意,舍去.故答案为:20.【点评】考查列一元二次方程;得到2016年水果产量的等量关系是解决本题的关键.18.二次函数y=x2﹣2x+3的最小值是2.【考点】二次函数的最值.【分析】把函数的解析式化为顶点式的形式即可解答.【解答】解:∵二次函数y=x2﹣2x+3可化为y=(x﹣1)2+2的形式,∴二次函数y=x2﹣2x+3的最小值是2.【点评】本题由于函数的二次项系数较小,所以可把函数解析式化为顶点式即y=a(x+h)2+k的形式解答.19.在Rt△ABC中,∠ACB=90°,tan∠CAB=,AB=10,点P在直线AB上,PB=6,则PC=.【考点】解直角三角形.【分析】先求出AC,BC,进而求出AP,PD,AD,即可求出CD,最后用勾股定理即可得出结论.【解答】解:如图,过点P作PD⊥AC,在Rt△ABC中,tan∠CAB=,AB=10,∴BC=6,AC=8,∵PB=6,∴AP=4,在Rt△PAD中,tan∠CAB=,AP=4,∴AD=,PD=,∴CD=AC﹣AD=,根据勾股定理得,PC==故答案为,【点评】此题是解直角三角形,主要考查了勾股定理,锐角三角函数,解本题的关键是构造出直角三角形ADP.20.在Rt△ABC中,∠ACB=90°,∠A=30°,D为AB上一点,DC=DE交CB的延长线上于点E,若AD=7,BE=2,则∠BDE的正切值为.【考点】解直角三角形;等腰三角形的性质;含30度角的直角三角形.【分析】先过点D作DF⊥BC与F,作DH⊥AC于H,过点E作EG⊥AB于G,构造含30°角的直角三角形,再根据等腰三角形的性质,求得BF以及DB的长,在Rt△DEG中,根据GE和DG的长即可求得∠BDE的正切值.【解答】解:过点D作DF⊥BC与F,作DH⊥AC于H,过点E作EG⊥AB于G,则∠ABC=∠EBG,∠ACB=∠G=90°,∴∠BEG=∠A=30°,∵BE=2,∴BG=1,GE=,∵AC∥DF,∴∠BFD=∠A=30°,∴DB=2BF,∵Rt△ADH中,∠A=30°,AD=7,∴DH=CF=AD=,∵DC=DE,DF⊥CE,∴CF=EF,即=BF+2,∴BF=,∴DB=3,∴Rt△DEG中,tan∠BDE==.故答案为:.【点评】本题主要考查了解直角三角形和等腰三角形的性质的运用,解决问题的关键是作辅助线构造直角三角形,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分)21.先化简,再求值:÷(x﹣),其中x=2sin60°+2cos60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】首先把括号内的式子通分相减,然后把除法转化成乘法运算,然后计算乘法即可化简,然后对x的值进行化简,最后代入求解即可.【解答】解:原式=÷(﹣)=÷=•=.∵x=2×+2×=+1∴原式==.【点评】本题考查了分式的混合运算,解答此题的关键是把分式化到最简,然后代值计算.22.如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求线段BB2的长.【考点】作图-旋转变换.【分析】(1)利用平移变换的性质得出平移规律进而得出对应点坐标位置即可;(2)利用旋转的性质得出逆时针旋转90°后对应点位置,进而得出答案;(3)直接利用勾股定理得出线段BB2的长即可.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A1B2C2即为所求;(3)如图所示:线段BB2的长为:=2.【点评】此题主要考查了轴对称变换以及旋转变换和勾股定理应用等知识,得出旋转变换后对应点位置是解题关键.23.随着春季的到来,我国北方地区又进入了火灾多发季节.为此,某校在全校1200名学生中随机抽取一部分人进行“安全防火,警钟长鸣”知识问卷调查活动.对问卷调查成绩按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了如图扇形统计图和条形统计图.(1)本次活动共抽取了多少名同学?(2)补全条形统计图;(3)根据以上调查结果分析,估计该校1200名学生中,对“安全防火”知识了解较差的学生约有多少名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用“很好”的人数除以其所占百分比即可得;(2)总人数乘以“较好”所占百分比可得去人数,补全条形图即可;(3)用总人数乘以样本中“较差”所占比例可得.【解答】解:(1)本次活动共抽取同学15÷25%=60(名);(2)“较好”的学生人数为60×50%=30(名),补全条形图如下:(3)1200×=60,答:估计该校1200名学生中,对“安全防火”知识了解较差的学生约有60名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.24.如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.(1)求证:AE=CG;(2)试判断BE和DF的位置关系,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)先证∠AED=∠CGD,再证明△ADE≌△CDG,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB≌△CGD,得出对应角相等∠AEB=∠CGD,得出∠AEB=∠EGF,即可证出平行线.【解答】解:(1)证明:在正方形ABCD中,∵AD=CD,∴∠DAE=∠DCG,∵DE=DG,∴∠DEG=∠DGE,∴∠AED=∠CGD.在△AED和△CGD中,∴△AED≌△CGD(AAS),∴AE=CG.(2)解法一:BE∥DF,理由如下:在正方形ABCD中,AB∥CD,∴∠BAE=∠DCG.在△AEB和△CGD中,∴△AEB≌△CGD(SAS),∴∠AEB=∠CGD.∵∠CGD=∠EGF,∴∠AEB=∠EGF,∴BE∥DF.解法二:BE∥DF,理由如下:在正方形ABCD中,∵AD∥FC,∴=.∵CG=AE,∴AG=CE.又∵在正方形ABCD中,AD=CB,∴=.又∵∠GCF=∠ECB,∴△CGF∽△CEB,∴∠CGF=∠CEB,∴BE∥DF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.25.(10分)(2016秋•哈尔滨校级月考)中小学标准化建设工程中,学校计划购进一批电脑和电子白板.经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元:(2)根据学校实际,需购进电脑和电子白板共30台,如果总费用不超过30万元,那么至少购进电脑多少台?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)先设每台电脑x万元,每台电子白板y万元,根据购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元列出方程组,求出x,y的值即可;(2)先设需购进电脑a台,则购进电子白板(30﹣a)台,根据总费用不超过30万元,列出不等式,求出a的取值范围.【解答】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:解得:,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑a台,则购进电子白板(30﹣a)台,则0.5a+1.5(30﹣a)≤30,解得:a≥15,则至少要购进电脑15台.答:至少要购进电脑15台.【点评】此题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.26.(10分)(2016秋•哈尔滨校级月考)已知:正方形ABCD中,E为BC延长线上一点,BG⊥DE于点G,交DC于F,连接GC.(1)求证:BF=DE;(2)求∠CGE的度数;(3)已知:DG=2,GE=3,求线段AG的长.【考点】正方形的性质.【分析】(1)根据ASA证明△BCG≌△DCE,即可得出结论.(2)如图1中,连接EF.只要证明E、C、F、G四点共圆,即可得∠CGE=∠CFE=45°.(3)如图2中,作GM⊥CD于M,GN⊥AD于N.则四边形GMDN是矩形.设CD=a,CE=b,构建方程组即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形∴BC=DC,∠BCD=90°,∴∠DCE=90°,∴∠CDE+∠E=90°,∵BF⊥DE,∴∠BFE=90°,∴∠CBF+∠E=90°,∴∠CBF=∠CDE,在△BCF和△DCE中∴△BCF≌△DCE(ASA),∴BF=DE;(2)如图1中,连接EF.∵△BCF≌△DCE,∴CF=CE,∴∠CEF=∠CFE=45°,∵∠FCE+∠EGF=180°,∴E、C、F、G四点共圆,∴∠CGE=∠CFE=45°.(3)如图2中,作GM⊥CD于M,GN⊥AD于N.则四边形GMDN是矩形.设CD=a,CE=b,∵∠FDG=∠CDE,∠FGD=∠DCE,∴△DGF∽△DCE,∴=,∴=,∴a(a﹣b)=10 ①∵a2+b2=25 ②由①②可得a=2,b=,∵MG∥CE,∴==,∴MG=ND=,MD=GN=,在Rt△AGN中,AG===4.【点评】本题考查正方形的性质、全等三角形的判定和性质、四点共圆、平行线分线段成比例定理、勾股定理、二元一次方程组等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.27.(10分)(2016秋•哈尔滨校级月考)直线y=﹣x+8交x轴于A,交y轴于B,经过O、A两点的抛物线y=ax2+bx交直线AB于另外一点C,且点C的横坐标为2.(1)求抛物线的解析式;(2)M为直线AC上方抛物线上一点,MD∥OC交AC于D,设MD=d,求d与点M的横坐标t之间的函数关系式;(3)在(2)的条件下,当d最大值,抛物线上是否存在点R使得∠MCO+∠MCR=180°,若存在,求点R的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)如图1,先求直线y=﹣x+8与x轴交点A和与y轴交点B的坐标,根据C的横坐标求出纵坐标;再利用待定系数法求二次函数的解析式;(2)如图2,作辅助线,构建相似三角形,证明△OBC∽△MFD,得,代入化简可得d与点M的横坐标t之间的函数关系式;(3)如图3,先根据∠MCO+∠MCR=180°,找出满足条件的R点,根据两直线平行,同旁内角互补及线段的中垂线上的点到线段两个端点的距离相等,作线段CM的中垂线GH,交DM于H,再作直线CH与抛物线的交点就是所求的点R,再利用待定系数法依次求各直线的解析式,点R是抛物线与直线CH的交点,因此利用两函数解析式列方程组即可求出点R的坐标.【解答】解:(1)如图1,当x=0时,y=8,当y=0时,x=8,∴A(8,0),B(0,8),当x=2时,y=﹣2+8=6,∴C(2,6),把A(8,0),C(2,6)代入y=ax2+bx中得:,解得:,∴y=﹣x2+4x;(2)如图2,过M作ME⊥x轴于E,交直线AB于F,∵OA=OB=8,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠OBA=∠OAB=45°,在Rt△FEA中,∠AFE=45°,∴∠DFM=∠AFE=45°,∴∠OBA=∠DFM=45°,∵DM∥OC,∴∠OCA=∠BDM,∴∠OCB=∠FDM,∴△OBC∽△MFD,∴,∵M在抛物线上,∴M(t,﹣t2+4t),当x=t时,y=﹣t+8,∴EM=﹣t2+4t,EF=﹣t+8,∴FM=EM﹣EF=﹣t2+4t+t﹣8=﹣t2+5t﹣8,由勾股定理得:OC==2,∴=,∴d=﹣+t﹣2;(3)存在,如图3,作线段CM的中垂线GH,交CM于G,交DM于H,作直线CH交抛物线于点R,则CH=HM,∴∠MCR=∠HMC,由(2)知:DM∥OC,∴∠MCO+∠HMC=180°,∴∠MCO+∠MCR=180°,d=﹣(t﹣5)2+,∴当t=5时,d有最大值,当x=5时,y=﹣+4×5=,∴M(5,),设OC的解析式为:y=kx,把C(2,6)代入得:2k=6,k=3,∴OC的解析式为:y=3x,∵OC∥DM,∴设直线DM的解析式为:y=3x+b,把M(5,)代入得:=15+b,b=﹣,∴直线DM的解析式为:y=3x﹣,同理得:直线CM的解析式为:y=x+5,∴设直线GH的解析式为:y=﹣2x+b,∵C(2,6),M(2,),∴G(,),把G(,)代入到y=﹣2x+b中得:b=,∴直线GH的解析式为:y=﹣2x+,则解得,∴H(,),∴直线CH的解析式为:y=﹣x+,则,解得:,∴R(,).【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数、一次函数的解析式,本题还运用了利用两函数的解析式列方程组求交点的坐标;在直线设解析式时,要知道:①两直线平行,则一次项系数k相等;②两直线垂直,则一次项系数k是互为负倒数;把函数、方程和几何图形相结合,同时也巧妙地运用三角形相似求函数的解析式.参与本试卷答题和审题的老师有:lantin;2300680618;sd2011;CJX;sjzx。
2016—2017(上)学期哈69中学9月测试初三学年 数学 学科试题一.选择题(每题3分,共30分)1. 已知点Q 与点P (3,4)关于x 轴对称,那么点Q 的坐标为 ( ) A.(-3,4) B.(3,4) C.(-3,-4) D.(3,-4). 2.下列运算中,正确的是( )A .523a a a =⋅B .2a a a =+ C .236a a a ⨯= D .()642a a =3.下列标志(绿色食品、循环回收、节能、节水)中,属于轴对称图形的是( )A B C D 4.化简()()32x x -⋅-结果正确的是( )A. 6x - B .6x C .5x - D .5x5.如下图,直线L 是一条河,P,Q 是两个村庄。
欲在L 上的某处修建一个水泵站M ,向P,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )6.等腰三角形的顶角为80︒,则它的底角是( )A. 20︒B. 50︒C. 60︒D. 80︒ 7.到三角形的三个顶点距离相等的点是 ( )A .三角形三条中线的交点B .三角形三条高的交点C .三角形三条角平分线的交点 D. 三角形三边垂直平分线的交点B AC D8.如图△ABC 中,AC=12cm ,DE 为AB 的垂直平分线,△BCE 的周长为20cm ,则BC 的长为( )A .6B .8C .10D .129.如图,已知△ABC 中,AB=AC ,AD=AE ,∠BAE=30°,则∠DEC 等于( ). A .7.5° B .10° C .15° D .18°10.下列命题中错误的命题有( )①若两个三角形关于直线l 对称,则这两个三角形全等;②有一组对应角是60°的两个等腰三角形全等;③顶角和底边对应相等的两个等腰三角形全等;④一腰和一腰上的高对应相等的两个等腰三角形全等. A. 0个 B.1个 C. 2个 D.3个 二.填空题(每题3分,共30分)11.等边三角形的对称轴有 条. 12.若5ma =,6na =,则m na+= .13.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 度. 14.在△ABC 中,2:2:5::=∠∠∠C B A ,如果AB=8,那么AC=____________. 15.如图, 一条船从灯塔C 南偏东42°的A 处出发,向正北航行8海里到达B 处,此时灯塔C 在船的北偏西84°方向,则船距离灯塔C_____________海里. A ED BC第8题图D BCAE第9题图A CBA ′B ′C ′第13题图5020olAOBCN M 第19题图42°84°第15题图第18题图16.等腰三角形的顶角为70°,则一腰上的高与底边所成的角的度数是___________度.17.等腰三角形两边长为6和8,则此三角形的周长为 .18.如图,等腰三角形ABC 中,已知AB =AC ,∠A =30°,AB 的垂直平分线交AC 于D ,则∠CBD 的度数为 度.19.如图,△ABC 中,AB=8,AC=6,∠ABC 和∠ACB 的角平分线交于点O ,过点O 作BC 的平行线MN 交AB 于点M ,交AC 于点N ,则△AMN 的周长为__________. 20.在Rt △ABC 中,∠C =90°,CD 是斜边AB 上的高,若∠A =30°,BD=3, 则AB= . 三.解答题(共60分) 21.(每题5分,共10分) (1)计算:2243)()(5b a b a -⋅-⋅ (2)若322=+yx ,273=-y x ,求22y x +的值22.(6分)已知点P (3,a-1)和Q (b+1,2)关于y 轴对称,求(a+b )2016的值?23.(8分)如图,△ABC 的三个顶点的坐标分别为A(-6,4),B(-4,0),C(-2,2) (1)将△ABC 向下平移5个单位,得△A 1B 1C 1,画出图形,并直接写出点A 1的坐标; (2)作△ABC 关于y 轴的轴对称图形,得△A 2B 2C 2,画出图形,并直接写出点B 2的坐标.xyABC O24.(本题8分)如图,已知AD=BC ,∠DAB=∠CBA ,求证:△EAB 是等腰三角形. 25.(本题8分)如图,△ABC 中,AB=AC ,BC=BD=AD ,求∠A 的度数. 26.(本题10分)如图,△ACM 和△CBN 都是等边三角形,BE=ND.① 求证:△CAN 与△CMB 全等; ② 求证:△CDE 是等边三角形.27.已知:如图,AE ∥x 轴,OA 平分∠EOC ,点A (2,2),点B (0,-2),AB 交x 轴于点D ,AC ⊥AB 交x 轴于点C ,且AB=AC. (1)求点C 坐标;(2)点P 为折线B-O-C 上一动点,由点B 出发向终点C 以每秒一个单位的速度运动,设运动时间为t ,△BPC 的面积为S ,用含t 的式子表示面积S ;(3)在(2)的条件下,是否存在时间t ,使得△OAP 是以AP 为腰的等腰三角形,若存在,请求出t 的值,若不存在,请说明理由.x y D CEBAOx yDCEBAO2016-2017(上)学期哈69中学9月测试初三学年数学学科试题答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 D A A C D B D B C B 二、填空题(每题3分,共30分)题号11 12 13 14 15 答案 3 30 110 8 8 题号16 17 18 19 20 答案35 20或22 45 14 12 三、解答题(共60分)21(每题5分,共10分)(1)5a7b5 (2)x=4,y=1;x2+y2=1722(6分)a=3,b=-4,(a+b)2016=123(8分)图略,A1(-6,-1),B2(4,0)24(8分)答案略25(8分)36゜26(10分)答案略27(10分)(1)C(6,0)(2)S=3t,S=8-t(3)t=4或t=6。
2016-2017学年黑龙江省哈尔滨市道外区九年级(上)期中数学试卷(五四学制)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2的相反数为()A.2 B.C.﹣2 D.2.(3分)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m3.(3分)若(m,a),(m+1,b)在直线y=﹣2x+3上,则a、b的大小关系为()A.a<b B.a=b C.a>b D.无法确定4.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(3分)如图所示的两个几何体是由六个大小相同的小正方体组合而成的,则它们三视图中完全一致的是()A.主视图B.俯视图C.左视图D.三视图6.(3分)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.7.(3分)在△ABC中,D、E分别是AB,AC上的点,下列各比例式中,能得到DE∥BC的是()A.=B.=C.=D.=8.(3分)一个三角形的两边长为3和5,第三边长为方程x2﹣5x+6=0的根,则这个三角形的周长为()A.10 B.11 C.10或11 D.149.(3分)如图,△ABC和ADE都是正三角形,若∠DBE=18°,则∠BEC的度数为()A.36°B.42°C.72°D.78°10.(3分)在一次越野赛跑中,甲离出发地1200米,乙离出发地1400米,如图所示,反映的是甲、乙二人离起点的路程S(单位:米)与时间t(单位:秒)之间的关系,那么下列说法中①甲100秒时追上乙,且此时离出发地1600米;②甲的速度是乙速度的2倍;③甲比乙早100秒到达终点,且此时离出发地2000米;④甲乙二人相距100米时的时间是150秒.其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)哈尔滨市地域广阔,总面积为53200平方公里,这个数用科学记数法表示为.12.(3分)函数的自变量x的取值范围为.13.(3分)分解因式:ax2﹣6axy+9ay2=.14.(3分)计算﹣=.15.(3分)不等式组的解集是.16.(3分)菱形的周长为20cm,一条对角线的长为8cm,则另一条对角线的长为,面积为.17.(3分)如图,在平面直角坐标系中,A为x轴上一点,以OA为斜边作等腰直角△ABO,反比例函数y=的图象交AB于C.若OB2﹣CB2=12,则k的值为.18.(3分)两个正方形,大正方形的边长比小正方形的边长多3cm,大正方形的周长是小正方形周长的2倍,则大正方形的面积是.19.(3分)点D为等边△ABC内一点,且满足AD=BD,把△BCD沿着BD翻折得到△BED,若∠ACE=20°,则∠AED的度数为.20.(3分)如图,在四边形ABCD中,∠ADC=∠BCD=90°,BC=CD,E在BC的延长线上,且BE=AE,AE交CD于F,过点B作BH⊥AE,垂足为H,延长BH交AD 于G,若AG=5,AF=10,则BG的长为.三、解答题(共60分)21.(7分)先化简,再求值:(1﹣)÷,其中x=2sin45°+2cos60°.22.(7分)如图,正方形网格中每个小正方形的边长均为1,每个小正方形的顶点叫格点,线段AB的端点在格点上.(1)在网格中画出一个钝角等腰△ABC,使点C落在格点上;(2)在(1)的条件下,过点C画线段CD,使点D在格点上,且CD平分△ABC 的面积.23.(8分)某中学为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)在这次调查中,参与问卷调查的学生共有多少名学生?(2)若学校有5000名学生,估计喜欢足球的学生共有多少名学生?24.(8分)如图,△ABC中,AB=AC,AD⊥BC,垂足为D,E是AD的中点,BE 交AC于F,过A作AG∥BC,AG交BF的延长线于G,连接CG.(1)试判断四边形ADCG的形状,并给予证明;(2)过点A作AN⊥BG,交BC于N,当AD=BD时,在图中找出一条与AN相等的线段,并给予证明.25.(10分)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?26.(10分)如图,正方形ABCD中,E在对角线BD上,过点E作EF⊥AE,EF 交BC于F.(1)求证:EF=CE;(2)试判定线段BE、DE与BF的数量关系,并给予证明;(3)连接AC交EF于G,过点F作FN⊥EF,FN交EC的延长线于点N,若EG=1,CN=2,求FN的长.27.(10分)如图,在坐标平面中,直线y=x﹣4分别交x轴、y轴于A、B,反比例函数y=经过点(﹣2,﹣6).(1)求k的值;(2)点C在AD上方第一象限的反比例函数图象上,过点C作y轴的平行线交直线AB于D,若CD=3,求点C的坐标;(3)在(2)的条件下,P在x轴上,Q在y=上,若以P、Q、B、C为顶点的四边形是平行四边形,求点P、Q的坐标.2016-2017学年黑龙江省哈尔滨市道外区九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2的相反数为()A.2 B.C.﹣2 D.【解答】解:与﹣2符号相反的数是2,所以,数﹣2的相反数为2.故选:A.2.(3分)下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m【解答】解:A、应为4m﹣m=3m,故本选项错误;B、应为﹣(m﹣n)=﹣m+n,故本选项错误;C、应为(m2)3=m2×3=m6,正确;D、m2÷m2=1,故本选项错误.故选:C.3.(3分)若(m,a),(m+1,b)在直线y=﹣2x+3上,则a、b的大小关系为()A.a<b B.a=b C.a>b D.无法确定【解答】解:k=﹣2<0,y将随x的增大而减小.∵m<m+1,∴a>b.故选:C.4.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.5.(3分)如图所示的两个几何体是由六个大小相同的小正方体组合而成的,则它们三视图中完全一致的是()A.主视图B.俯视图C.左视图D.三视图【解答】解:从正面可看到甲从左往右三列小正方形的个数为:1,2,1,乙从左往右2列小正方形的个数为:2,1,1,不符合题意;从左面可看到甲从左往右2列小正方形的个数为:1,2,1,乙从左往右2列小正方形的个数为:1,2,1,符合题意;从上面可看到甲从左往右三列小正方形的个数为:2,1,2,乙从左往右2列小正方形的个数为:2,2,1,不符合题意;故选:C.6.(3分)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选:A.7.(3分)在△ABC中,D、E分别是AB,AC上的点,下列各比例式中,能得到DE∥BC的是()A.=B.=C.=D.=【解答】解:A、,不可证明DE∥BC,故本选项不正确;B、,不可证明DE∥BC,故本选项不正确;C、,可证明DE∥BC,故本选项正确;D、,不可证明DE∥BC,故本选项不正确.故选:C.8.(3分)一个三角形的两边长为3和5,第三边长为方程x2﹣5x+6=0的根,则这个三角形的周长为()A.10 B.11 C.10或11 D.14【解答】解:方程分解得:(x﹣2)(x﹣3)=0,可得x﹣2=0或x﹣3=0,解得:x=2或x=3,当x=2时,2+3=5,不能构成三角形,舍去;当x=3时,三角形三边为3,3,5,其周长为3+3+5=11,故选:B.9.(3分)如图,△ABC和ADE都是正三角形,若∠DBE=18°,则∠BEC的度数为()A.36°B.42°C.72°D.78°【解答】解:∵△ABC和ADE都是正三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠BEC=180°﹣∠CBE﹣∠BCE=180°﹣(60°﹣18°﹣∠ABD+60°+∠ACE)=180°﹣102°=78°.故选:D.10.(3分)在一次越野赛跑中,甲离出发地1200米,乙离出发地1400米,如图所示,反映的是甲、乙二人离起点的路程S(单位:米)与时间t(单位:秒)之间的关系,那么下列说法中①甲100秒时追上乙,且此时离出发地1600米;②甲的速度是乙速度的2倍;③甲比乙早100秒到达终点,且此时离出发地2000米;④甲乙二人相距100米时的时间是150秒.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①设乙的速度为vm/s,则甲的速度为(v+2)m/s,根据题意得:(300﹣200)v=1400﹣1200,解得:v=2,∴v+2=4,1200+4×100=1600(m).∴甲100秒时追上乙,且此时离出发地1600米,①正确;②∵4÷2=2,∴甲的速度是乙速度的2倍,②正确;③∵300﹣200=100(s),1200+4×200=2000(m),∴甲比乙早100秒到达终点,且此时离出发地2000米,③正确;④∵100﹣100÷(4﹣2)=50(s),100+100÷(4﹣2)=150(s),∴甲乙二人相距100米时的时间是50秒或150秒,④错误.综上所述:正确的结论有①②③.故选:C.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)哈尔滨市地域广阔,总面积为53200平方公里,这个数用科学记数法表示为 5.32×104.【解答】解:将53200用科学记数法表示为:5.32×104.故答案为:5.32×104.12.(3分)函数的自变量x的取值范围为x≠1.【解答】解:根据题意,得x﹣1≠0,解得x≠1.故答案为:x≠1.13.(3分)分解因式:ax2﹣6axy+9ay2=a(x﹣3y)2.【解答】解:原式=a(x2﹣6xy+9y2)=a(x﹣3y)2.故答案是:a(x﹣3y)2.14.(3分)计算﹣=.【解答】解:原式=2﹣=﹣.故答案为15.(3分)不等式组的解集是<x≤4.【解答】解:∵解不等式①得:x>,解不等式②得:x≤4,∴不等式组的解集为<x≤4,故答案为:<x≤4.16.(3分)菱形的周长为20cm,一条对角线的长为8cm,则另一条对角线的长为6cm,面积为24cm2.【解答】解:已知BD=8cm,菱形对角线互相垂直平分,∴BO=4cm,又∵菱形ABCD周长为20cm,∴AB=5cm,∴AO==3cm,∴AC=2AO=6cm,菱形的面积为×6cm×8cm=24cm2,故答案为6、24.17.(3分)如图,在平面直角坐标系中,A为x轴上一点,以OA为斜边作等腰直角△ABO,反比例函数y=的图象交AB于C.若OB2﹣CB2=12,则k的值为6.【解答】解:如图,作CE∥OA交OB于F,交y轴于E.作CH⊥OA于H.∵△ABC是等腰直角三角形,∴△BCF是等腰直角三角形,∵OB2﹣CB2=12,∴OB2﹣CB2=6,=6,∴S四边形AOFC∵△OEF≌△CHA,=S△CHA,∴S△OEF∴S=S四边形AOCF=6,矩形CHOE∴k=6.故答案为6.18.(3分)两个正方形,大正方形的边长比小正方形的边长多3cm,大正方形的周长是小正方形周长的2倍,则大正方形的面积是36cm2.【解答】解:设小正方形的边长为xcm,则大正方形的边长为(x+3)cm,由题意得4(x+3)=4x×2解得:x=3,则x+3=6,大正方形的面积=62=36(cm2)故答案是:36cm2.19.(3分)点D为等边△ABC内一点,且满足AD=BD,把△BCD沿着BD翻折得到△BED,若∠ACE=20°,则∠AED的度数为40°或100°.【解答】解:当点E在AC的左侧时,∵△ABC是等边三角形,∴CB=CA,∠ACB=∠ABC=60°,∵DA=DB,∴CD垂直平分线段AB,∴∠DCB=∠ACD=30°,∵∠ACE=20°,∴∠BCE=∠BEC=40°,∴∠EBC=100°,∴∠EBA=40°,∴∠BEA=∠BAE=70°,∵∠DCB=∠DEB=30°,∴∠AED=40°当点E在AC的右侧时,∵∠ACE=20°,∴∠BCE=∠BEC=80°,∴∠CBE=20°,∴∠ABE=40°,∴∠BEA=∠BAE=70°,∵∠DEB=∠DCB=30°,∴∠AED=70°+30°=100°,综上所述,∠AED=40°或100°.故答案为40°或100°.20.(3分)如图,在四边形ABCD中,∠ADC=∠BCD=90°,BC=CD,E在BC的延长线上,且BE=AE,AE交CD于F,过点B作BH⊥AE,垂足为H,延长BH交AD 于G,若AG=5,AF=10,则BG的长为15.【解答】解:连接BF.作BI⊥DA于I.∵∠IDC=∠BCD=∠I=90°,∴四边形BCDI是矩形,∵BC=CD,∴四边形BCDI是正方形,∴DI∥BC,∴∠1=∠ABE,∵BE=BA,∴∠ABE=∠2,∴∠1=∠2,∵BI⊥AI.BH⊥AE,∴BI=BH,∴Rt△BAI≌Rt△BAH,∴AI=AH,设AI=AH=a,∵△AHG∽△ADF,∴===,∴AD=2a,∴ID=IB=BC=CD=3a,∵BF=BF,BH=BC,∴Rt△BFH≌Rt△BFC,∴HF=FC=10﹣a,DF=3a﹣10+a=4a﹣10,∴GH=2a﹣5,BG=5a﹣5,在Rt△BIG中,∵BI2+IG2=BG2,∴(3a)2+(a+5)2=(5a﹣5)2,解得a=5或0(舍弃),∴BG=15.三、解答题(共60分)21.(7分)先化简,再求值:(1﹣)÷,其中x=2sin45°+2cos60°.【解答】解:原式=×=,∵x=2sin45°+2cos60°=2×+2×=+1,∴原式==.22.(7分)如图,正方形网格中每个小正方形的边长均为1,每个小正方形的顶点叫格点,线段AB的端点在格点上.(1)在网格中画出一个钝角等腰△ABC,使点C落在格点上;(2)在(1)的条件下,过点C画线段CD,使点D在格点上,且CD平分△ABC 的面积.【解答】解:(1)△ABC如图所示(AB=BC);(答案不唯一)(2)图中线段CD即为所求.23.(8分)某中学为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)在这次调查中,参与问卷调查的学生共有多少名学生?(2)若学校有5000名学生,估计喜欢足球的学生共有多少名学生?【解答】解:(1)60÷20%=300(名).答:在这次调查中,参与问卷调查的学生共有300名学生;(2)调查中喜爱足球的人数300﹣60﹣120﹣30=90人,5000×=1500(人).答:喜欢足球的学生共有1500名学生.24.(8分)如图,△ABC中,AB=AC,AD⊥BC,垂足为D,E是AD的中点,BE 交AC于F,过A作AG∥BC,AG交BF的延长线于G,连接CG.(1)试判断四边形ADCG的形状,并给予证明;(2)过点A作AN⊥BG,交BC于N,当AD=BD时,在图中找出一条与AN相等的线段,并给予证明.【解答】解:(1)∵E是AD的中点,∴AE=DE,∵AG∥BC,∴∠AGE=∠DBE,∠EAG=∠EDB,∴△AEG≌△DEB,∴AG=BD,∵AB=AC,AD⊥BC,∴BD=CD,∠ADC=90°,∴AG=CD,AG∥CD,∴四边形ADCG是矩形;(2)答:BE=AN或EG=AN,证明:∵四边形ADCG是矩形,∴CG=AD,∵AN⊥BG∴∠AOE=90°∵∠EDB=90°∴∠AOE=∠EDB∵∠AEO=∠BED∴∠DBE=∠DAN∴△BDE≌△ADN,∴BE=AN,∵△AEG≌△DEB∴△GAE≌△AND,∴EG=AN.25.(10分)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天答:修这段路计划用25天.(2)设甲工程队要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000解得a≥10所以a最小等于10.答:甲工程队至少要修路10天.26.(10分)如图,正方形ABCD中,E在对角线BD上,过点E作EF⊥AE,EF 交BC于F.(1)求证:EF=CE;(2)试判定线段BE、DE与BF的数量关系,并给予证明;(3)连接AC交EF于G,过点F作FN⊥EF,FN交EC的延长线于点N,若EG=1,CN=2,求FN的长.【解答】(1)证明:∵EF⊥AE,∴∠AEF=90°,∵∠ABC=90°,∴∠ABF+AEF=180°,∴∠BAE+BFE=180°,∵∠BFE+∠EFC=180°,∴∠BAE=∠EFC,在△ABE与△CBE中,,∴△ABE≌△BCE,∴∠BAE=∠BCE,∴∠EFC=∠ECF,∴EF=EC;(2)解:过E做EH⊥CD于H,EK⊥BC于K,由(1)知,EF=EC,∴FK=KC,∵∠EDH=45°,∠EHD=90°,∴EH=DE,∵∠EHC=∠HCK=∠CKE=90°,∴四边形EHCK是矩形,∴EH=KC=FK,∴FK=ED,∵∠EBK=45°,EK⊥BK,∴BE=BK=(BF+FK)=(BF+ED)=BF+ED;(3)解:过C作CQ⊥AC交FN于M,过F作FQ⊥CQ于Q,FP⊥AC于P,设∠DCE=α,则∠ECG=45°﹣α,∠CEF=2α,∠QCN=90°﹣∠ECG=45°+α,∵∠EFN=90°,∴∠ENF=90°﹣∠FEN=90°﹣2α,∠CMN=180°﹣∠N﹣∠NCM=45°+α,∴∠NMC=∠NCM,∴NM=NC=2,∵∠PCF=∠FCQ=45°,∴FQ=FP,∵∠GFP+∠PFM=∠QFM+PFM=90°,∴∠GFP=∠QFM,在△GFP与△MFQ中,,∴△GFP≌△MFQ,∴FG=FM,设FG=FM=x,则EC=EF=x+1,EN=x+3,FN=2+x,∵EF2+FN2=EN2,∴(1+x)2+(2+x)2=(x+3)2,∴x=2,∴FN=4.27.(10分)如图,在坐标平面中,直线y=x﹣4分别交x轴、y轴于A、B,反比例函数y=经过点(﹣2,﹣6).(1)求k的值;(2)点C在AD上方第一象限的反比例函数图象上,过点C作y轴的平行线交直线AB于D,若CD=3,求点C的坐标;(3)在(2)的条件下,P在x轴上,Q在y=上,若以P、Q、B、C为顶点的四边形是平行四边形,求点P、Q的坐标.【解答】解:(1)由题意A(8,0),B(0,﹣4),∵反比例函数y=经过点(﹣2,﹣6),∴k=12,(2)如图1中,设C(m,).∵CD∥y轴,点D在y=x﹣4上,∴D(m,m﹣4),∴CD=﹣(m﹣4)=3,解得m=6或﹣4(舍弃),∴C(6,2).(3)如图2中,设P(n,0).①当PC为对角线时,四边形BPQC为平行四边形,∴PB∥QC,PB=QC,∴QC可以看作是由PB平移所得,∴,可得,∴Q(n+6,6),∵点Q在y=上,∴6(n+6)=12,∴n=﹣4,∴P1(﹣4,0),Q1(2,6).②当BC为对角线时,四边形BPCQ为平行四边形,同法可得Q(6﹣n,﹣2),∵点Q在y=上,∴﹣2(6﹣n)=12,∴n=12,∴P2(12,0),Q2(﹣6,﹣2).③当PB为对角线时,四边形BQPC为平行四边形,同法可得Q(n﹣6,﹣6),∵点Q在y=上,∴﹣6(n﹣6)=12,∴n=4,∴P3(4,0),Q3(﹣2,﹣6),但是此时P、Q、B、C共线,此种情形不存在.。
2016-2017学年黑龙江省哈尔滨市中实学校九年级(上)期中数学试卷(五四学制)一、选择题(每题3分,共30分)1.|﹣|的倒数是()A.B.﹣ C.2 D.﹣22.下列运算中,正确的是()A.B.(a2)3=a6C.3a•2a=6a D.3﹣2=﹣63.下列图形中是中心对称图形但不是轴对称图形的是()A.B. C.D.4.下列各点中,在反比例函数图象上的是()A.(2,1)B.(,3) C.(﹣2,﹣1)D.(﹣1,2)5.在Rt△ABC中,∠C=90°,sinA=,则cosA的值等于()A.B.C.D.6.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米7.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.8.下列命题中正确的是()A.平分弦的直径必垂直于弦,并且平分弦所对的两条弧B.弦所对的两条弧的中点连线垂直平分弦C.若两条弧的度数相等,则它们是等弧D.弦的垂线平分弦所对的弧9.如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB为()A.米B.米C.b米D.a米10.甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留)前往终点B地,甲、乙两车之间的距离y(千米)与甲车行驶时间t(小时)之间的函数关系如图所示.小红通过图象得出4个信息:①甲车速度为60千米/小时;②A、B两地相距240千米;③乙车行驶2小时追上甲车;④乙车由A地到B地共用小时.上述信息正确的有()个.A.1 B.2 C.3 D.4二、填空题(每题3分,共30分)11.太阳的半径约是69000千米,用科学记数法表示约是千米.12.函数y=的自变量x的取值范围是.13.不等式组的解集为.14.因式分解:y3﹣4x2y= .15.分式方程=的解是.16.某药品原价每盒25元,经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是.17.已知⊙O的弦AB=8cm,圆心O到弦AB的距离为3cm,则⊙O的直径为cm.18.如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为.19.如图,在△ABC中,AB=AC,点D在线段BA的延长线上,且AD=BC,∠BDC=30°,则∠BAC= .20.在Rt△ABC中,∠C=90°,且满足AC>BC,BD平分∠ABC,点E在BC上,∠EDB=45°,若BE=5CE,CD=3,则AB的长为.三、解答题(21~22题各题7分,23~24题各题8分,25~27题各10分,共计60分)21.先化简,再求代数式﹣÷的值,其中x=tan60°.22.如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A.B.C.D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行,连接AF,请直接写出线段AF的长.23.某学校准备组织八年级学生春游,供学生选择的春游地点分别是:植物园、太阳岛、东北虎林园.每名学生只能选择其中一个春游地点(必选且只选一个).该校从八年级学生中随机抽取了a名学生,对他们选择春游地点的情况进行调查,并根据调查结果绘制成如图所示的条形统计图.(1)求a的值;(2)求a名学生中选择去植物园春游的人数占所抽取人数的百分比是多少?(3)如果该校八年级有440名学生,请你估计选择去太阳岛春游的学生有多少名?24.已知:将矩形纸片ABCD折叠,使点A与点C重合(点D与D′为对应点),折痕为EF,连接AF.(1)如图1,求证:四边形AECF为菱形;(2)如图2,若FC=2DF,连接AC交EF于点O,连接DO,D′O,在不添加任何辅助线的情况下,请直接写出图2中所有等边三角形.25.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?26.如图1,AB是⊙O的直径,OD⊥弦BC于点E,过点D作DF⊥AB于点F.(1)求证:BC=2DF;(2)如图2,连接AE,过点C作AE的垂线交⊙O于点M,垂足为G,过点B作CM的垂线,垂足为H,若∠EAB+∠ODF=45°,AB=10,求弦CM的长.27.已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于C,顶点为D,E为对称轴与x轴的交点,A(1,0),B(3,0)(1)求抛物线的解析式;(2)若点P为抛物线上第四象限对称轴左侧上一点,设P点的横坐标为m,△PBC的面积为S,求S与m的函数关系式;(3)在(2)的条件下,过C点作射线CP交对称轴于K,CM⊥DE交抛物线于M,连接PM交对称轴于R,若DK=3RN,求P点的坐标.2016-2017学年黑龙江省哈尔滨市中实学校九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每题3分,共30分)1.|﹣|的倒数是()A.B.﹣ C.2 D.﹣2【考点】倒数;绝对值.【分析】首先根据绝对值的求法,求出|﹣|的大小;然后根据求一个数的倒数的方法,求出|﹣|的倒数是多少即可.【解答】解:∵|﹣|=,1÷,∴,∴|﹣|的倒数是2.故选:C.2.下列运算中,正确的是()A.B.(a2)3=a6C.3a•2a=6a D.3﹣2=﹣6【考点】幂的乘方与积的乘方;算术平方根;单项式乘单项式;负整数指数幂.【分析】由算术平方根的意义得出A不正确;由幂的乘方法则得出B正确;由单项式的乘法法则得出C不正确;由负整数指数幂的意义得出D不正确;即可得出结论.【解答】解:∵=3≠±3,∴A不正确;∵(a2)3=a6,∴B正确;∵3a•2a=6a2≠6a,∴C不正确;∵3﹣2=≠﹣6,∴D不正确.故选:B.3.下列图形中是中心对称图形但不是轴对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.4.下列各点中,在反比例函数图象上的是()A.(2,1)B.(,3) C.(﹣2,﹣1)D.(﹣1,2)【考点】反比例函数图象上点的坐标特征.【分析】根据y=﹣得k=xy=﹣2,所以只要点的横坐标与纵坐标的积等于﹣2,就在函数图象上.【解答】解:A、2×1=2≠﹣2,故不在函数图象上;B、×3=2≠﹣2,故不在函数图象上;C、(﹣2)×(﹣1)=2≠﹣2,故不在函数图象上;D、(﹣1)×2=﹣2,故在函数图象上.故选D.5.在Rt△ABC中,∠C=90°,sinA=,则cosA的值等于()A.B.C.D.【考点】同角三角函数的关系.【分析】由三角函数的定义可知sinA=,可设a=3,c=5,由勾股定理可求得b,再利用余弦的定义代入计算即可.【解答】解:∵sinA=sinA=,∴可设a=3,c=5,由勾股定理可求得b=4,∴cosA==,故选B.6.从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.【解答】解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.7.如图,E是平行四边形ABCD的边BA延长线上的一点,CE交AD于点F,下列各式中错误的是()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的性质和相似三角形的性质求解.【解答】解:∵AD∥BC∴∵CD∥BE∴△CDF∽△EBC∴,∴∵AD∥BC∴△AEF∽△EBC∴∴D错误.故选D.8.下列命题中正确的是()A.平分弦的直径必垂直于弦,并且平分弦所对的两条弧B.弦所对的两条弧的中点连线垂直平分弦C.若两条弧的度数相等,则它们是等弧D.弦的垂线平分弦所对的弧【考点】命题与定理.【分析】利用垂径定理、等弧的定义分别判断后即可确定正确的选项.【解答】解:A、平分弦(不是直径)的直径必垂直于弦,并且平分弦所对的两条弧,故错误;B、弦所对的两条弧的中点连线垂直平分弦,正确;C、若两条弧的度数相等,则它们是等弧,错误;D、弦的垂线平分弦所对的弧,错误,故选B.9.如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB为()A.米B.米C.b米D.a米【考点】解直角三角形的应用﹣坡度坡角问题;等边三角形的性质.【分析】根据CM=CN以及∠MCN的度数可得到△CMN为等边三角形.利用相应的三角函数表示出MN,MC的长,可得到房间宽AB和AM长相等.【解答】解:过N点作MA垂线,垂足点D,连接NM.设梯子底端为C点,AB=x,且AB=ND=x.∴△BNC为等腰直角三角形,∴180°﹣45°﹣75°=60°∴△CNM为等边三角形,梯子长度相同∵∠NCB=45°,∴∠DNC=45°,∴∠MND=60°﹣45°=15°,∴cos15°=,又∵∠MCA=75°,∴∠AMC=15°,∴cos15°=,故可得: =.∵△CNM为等边三角形,∴NM=CM.∴x=MA=a.故选D.10.甲、乙两车沿同一平直公路由A地匀速行驶(中途不停留)前往终点B地,甲、乙两车之间的距离y(千米)与甲车行驶时间t(小时)之间的函数关系如图所示.小红通过图象得出4个信息:①甲车速度为60千米/小时;②A、B两地相距240千米;③乙车行驶2小时追上甲车;④乙车由A地到B地共用小时.上述信息正确的有()个.A.1 B.2 C.3 D.4【考点】一次函数的应用.【分析】由函数图象可以得出甲车行驶小时时与乙车相遇,而甲车再行驶1小时就与乙车相距15km可以得出乙车比甲车每小时快15km,得出甲车走完这15km所用时间为4﹣=小时,就可以求出甲车的速度为45千米/时,就可以求出全程距离为45×4=180千米,由函数图象可以得出乙车追上甲车的时间是﹣=2小时,乙车由A地去B地的时间为﹣=3小时据可以得出结论.【解答】解:由函数图象及题意可以得出:甲车的速度为:15÷(4﹣)=45km/时,故①错误;A、B两地的路程为:45×4=180km,故②错误;乙车追上甲车的时间是﹣=2小时,故③正确;乙车由A地去B地的时间为﹣=3小时,故④错误.综上所述,正确的由1个.故选A二、填空题(每题3分,共30分)11.太阳的半径约是69000千米,用科学记数法表示约是 6.9×104千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:69000用科学记数法表示为6.9×104,故答案为6.9×104.12.函数y=的自变量x的取值范围是x≠﹣.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,2x+3≠0,解得x≠﹣.故答案为:x≠﹣.13.不等式组的解集为﹣1≤x≤2 .【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x≥﹣1,故不等式组的解集为:﹣1≤x≤2.故答案为:﹣1≤x≤2.14.因式分解:y3﹣4x2y= y(y+2x)(y﹣2x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.【解答】解:y3﹣4x2y,=y(y2﹣4x2),=y(y+2x)(y﹣2x).15.分式方程=的解是x=﹣3 .【考点】解分式方程.【分析】根据解分式方程的步骤依次进行即可得.【解答】解:去分母,得:x=3(x+2),去括号,得:x=3x+6,移项、合并,得:﹣2x=6,系数化为1,得:x=﹣3,经检验x=﹣3是原分式方程的解,∴方程的解为x=﹣3,故答案为:x=﹣3.16.某药品原价每盒25元,经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是20% .【考点】一元二次方程的应用.【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是25(1﹣x),第二次后的价格是25(1﹣x)2,据此即可列方程求解.【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故答案为:20%.17.已知⊙O的弦AB=8cm,圆心O到弦AB的距离为3cm,则⊙O的直径为10 cm.【考点】垂径定理;勾股定理.【分析】连结OA,先根据垂径定理得到AC=4,然后根据勾股定理计算出OA,从而得到圆的直径.【解答】解:连结OA,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OC=3,OA==5,∴⊙O的直径为10cm.故答案为10.18.如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为20 .【考点】垂径定理;等边三角形的判定与性质.【分析】延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故答案为20.19.如图,在△ABC中,AB=AC,点D在线段BA的延长线上,且AD=BC,∠BDC=30°,则∠BAC= 60°.【考点】等腰三角形的性质.【分析】作AE⊥DC于E,AF⊥BC于F,利用条件可证得Rt△AEC≌Rt△CFA,得到CE=AF,再结合条件证得四边形AECF是矩形,从而可求得∠BAC.【解答】解:作AE⊥DC于E,AF⊥BC于F,∵∠D=30°,∴AE=AD,∵AB=AC,AF⊥BC,∴BF=CF=BC,∵AD=BC,∴AE=CF,又∵∠AEC=∠CFA=90°,AC=CA在△AEC和△CFA中,,∴Rt△AEC≌Rt△CFA(HL),∴CE=AF,又∵AE=CF,∠A FC=90°,∴四边形AECF是矩形,∴∠ECF=90°,则∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故答案为:60°.20.在Rt△ABC中,∠C=90°,且满足AC>BC,BD平分∠ABC,点E在BC上,∠EDB=45°,若BE=5CE,CD=3,则AB的长为10 .【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】如图,作BF⊥DE于F,FN⊥BC于N,FM⊥AC于M,DH⊥AB于H,连接CF.由△DMF ≌△BNF,推出FM=FN,DM=BN,由FM⊥CM,FN⊥CN,推出∠FCM=∠FCN=45°,推出CM=FM=CN=FN,四边形MCNF是正方形,设边长为x,CE=a,BE=5a,由DM=BN,可得3+x=6a﹣x,推出x=,由CD∥FN,得=,得=,解得a=1或,分两种情形分别求解即可.【解答】解:如图,作BF⊥DE于F,FN⊥BC于N,FM⊥AC于M,DH⊥AB于H,连接CF.∵∠FDB=∠FBD=45°,∴DF=BF,∵∠DCE=∠EFB=90°,∠CED=∠FEB,∴∠CDE=∠EBG,在△DMF和△BNF中,,∴△DMF≌△BNF,∴FM=FN,DM=BN,∵FM⊥CM,FN⊥CN,∴∠FCM=∠FCN=45°,∴CM=FM=CN=FN,四边形MCNF是正方形,设边长为x,CE=a,BE=5a,∵DM=BN,∴3+x=6a﹣x,∴x=,∵CD∥FN,∴=,∴=,解得a=1或,∵==,∵BD平分∠ABC,DH⊥AB,DC⊥BC,∴=,设AD=y,①当a=1时,BC=6,∴=,∴AB=2y,在Rt△ABC中,62+(y+3)2=(2y)2,解得y=5或﹣3(舍弃),∴AB=10,②当a=时,BC=9,∴=,∴AB=3y,在Rt△ABC中,92+(y+3)2=(3y)2,解得y=3或﹣(舍弃),AD+DC=6,6<9不合题意舍弃,∴AB=10.故答案为10.三、解答题(21~22题各题7分,23~24题各题8分,25~27题各10分,共计60分)21.先化简,再求代数式﹣÷的值,其中x=tan60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子,本题得以解决.【解答】解:﹣÷====,当x=tan60°=时,原式==.22.如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A.B.C.D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行,连接AF,请直接写出线段AF的长.【考点】勾股定理;作图—复杂作图.【分析】(1)根据题意可知:AB=,因为、、恰好构成以AB为斜边的直角三角形,由此画出图形即可;(2)根据题意可知:CD=,以CD为底,高为的三角形面积为4,由此画出图形,根据勾股定理求出AF的长即可.【解答】解:(1)作图如下:(2)AF==5.23.某学校准备组织八年级学生春游,供学生选择的春游地点分别是:植物园、太阳岛、东北虎林园.每名学生只能选择其中一个春游地点(必选且只选一个).该校从八年级学生中随机抽取了a名学生,对他们选择春游地点的情况进行调查,并根据调查结果绘制成如图所示的条形统计图.(1)求a的值;(2)求a名学生中选择去植物园春游的人数占所抽取人数的百分比是多少?(3)如果该校八年级有440名学生,请你估计选择去太阳岛春游的学生有多少名?【考点】条形统计图;用样本估计总体.【分析】(1)三组的人数的和就是a的值;(2)根据百分比的意义即可求解;(3)利用总人数440乘以对应的百分比即可求解.【解答】解:(1)a=16+20+4=40;(2)×100%=40%.则选择去植物园春游的人数占抽取人数的百分比是40%;(3)440××100%=220(名).答:估计选择去太阳岛春游的学生有220名.24.已知:将矩形纸片ABCD折叠,使点A与点C重合(点D与D′为对应点),折痕为EF,连接AF.(1)如图1,求证:四边形AECF为菱形;(2)如图2,若FC=2DF,连接AC交EF于点O,连接DO,D′O,在不添加任何辅助线的情况下,请直接写出图2中所有等边三角形.【考点】翻折变换(折叠问题);等边三角形的判定;菱形的判定.【分析】(1)由折叠性质得AE=CE,AF=FC,∠AEF=∠CEF,由矩形性质得出∠ADC=∠BAD=90°,AE∥CF,证出AE=CF,得出四边形AECF是平行四边形,即可得出结论;(2)先证出∠DAF=30°,得出∠EAF=60°,证出△AEF和△CEF是等边三角形;再证出OD= AC=OA,∠OAD=60°,得出△AOD是等边三角形;证出CD′=OC=OD′,得出△COD′是等边三角形.【解答】(1)证明:∵将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,∴AE=CE,AF=FC,∠AEF=∠CEF,∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AE∥CF,∴∠CFE=∠AEF,∴∠CEF=∠CFE,∴CF=CE,∴AE=CF,∴四边形AECF是平行四边形,又∵AE=CE,∴四边形AECF是菱形;(2)解:等边三角形为:△AEF、△CEF、△AOD、△COD′;理由如下:∵FC=2DF,AF=FC,∴AF=2DF,∵∠ADC=90°,∴∠DAF=30°,∴∠EAF=60°,∵四边形AECF是菱形,∴AE=AF,△AEF≌△CEF,OA=OC=AC,∴△AEF和△CEF是等边三角形;∵∠ADC=90°,∴OD=AC=OA,∵∠OAF=∠EAF=30°,∴∠OAD=60°,∴△AOD是等边三角形;∵CD′=AD=OC,OD′=AC,∴CD′=OC=OD′,∴△COD′是等边三角形.25.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设甲种君子兰每株成本为x元,乙种君子兰每株成本为y元.此问中的等量关系:①购进甲种2株,乙种3株,则共需要成本1700元;②购进甲种3株,乙种1株,则共需要成本1500元;依此列出方程求解即可;(2)结合(1)中求得的结果,根据题目中的不等关系:成本不超过30000元;列不等式进行分析.【解答】解:(1)设甲种君子兰每株成本为x元,乙种君子兰每株成本为y元,依题意有,解得.故甲种君子兰每株成本为400元,乙种君子兰每株成本为300元.(2)设购进甲种君子兰a株,则购进乙种君子兰(3a+10)株,依题意有400a+300(3a+10)≤30000,解得a≤.∵a为整数,∴a最大为20.故最多购进甲种君子兰20株.26.如图1,AB是⊙O的直径,OD⊥弦BC于点E,过点D作DF⊥AB于点F.(1)求证:BC=2DF;(2)如图2,连接AE,过点C作AE的垂线交⊙O于点M,垂足为G,过点B作CM的垂线,垂足为H,若∠EAB+∠ODF=45°,AB=10,求弦CM的长.【考点】圆周角定理;勾股定理;垂径定理.【分析】(1)根据垂径定理证得2BE=BC,根据AAS证得△OEB≌△OFD,得出DF=BE,即可证得BC=2DF;(2)连接AM、BM,由AE⊥CM.BH⊥CM.证得AE∥BH,得出∠EAB=∠ABH,进一步证得CG=GH,进而证得∠CBH=∠C=45°,得出CH=BH=BC,通过证得△AMG≌△MBH(AAS),得出MG=BH=CH,即MH=CM,BH=CM,根据圆周角定理证得△ABM是等腰直角三角形,得出AM=BM=AB=5,然后根据勾股定理即可求得.【解答】(1)证明:OD⊥弦BC于点E,∴CE=BE,∴2BE=BC,∵DF⊥AB于点F.∴∠OEB=∠OFD=90°,在△OEB和△OFD中,∴△OEB≌△OFD(AAS),∴DF=BE,∴BC=2DF;(2)解:连接AM、BM,∵AE⊥CM.BH⊥CM.∴AE∥BH,∴∠EAB=∠ABH,∵△OEB≌△OFD,∴∠ODF=∠ABC,∵∠EAB+∠ODF=45°,∴∠ABH+∠ABC=45°,即∠CBH=45°,∵∠CHB=90°,∴∠C=45°,∴CH=BH=BC,∵AB是直径,∴∠AMB=90°,∵∠MAB=∠C=45°,∴△ABM是等腰直角三角形,∴AM=BM=AB=×10=5,∵∠AMC+∠BMC=90°,∠GAM+∠AMC=90°,∴∠GAM=∠HMB,在△AMG和△MBH中∴△AMG≌△MBH(AAS),∴MG=BH,∴MG=CH,∴CG=MH,∵AE∥BH,CE=BE,∴CG=GH,∴MH=CM,BH=CM,在RT△BMH中,MH2+BH2=BM2,∴(CM)2+(CM)2=(5)2,∴CM=3.27.已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于C,顶点为D,E为对称轴与x轴的交点,A(1,0),B(3,0)(1)求抛物线的解析式;(2)若点P为抛物线上第四象限对称轴左侧上一点,设P点的横坐标为m,△PBC的面积为S,求S与m的函数关系式;(3)在(2)的条件下,过C点作射线CP交对称轴于K,CM⊥DE交抛物线于M,连接PM交对称轴于R,若DK=3RN,求P点的坐标.【考点】二次函数综合题.【分析】(1)把A、B两点代入抛物线解析式即可.(2)如图1中,过点B作BF⊥x轴,过点C作CF⊥y轴,设点P坐标(m,﹣m2+4m﹣3),根据s=S△PCF+S△PBF﹣S△BCF即可解决.(3)如图2中,设点P坐标(m,﹣m2+4m﹣3),先求出直线PC、PM的解析式,再求出点K、R坐标,列方程解决即可.【解答】解(1)把A(1,0),B(3,0)代入y=﹣x2+bx+c得解得,∴抛物线解析式为y=﹣x2+4x﹣3(2)如图1中,过点B作BF⊥x轴,过点C作CF⊥y轴,设点P坐标(m,﹣m2+4m﹣3)∵点C(0,﹣3),∴CF=BF=3,∴s=S△PCF+S△PBF﹣S△BCF=×3×(﹣m2+4m﹣3+3)+×3×(3﹣m)﹣×3×3∴S=﹣m2+m(3)如图2中,设点P坐标(m,﹣m2+4m﹣3),设直线PC的解析式为:y=kx﹣3,把点p代入得k=﹣m+4,∴直线PC为y=(﹣m+4)x﹣3,∴点K坐标(2,﹣2m+5),∵点M坐标(4,﹣3),设直线PM为y=k′x+b,把P、M两点代入得,解得,∴直线PM为y=﹣mx+4m﹣3,∴的R坐标为(2,2m﹣3),∵DK=3RN,D(2,1),N(2,﹣3)∴﹣2m+5﹣1=3[2m﹣3﹣(﹣3)],∴m=,∴P(,﹣).。
黑龙江省哈尔滨市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·郑州期中) 下列各式中是一元二次方程的有()A . 3x2=1B . x2+y2=4C .D . xy=22. (2分) (2018九上·长兴月考) 抛物线y=(x-2)2的对称轴是()A . 直线x=-1B . 直线x=1C . 直线x=-2D . 直线x=23. (2分) (2020九下·滨湖月考) 若将抛物线y=x2平移,得到新抛物线,则下列平移方法中,正确的是()A . 向左平移3个单位B . 向右平移3个单位C . 向上平移3个单位D . 向下平移3个单位4. (2分) (2020九上·鹿城月考) 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A .B .C .D .5. (2分)在如图直角坐标系内,四边形AOBC是边长为2的菱形,E为边OB的中点,连结AE与对角线OC 交于点D,且∠BCO=∠EAO,则点D坐标为()A . (,)B . (1,)C . (,)D . (1,)6. (2分)已知⊙O的半径为3,一点到圆心的距离是5,则这点在()A . 在⊙O内B . 在⊙O上C . 在⊙O外D . 不能确定7. (2分)如图,在宽为,长为的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.如果设小路宽为,根据题意,所列方程正确的是().A .B .C .D .8. (2分)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A . 只能是x=﹣1B . 可能是y轴C . 可能在y轴右侧且在直线x=2的左侧D . 可能在y轴左侧且在直线x=﹣2的右侧9. (2分)(2020·遵义模拟) 如图,以正方形的顶点为坐标原点,直线为轴建立直角坐标系,对角线与相交于点,为上一点,点坐标为,则点绕点顺时针旋转90°得到的对应点的坐标是()A .B .C .D .10. (2分)(2019·苏州模拟) 如图,⊙ 中,直径与弦相交于点,连接,过点的切线与的延长线交于点,若,则的度数等于()A . 30°B . 35°C . 40°D . 45°二、填空题 (共5题;共5分)11. (1分) (2020八下·柯桥期末) 将方程x(x﹣2)=x+3化成一般形式后,二次项系数为________.12. (1分) (2016九上·大石桥期中) 已知函数是关于x的二次函数,则m的值为________.13. (1分) (2019八上·深圳月考) 如图,在边长为4的正方形中,是边的中点,将沿对折至,延长交于点,连接,则的长为________.14. (1分) (2018九上·青海期中) 若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________.15. (1分)(2018·南充) 如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).三、解答题 (共8题;共60分)16. (10分) (2019九上·綦江月考) 解下列方程(1)(2)17. (2分)(2020·聊城) 如图,在 ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6 ,求此时DE的长.18. (5分)用反证法证明:若二次方程8x2﹣(k﹣1)x+k﹣7=0有两个不等实数根,则两根不可能互为倒数.19. (10分)如图所示,已知等边△ABC的两个顶点的坐标为A(﹣4,0),B(2,0).(1)用尺规作图作出点C,并求出点C的坐标;(2)求△ABC的面积.20. (11分) (2019九上·西城期中) 某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.(1)如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?21. (2分) (2020九上·台州月考) 如图,在平面直角坐标系中,△ 的三个顶点坐标分别为,, .( 1 )画出将△ 向左平移4个单位得到的△ ,并写出的坐标;( 2 )画出将△ 绕点逆时针旋转得到的△ ,并写出的坐标.22. (10分) (2020九上·覃塘期末) 把一副三角板按如图1所示放置,其中点在边上,,斜边 .将三角板绕点顺时针旋转,记旋转角为 .(1)在图1中,设与的交点为,则线段AF的长为________;(2)当时,三角板旋转到,的位置(如图2所示),连接,请判断四边形的形状,并证明你的结论;(3)当三角板旋转到的位置(如图3所示)时,此时点恰好在的延长线上.①求旋转角的度数;②求线段的长.23. (10分)(2014·宿迁) 如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共60分)答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-2、考点:解析:。
2016-2017学年黑龙江省哈工大附中九年级(上)期中数学试卷(五四学制)一、选择题(每小题3分,共计30分)1.(3分)9的相反数是()A.B.9 C.﹣9 D.﹣2.(3分)下列计算正确的是()A.a2•a3=a6 B.a6÷a2=a3C.2a2+a2=3a4D.(﹣2a)3=﹣8a33.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.(3分)点(﹣2,4)在反比例函数y=(k≠0)的图象上,则该函数的图象位于第()象限.A.一、三B.二、四C.一、四D.二、三5.(3分)已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值为()A.B.C.D.6.(3分)如图,AB是⊙O的直径,CD为弦,连结AD、AC、BC,若∠CAB=65°,则∠D的度数为()A.65°B.40°C.25°D.35°7.(3分)如果将抛物线y=(x﹣1)2+2向下平移1个单位,那么所得的抛物线解析式是()A.y=(x﹣1)2+3 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=x2+28.(3分)如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=9.(3分)如图,把△ABC绕点C顺时针旋转某个角度θ得到△A′B′C,∠A=30°,∠1=70°,则旋转角θ可能等于()A.40°B.50°C.70°D.100°10.(3分)二次函数y=ax2+bx+c与一次函数y=ax+c 在同一坐标系内的图象可能是图中所示的()A.B.C.D.二、填空题(每小题3分,共计30分)11.(3分)将数字2170 000用科学记数法表示为.12.(3分)在函数中,自变量x的取值范围是.13.(3分)分解因式:m3n﹣2m2n+mn=.14.(3分)化简:﹣=.15.(3分)不等式组的解集为.16.(3分)一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个球为白球的概率是.17.(3分)2016年1月某市房地产公司的住房销售量为100套,3月份的住房销售量为169套,若每月平均增长的百分率相同,则该公司这两个月住房销售量的平均增长率为.18.(3分)一个扇形的面积为32πcm2,弧长为8πcm,则该扇形的半径为cm.19.(3分)在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E为AB 边上一点.若BC=8,DE=5,则线段BE=.20.(3分)如图,△ABC中,∠ACB=90°,AC=BC=3,点D在AC上,CD=1,连接BD,过点C作CH⊥BD于点H,O为AB中点,连接OH,则OH的长为.三、解答题(其中21--22题各7分,23--24题各8分,25--27题各l0分,共计60分)21.(7分)先化简,再求值(﹣1)÷,其中x=2cos30°﹣tan45°.22.(7分)如图,网格中每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中画出以AB为底的等腰△BAC,点C在小正方形的挌点上,且tan∠ACB=.(2)在图中画出将线段EF绕点F顺时针旋转90°后的线段FD,连接CD、DE、CE,直接写出△CDE的面积.23.(8分)为了了解初二学生每学期参加假期社会实践活动的情况,某区教育行政部门随机抽样调查了某校初二学生一个学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出该校初二学生总数;(2)通过计算补全条形统计图;(3)如果该区共有初二学生5600人,请你估计“活动时间大于4天”的大约有多少人.24.(8分)如图,四边形ABCD中,∠ADC=90°,点E为边BC上的一点,连接DE,点F为ED上的一点,连接AF、BF,且AB=AC,AD=AF,∠BAC=∠DAF.(1)求证:∠BFE=∠CDE;(2)若DE=9,CD=2,tan∠CDE=,求边BC的长.25.(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?26.(10分)已知线段AB、CD为⊙O的两条弦,且AB⊥CD于点H,连接AC、BC、BD.(1)如图1,过圆心O作OE⊥BD于点E,求证:OE=AC;(2)如图2,作直径BF,连接CF、OD,若∠FCD=45°,tan∠ODC=,求tanA 的值;(3)如图3,在(2)的条件下,过点D作DG⊥CD交CF的延长线于点G,连接BG,过点D作DP⊥BG于点P,延长DP交CG于点K,若FG=2,求线段FK的长.27.(10分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0)和点B(,0);(1)求抛物线的解析式;(2)如图2,点P是第一象限内抛物线上的一动点,点Q是射线OB上的一动点,过点Q作直线m⊥x轴,射线AP交直线m于点E,点F为直线m上的一点,连接AF、BF,且∠ABF=2∠PAB,过点B作射线AP的垂线,垂足为C,直线BC 交直线AF于点D,将△ABF沿直线AF翻折得到△AFB′,点B的对应点B′恰好落在直线m上,求∠ADC的度数;(3)如图3,在(2)的条件下,当直线m与y轴重合时,求点P的坐标.2016-2017学年黑龙江省哈工大附中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)9的相反数是()A.B.9 C.﹣9 D.﹣【解答】解:根据相反数的定义,得9的相反数是﹣9.故选:C.2.(3分)下列计算正确的是()A.a2•a3=a6 B.a6÷a2=a3C.2a2+a2=3a4D.(﹣2a)3=﹣8a3【解答】解:A、a2•a3=a5≠a6,本选项错误;B、a6÷a2=a4≠a3,本选项错误;C、2a2+a2=3a2≠3a4,本选项错误;D、(﹣2a)3=﹣8a3,本选项正确.故选:D.3.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:B.4.(3分)点(﹣2,4)在反比例函数y=(k≠0)的图象上,则该函数的图象位于第()象限.A.一、三B.二、四C.一、四D.二、三【解答】解:把点(﹣2,4)代入y=得k=﹣2×4=﹣8,∴反比例函数的解析式为y=﹣,∵k<0,∴反比例函数的图象位于第二、四象限.故选:B.5.(3分)已知,在Rt△ABC中,∠C=90°,AC=3,BC=4,则sinA的值为()A.B.C.D.【解答】解:由勾股定理得AB==5,sinA=,故选:D.6.(3分)如图,AB是⊙O的直径,CD为弦,连结AD、AC、BC,若∠CAB=65°,则∠D的度数为()A.65°B.40°C.25°D.35°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=65°,∴∠B=90°﹣65°=25°,∴∠D=∠B=25°.故选:C.7.(3分)如果将抛物线y=(x﹣1)2+2向下平移1个单位,那么所得的抛物线解析式是()A.y=(x﹣1)2+3 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=x2+2【解答】解:∵y=(x﹣1)2+2的顶点坐标为(1,2),∴把抛物线向下平移1个单位,得新抛物线顶点坐标为(1,1),∵平移不改变抛物线的二次项系数,∴平移后的抛物线的解析式是y=(x﹣1)2+1.故选:B.8.(3分)如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=【解答】解:∵AB∥CD∥EF,∴,∴A选项正确,故选:A.9.(3分)如图,把△ABC绕点C顺时针旋转某个角度θ得到△A′B′C,∠A=30°,∠1=70°,则旋转角θ可能等于()A.40°B.50°C.70°D.100°【解答】解:∵△ABC绕点C顺时针旋转某个角度θ得到△A′B′C,∴∠A=∠A′=30°,又∵∠1=∠A′+∠ACA′=70°,∴∠θ=∠ACA′=40°,故选:A.10.(3分)二次函数y=ax2+bx+c与一次函数y=ax+c 在同一坐标系内的图象可能是图中所示的()A.B.C.D.【解答】解:A、由抛物线可知,a>0,由直线可知,a<0,错误;B、由抛物线可知,a<0,由直线可知,a>0,错误;C、由抛物线可知,a>0,c<0,由直线可知,a>0,c>0,错误;D、由抛物线可知,a<0,过点(0,c),由直线可知,a<0,过点(0,c),正确.故选:D.二、填空题(每小题3分,共计30分)11.(3分)将数字2170 000用科学记数法表示为 2.17×106.【解答】解:2170 000=2.17×106,故答案为:2.17×106.12.(3分)在函数中,自变量x的取值范围是x≠1.【解答】解:根据题意可得x﹣1≠0;解得x≠1;故答案为x≠1.13.(3分)分解因式:m3n﹣2m2n+mn=mn(m﹣1)2.【解答】解:原式=mn(m2﹣2m+1)=mn(m﹣1)2.故答案为mn(m﹣1)2.14.(3分)化简:﹣=.【解答】解:原式=2﹣=.故答案为:.15.(3分)不等式组的解集为x≤﹣2.【解答】解:解不等式①得:x<1,解不等式②得:x≤﹣2,∴不等式组的解集为x≤﹣2,故答案为:x≤﹣2.16.(3分)一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个球为白球的概率是.【解答】解:因为袋子中装有6个球,其中4个黑球2个白球,从中摸出一个球共有六种结果,是白球的有2种可能,所以摸出白球的概率是.17.(3分)2016年1月某市房地产公司的住房销售量为100套,3月份的住房销售量为169套,若每月平均增长的百分率相同,则该公司这两个月住房销售量的平均增长率为30%.【解答】解:由题意可得,100(1+x)2=169,解得x1=0.3=30%,x2=﹣2.3(舍去).故答案是:30%.18.(3分)一个扇形的面积为32πcm2,弧长为8πcm,则该扇形的半径为8cm.【解答】解:设半径是rcm,∵一个扇形的弧长是8πcm,扇形的面积为32πcm2,∴32π=×8π×r,解得r=8.故答案为:8.19.(3分)在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,点E为AB 边上一点.若BC=8,DE=5,则线段BE=7或1.【解答】解:如图,∵在Rt△ABC中,∠BAC=90°,AB=AC,BC=8,∴AB=AC=8.过点D作DM⊥AB于点M,∵D为BC的中点,∴DM=AC=4,AM=BM=4,∵DE=5,∴EM==3,∴BE=4+3=7或BE=4﹣3=1.故答案为:7或1.20.(3分)如图,△ABC中,∠ACB=90°,AC=BC=3,点D在AC上,CD=1,连接BD,过点C作CH⊥BD于点H,O为AB中点,连接OH,则OH的长为.【解答】解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°,CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴=,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.三、解答题(其中21--22题各7分,23--24题各8分,25--27题各l0分,共计60分)21.(7分)先化简,再求值(﹣1)÷,其中x=2cos30°﹣tan45°.【解答】解:原式=﹣•=﹣,当x=2×﹣1=﹣1时,原式=﹣.22.(7分)如图,网格中每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中画出以AB为底的等腰△BAC,点C在小正方形的挌点上,且tan∠ACB=.(2)在图中画出将线段EF绕点F顺时针旋转90°后的线段FD,连接CD、DE、CE,直接写出△CDE的面积.【解答】解:(1)如图所示,△ABC即为所求.(2)如图所示,线段DF即为所求,△CDE的面积=×6×1=3.23.(8分)为了了解初二学生每学期参加假期社会实践活动的情况,某区教育行政部门随机抽样调查了某校初二学生一个学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出该校初二学生总数;(2)通过计算补全条形统计图;(3)如果该区共有初二学生5600人,请你估计“活动时间大于4天”的大约有多少人.【解答】解:(1)根据题意得:a=1﹣(5%+10%+15%+15%+30%)=25%,八年级学生总数为20÷10%=200(人);(2)活动时间为5天的人数为200×25%=50(人),活动时间为7天的人数为200×5%=10(人),补全统计图,如图所示:(3)根据题意得:5600×(25%+15%+5%)=2520(人)则活动时间不少于4天的约有2520人.24.(8分)如图,四边形ABCD中,∠ADC=90°,点E为边BC上的一点,连接DE,点F为ED上的一点,连接AF、BF,且AB=AC,AD=AF,∠BAC=∠DAF.(1)求证:∠BFE=∠CDE;(2)若DE=9,CD=2,tan∠CDE=,求边BC的长.【解答】(1)证明:∵∠BAC=∠DAF,∴∠BAF=∠CAD,在△BAF和△CAD中,,∴△BAF≌△CAD,∴∠BFA=∠CDA=90°,∵AF=AD,∴∠AFD=∠ADF,∵∠CDE+∠ADF=90°,∠BFE+∠AFD=90°,∴∠BFE=∠CDE.(2)解:作CN⊥DE于N,BM⊥DE于M.∵△BAF≌△CAD,∴BF=CD,∵∠BFM=∠CDN,∠M=∠CND=90°,∴△BFM≌△CDN,∴BM=CN,∵BM∥CN,∴∠NCE=∠MBE,∵∠CEN=∠MEB,∴△CNE≌△BME,∴BE=CE,在RtCDN中,CD=2,tan∠CDN=,∴CN=4,DN=6,∵DE=9,∴EC===5,∴BC=2EC=10.25.(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.26.(10分)已知线段AB、CD为⊙O的两条弦,且AB⊥CD于点H,连接AC、(1)如图1,过圆心O作OE⊥BD于点E,求证:OE=AC;(2)如图2,作直径BF,连接CF、OD,若∠FCD=45°,tan∠ODC=,求tanA 的值;(3)如图3,在(2)的条件下,过点D作DG⊥CD交CF的延长线于点G,连接BG,过点D作DP⊥BG于点P,延长DP交CG于点K,若FG=2,求线段FK的长.【解答】(1)证明:如图1中,作直径BM,连接AD、MD.∵OE⊥BD,∴BE=ED,∵OB=OM,∴OE=DM,∵BM是直径,AB⊥CD,∴∠MAB=∠DHB=90°,∴AM∥CD,∴∠MAD=∠ADC,∴=,∴OE=AC.(2)如图2中,∵∠FCD=45°,∴∠DOF=2∠FCD=90°,∠DBF=∠DCF=45°,∴∠ODB=∠OBD=45°,∴OD=OB,∵tan∠ODC==,设OE=a,OD=2a,则EB=OE=a,BD=2a,∵∠EOD=∠EHB=90°,∠OED=∠BEH,∴∠ODE=∠EBH,∴tan∠EBH=tan∠ODE==,∴EH=a,HB=a,在Rt△DHB中,DH===a,∵∠A=∠CDB,∴tan∠A=tan∠CDB===.(3)如图3中,连接DF、BC,作BM⊥GD于M.∵∠GCD=∠FBD=45°,∠CDG=∠BDF=90°,∴△CDG,△BDF是等腰直角三角形,∴DF=DB,DG=DC,∠FDG=∠BDC,∴△FDG≌△BDC,∴BC=FG=2,∴BH=CH=,DH=BM=3,∵∠CFB=∠CDB,∴tan∠CFB=tan∠CDB==,∴CF=6,CG=CF+GF=8,∴DG=CD=4,BG==2,∵DP⊥BG,∴•BG•DP=•DG•BM,∴DP==,∴PG==,由△GPK∽△GCB得=,∴=,∴GK=5,∴KF=GK﹣FG=5﹣2=3.27.(10分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0)和点B(,0);(1)求抛物线的解析式;(2)如图2,点P是第一象限内抛物线上的一动点,点Q是射线OB上的一动点,过点Q作直线m⊥x轴,射线AP交直线m于点E,点F为直线m上的一点,连接AF、BF,且∠ABF=2∠PAB,过点B作射线AP的垂线,垂足为C,直线BC 交直线AF于点D,将△ABF沿直线AF翻折得到△AFB′,点B的对应点B′恰好落在直线m上,求∠ADC的度数;(3)如图3,在(2)的条件下,当直线m与y轴重合时,求点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(﹣4,0)和点B(,0);∴,∴,∴抛物线的解析式为y=﹣x2+x+3,(2)∵将△ABF沿直线AF翻折得到△AFB′,∴∠BAF=∠B'AF,∠ABF=∠AB'F,∵∠ABF=2∠PAB,∴∠AB'F=2∠PAB,∵∠AB'F+∠B'AO=90°,∴2∠PAB+∠B'AF+∠BAF=2∠PAB+2∠BAF=90°,∴∠PAB+∠BAF=45°,∴∠CAF=45°,∵CD⊥AC,∴∠ACD=90°,∴∠ADC=45°.(3)如图3,当直线m与y轴重合时,由折叠知,BF=B'F,AB'=AB=+4=,在Rt△AOB'中,OB'==,∴B'(0,﹣)设F(0,m),∴OF=﹣m,B'F=m+,∵∠B'AF=∠OAF,∴,∴,∴m=﹣,∴F(0,﹣),∴BF=B'F=﹣+=,过点B作∠ABF的角平分线交y轴于G,∴∠OBG=∠FBG=∠ABF=∠BAP,设G(0,n),∴OG=﹣n,FG=n+,∵∠OBG=∠FBG,∴,∴,∴n=﹣,∴G(0,﹣),∴OG=,∴tan∠OBG===,∵∠BAP=∠OBG,∴tan∠BAP===,∴OE=1,∴E(0,1),∵A(﹣4,0),∴直线AE的解析式为y=x+1①,∵点P是抛物线y=﹣x2+x+3②上,联立①②解得,(舍)或,∴P(3,).。
哈尔滨市2016~2017学年度上学期九年级期中考试数学试卷教师寄语:亲爱的同学们,考试只是老师了解你掌握知识多少的一种方式,请你放松心情,认真、细心答题,相信你定能在这里展示出你的风采! 一、选择题(每题3分,共30分)1、12-的倒数是( ) (A)12 (B)2 (C)-2 (D)12- 2、下列运算中,正确的是( )3=± (B)()326a a = (C)326a a a = (D)236-=-3、下列图形中是中心对称图形但不是轴对称图形的是( )4、下列各点中,在反比例函数2y x=-图像上的是( ) (A)(2,1) (B)2,33⎛⎫ ⎪⎝⎭(C)(-1,2) (D)(-2,-1) 5、在Rt ABC 中,∠C=90°,3sin 5A =,则cos A 的值等于( )(A)35 (B)45 (C)34 (D)56、从一栋二层楼的楼顶点A 处看对面的教学楼。
探测器显示,看到教学楼底部点C 处的俯角为45°,看到楼顶部点D 处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD 是( )(A)(6+米 (B)(6+米 (C)(6+米 (D)12米7、如图,E 是平行四边形ABCD 的边BA 延长线上的一点,CE 交AD 于点F ,下列各式中错误的是( ) (A)AE EF AB CF = (B)CD CF BE EC = (C)AE AF AB DF = (D)AE AF AB BC=8、下列命题中正确的是( )(A)平分弦的直径必垂直于弦,并且平分弦所对的两条弧 (B)弦所对的两条弧的中点连线垂直平分弦(C)若两段弧的度数相等,则它们是等弧(D)弦的垂线,平分弦所对的弧9、如图,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是( )米 (A)2a b +米 (B)2a b -米 (C)b 米 (D)a 米10、甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留)前往终点B 地,甲、乙两车之间的距离y (千米) 与甲车行驶时间t (小时)之间的函数关系如图所示。
2016-2017学年黑龙江省哈尔滨六十九中九年级(上)期中数学试卷(五四学制)一.选择题(每小题3分,共计30分)1.(3分)﹣的相反数是()A.B.﹣ C.﹣2 D.22.(3分)下列计算正确的是()A.a2•a3=a5 B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+13.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣45.(3分)某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%6.(3分)已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大B.减小C.先增大再减小D.先减小再增大7.(3分)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C 处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.8.(3分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于()A.B.C.D.9.(3分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.10.(3分)如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.二.填空题(每小题3分,共计30分)11.(3分)将38000用科学记数法表示为.12.(3分)函数y=中自变量x的取值范围是.13.(3分)计算:﹣=.14.(3分)把多项式xy2﹣4x分解因式的结果为.15.(3分)不等式组的整数解是.16.(3分)方程=的解为.17.(3分)如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则=.18.(3分)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为.19.(3分)在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD 与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为.20.(3分)如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG=.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.(7分)先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.22.(7分)图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.23.(8分)南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?24.(8分)在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC相等的线段(线段AC除外).25.(10分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?26.(10分)已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.27.(10分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C,=.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y 轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.2016-2017学年黑龙江省哈尔滨六十九中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一.选择题(每小题3分,共计30分)1.(3分)﹣的相反数是()A.B.﹣ C.﹣2 D.2【解答】解:﹣的相反数是,故选:A.2.(3分)下列计算正确的是()A.a2•a3=a5 B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+1【解答】解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.3.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.4.(3分)反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣4【解答】解:∵反比例函数y=的图象经过点(﹣2,5),∴2﹣3k=﹣2×5=﹣10,∴﹣3k=﹣12,∴k=4,故选:C.5.(3分)某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.6.(3分)已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大B.减小C.先增大再减小D.先减小再增大【解答】解:∵抛物线y=(x﹣2)2+1的对称轴为x=2,且开口向上,∴当x≥2时,y随x增大而增大,故选:A.7.(3分)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C 处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.【解答】解:根据题意,在Rt△ABC,有AC=a,∠ACB=α,且tanα=,则AB=AC×tanα=a•tanα,故选:B.8.(3分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于()A.B.C.D.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S=MN•AC=AM•MC,△AMC∴MN==.故选:C.9.(3分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.【解答】解:∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC,∴==,==,∵EF∥AB,∴=,=,∴,故选:C.10.(3分)如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.【解答】解:当点p由点A运动到点B时,△APD的面积是由小到大;然后点P由点B运动到点C时,△APD的面积是不变的;再由点C运动到点D时,△APD的面积又由大到小;再观察图形的BC<AB<CD,故△APD的面积是由小到大的时间应小于△APD的面积又由大到小的时间.故选:B.二.填空题(每小题3分,共计30分)11.(3分)将38000用科学记数法表示为 3.8×104.【解答】解:38000=3.8×104,故答案为:3.8×104.12.(3分)函数y=中自变量x的取值范围是x≠﹣.【解答】解:由题意得,3x+1≠0,解得x≠﹣.故答案为:x≠﹣.13.(3分)计算:﹣=.【解答】解:原式=3﹣=2.故答案为:2.14.(3分)把多项式xy2﹣4x分解因式的结果为x(y+2)(y﹣2).【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)15.(3分)不等式组的整数解是2.【解答】解:,解不等式①得:x>1;解不等式②得:x<3.∴不等式组的解为1<x<3,∴不等式组的整数解是2.故答案为:2.16.(3分)方程=的解为x=5.【解答】解:去分母得3(x﹣1)=2(x+1),去括号得:3x﹣3=2x+2,解得:x=5,检验:当x=5时,(x+1)(x﹣1)≠0,则原方程的解为x=5.故答案为x=5.17.(3分)如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则=.【解答】解:∵DE:EC=1:2,∴EC:DC=2:3,;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△ABF∽△CEF,∴BF:EF=AB:EC,∵AB:EC=CD:EC=3:2,∴BF:FE=3:2,故答案为:.18.(3分)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为4.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故答案为:4.19.(3分)在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为或15.【解答】解:如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,∵AC⊥CD,∴AC∥BE,∴==,∵AC=6,∴BE=,∵tan∠BCE=,∴EC=2BE=3,∴BC===.如图2中,当点D在线段AB上时,作BE⊥CD于E,∵AC∥BE,AC=6,∴==,∴BE=3,∵tan∠BCE=,∴EC=2BE=6,∴BC==15.故答案为:或15.20.(3分)如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG=.【解答】解:如图,连接EF、DF,作FM⊥DE于M.∵四边形ABCD是正方形,∴AB=BC=CD=AD=10,∵AE=EB=BF=FC=5,∴ED==5,EF==5,=100﹣×10×5﹣×10×5﹣×5×5=×DE•FM,∴S△DEF∴FM=3,在Rt△EFM中,EM==,∴DM=DE﹣EM=4,∵∠MGF=45°,∴∠MGF=∠MFG=45°,∴MG=FM=3,∴DG=DM﹣MG=.故答案为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.(7分)先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.【解答】解:∵m=tan60°﹣2sin30°=﹣2×=﹣1,∴÷=×===.22.(7分)图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.【解答】(1)解:如图a(2)如图b.23.(8分)南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?【解答】解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.24.(8分)在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC相等的线段(线段AC除外).【解答】解:(1)证明:如图1,∵AD=CD,DE⊥AC,∴∠DCA=∠ADC,CE=AE,∵CF∥AB,∴∠ECF=∠EAD,∴∠DCA=∠ECF,即CE平分∠DCF,而CE⊥DF,∴CD=CF,∴AD=CF,∴AD∥CF,∴四边形ADCF为平行四边形,而DA=DC,∴四边形ADCF是菱形;(2)如图2,∵∠ACB=90°,∠B=30°,∴∠BAC=60°,而DA=DC,∴△ADC为等边三角形,∴AC=AD=CD,∠ACD=60°,∵四边形ADCF为菱形,∴AC=AD=DC=CF=AF,∵∠B=∠DCB=30°,∴BD=CD,∴AC=AD=DC=CF=AF=BD.25.(10分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.26.(10分)已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.【解答】解:(1)如图1,连接OD,∴OA=OD,∵CD∥AB,∴∠BOD=∠NDO,,∴∠AOC=∠BCD,∴∠AOC=∠CDO,在△AMO和△OND中,,∴△AMO≌△OND,∴AM=ON,(2)如图2,过点C作CG⊥AB,PH⊥AB,∴CG=PH,∵AP=OP,∠APO=90°,∴∠AOP=45°,PH=OA,∴CG=OA=OC,∴∠AOC=30°,∴∠COP=∠AOP﹣∠AOC=15°.(3)如图3,作OG⊥CD于G,连接OD,∵AB=20,∴OC=10CG=OC•cos∠C=OC•cos∠AOC=10×=8∴CD=2CG=16∵NE=NF,∴∠E=∠EFN∵CD∥AB,∴∠EFN=∠A∴∠E=∠A,∴OE=OA∵CD∥AB,∴∠BOD=∠D=∠C=∠AOC∴∠AOE=∠COD∴△AOE≌△COD,∴AE=CD=16∵△AOM≌△ODN,∴∠NOD=∠A=∠E∴AE∥OD,∴四边形AODF是平行四边形∴AF=OD=10∴EF=AE﹣AF=16﹣10=6,27.(10分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C,=.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y 轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.【解答】解:(1)对于抛物线y=mx2﹣6mx+5m,令y=0,得mx2﹣6mx+5m=0,解得x=1或5,∴A(1,0),B(5,0),∴AB=4,∵=,∴OC=5,∴5m=5,∴m=1.(2)如图2中,设P(t,t2﹣6t+5).∵OC=OB=5,∠AOB=90°,∴∠OCB=∠OBC=∠EBF=45°,∵PE⊥AB于F,∴△BEF是等腰直角三角形,∴BF=EF=t﹣5,∴点E坐标(t,5﹣t),∵A(1,0),P(t,t2﹣6t+5),设直线AP的解析式为y=kx+b,则有,解得,∴D(0,5﹣t),∴D、E两点纵坐标相同,∴DE∥AB.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.∵EG=2PG,∴GE=(t2﹣5t),∵MD=MG,设DM=MG=a,∴∠MDG=∠MGD,∴∠GME=2∠MDG,∵∠DPE=2∠GDE,∴∠DPE=∠GME,∴tan∠DPE=tan∠GME,∴=,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,∴a=t3﹣t2+t,∴EM=t﹣a=﹣t3+t2﹣t,∴=,整理得到16t2﹣160t+391=0,解得t=或(舍弃),∴点P坐标(,).赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
哈尔滨市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七上·中堂期中) 下列计算正确的是()A . ﹣12﹣8=﹣4B . ﹣5+4=﹣9C . ﹣1﹣9=﹣10D . ﹣32=92. (2分)(2019·永州) 2019年“五一”假期期间,我市共接待国内、外游客140.42万人次,实现旅游综合收入8.94亿元,则“旅游综合收入”用科学记数法表示正确的是()A . 1.4042×106B . 14.042×105C . 8.94×108D . 0.894×1093. (2分) (2017九上·黄石期中) 下列方程中,是关于x的一元二次方程为()A .B .C . x2-5=0D .4. (2分) (2016八上·抚宁期中) 如果一个等腰三角形的周长为15cm,一边长为3cm,那么腰长为()A . 3cmB . 6cmC . 5cmD . 3cm或6cm5. (2分)(2019·广东模拟) 由若干个相同的正方体组成的几何体如图M2-1,则这个几何体的俯视图是()A .B .C .D .6. (2分) (2017八下·德州期末) 如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD 的周长为()A . 5cmB . 10cmC . 20cmD . 40cm7. (2分)(2019·鄂尔多斯) 如图,在中,,依据尺规作图的痕迹,计算的度数是()A . 67°29′B . 67°9′C . 66°29′D . 66°9′8. (2分)矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A .B .C .D .9. (2分)向阳村2010年的人均年收入为12000元,2012年的人均年收入为14520元.设人均年收入的平均增长率为x,则下列所列的方程中正确的是()A . 14520(1﹣x2)=12000B . 12000(1+x)2=14520C . 12000(1+x)2=14520D . 12000(1﹣x)2=1452010. (2分)(2020·石城模拟) x1 , x2是关于x的一元二次方程x2-2mx-3m²=0的两根,则下列说法不正确的是()A . x1+x2=2mB . x1x2=-3m2C . x1-x2=±4mD . =-311. (2分) (2019八上·广丰月考) 为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D ,使CD=BC ,再作出BF的垂线DE ,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC ,得ED=AB ,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是()A . SASB . ASAC . SSSD . AAS12. (2分)▱ABCD的周长是28㎝,△ABC的周长是22cm,则AC的长为()A . 6cmB . 12cmC . 4cmD . 8cm二、填空题 (共6题;共6分)13. (1分) (2019七上·丰台月考) 已知,|a|=﹣a, =﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=________.14. (1分) (2018九上·安定期末) 若x2﹣4x+5=(x﹣2)2+m,则m=________.15. (1分) (2016九上·松原期末) 若关于x的一元二次方程(x-2)(x-3)=m有实数根x1 , x2 ,且x1x2有下列结论:①x1=2,x2=3;②m> ;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中正确的结论是________(填正确结论的序号)16. (1分) (2017八下·合浦期中) 如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E 在DC边的延长线上.若∠CAE=15°,则AE=________.17. (1分) (2017八下·苏州期中) 如图,顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1 ,然后顺次连接四边形A1B1C1D1的中点得到四边形A2B2C2D2 ,再顺次连接四边形A2B2C2D2四边的中点得到四边形A3B3C3D3 ,…,已知AB=6, BC=8,按此方法得到的四边形A5B5C5D5的周长为________.18. (1分) (2020·陕西模拟) 如图,正八边形和正五边形按如图方式拼接在一起,则∠ABC的度数为________。
2017—2018学年度(上)学期69中学10月份阶段验收九年级数学试卷一、选择题(每题3分 ,共30分)1. 3-的绝对值是( )A.3-B.13-C.13D.3 2. 下列计算正确的是( )A. 523a a a =+B. a a a =÷45C. 44a a a =⋅ D .632)(ab ab =3.下列图形中,不是轴对称图形的是( )A B C D4.下列说法正确的是( )A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.度数相等的弧是等弧5.某商品原价200元,连续两次降价%a 后售价为148元,下列所列方程正确的是( )A.2200(1%)148a +=B.2200(1%)148a -=C.200(12%)148a -=D.2200(1%)148a -=6.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A.2(1)2y x =-+ B.2(1)2y x =++ C.21y x =+ D.23y x =+7.如图,在ABC ∆中,//,//DE BC DF AC ,则下列比例式中正确的是( )A.BD DF AD AC =B.BF AE FC EC =C.BF DF FC AC =D.BF CE FC AE= 8.如图,在⊙O 中,圆心角60BOC ∠=︒,则圆周角BAC ∠的度数为( )A.60︒B.50︒C.40︒D.30︒9.如图,ABC ∆是一张顶角为120︒的三角形纸片,,12AB AC BC ==,现将ABC ∆ 折叠,使点B 与点A 重合,折痕为DE ,则DE 的长为( )A. 1B. 2C. 3D. 310.在全民健身越野赛中,甲、乙两位选手的行程y (千米)随时间x (小时)变化的图象如图所示.则下列说法错误的是( )A.起跑后1小时内,甲在乙的前面B.第1小时两人都跑了10千米C.甲比乙先到达终点D.两人都跑了20千米二、填空题(每题3分 ,共30分)11.将5210000用科学记数法表示为 .12.在函数123x y x -=+中,自变量x 的取值范围是 . 13.12733的结果是 . 14.分解因式:3a a -= .15.不等式组22012x x ->⎧⎨-<⎩的解集是 .16.一个扇形的面积是12πcm 2,圆心角是60︒,则此扇形的半径是 cm . 17.已知反比例函数1m y x -=的图象位于一、三象限,则m 的取值范围是 . 18.已知⊙O 的半径2OA =,弦,AB AC 的长分别是22,32,则BAC ∠= .19.如图,⊙O 的直径8AB =,C 为圆上一点,4BC =, 过点C 作⊙O 的切线l ,过点A 作直线l 的垂线AD ,点D 为垂足,AD 与⊙O 交于点E ,则线段AE 的长为 . 20. 如图,在四边形ABCD 中,∠ABC=90°,AC 、BD 相交于点E , AC=BD ,且AC ⊥BD ,若AB=4,AD=5,则CD 的长为_____________ .三、解答题(21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.先化简,再求值:2122121x x x x x x +-÷+--+,其中232x =. 22.图1、图2是8×8的网格,网格中每个小正方形的边长均为1,请按要求画出下列图形,所画图形的各个顶点均在小正方形的顶点上.DA B C E(20题图)(1)在图1中画出以AB 为一边的成中心对称的四边形ABCD ,使其面积为12;(2)在图2中画出一个以EF 为一边的EFP ∆,使其是面积为152的轴对称图形. 23. 初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对部分学校的九年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了________名学生;(2)将图①补充完整;(3)根据抽样调查结果,请你估计我市近80000名九年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?24.已知:点D 是ABC ∆的边AB 上一点,//CN AB ,DN 交AC 于点M ,MA MC =.(1)如图1,求证:四边形ADCN 是平行四边形.(2)如图2,若2,90,AMD MCD ACB AC BC ∠=∠∠=︒=,请直接写出图中所有与 线段AN 相等的线段(线段AN 除外)25.某服装店用32000元购进了一批服装,上架后很快脱销,该商场用68000元购进第二批这种服装,所购数量是第一批购进数量的2倍,但每件进价多了10元.请问:图2 M N D A N M A C BD 图1(1)该商场两次共购进这种服装多少件?(2)如果这两批服装每件的售价相同,且全部售完后总利润率不低于20%,那么每件售价至少是多少元?(利润率=%100⨯成本利润) 26.已知:如图,在⊙O 中,AB 是⊙O 的直径,AC 、BC 是⊙O 的弦,过点O 作OE AC ⊥于点E ,延长EO 交⊙O 于点K ,过点K 作KF AB ⊥于点F ,射线EF 、CB 交于点G ,连接GK .(1)求证:OE OF =;(2)求证:GK EK ⊥;(3)若3,162OF AC BG ==,求线段EF 的长度.27.如图,在平面直角坐标系中,抛物线212y x bx c =++交x 轴正半轴于点A 、B ,交y 轴于点C ,直线6y x =-+经过点B 和点C ,点D 与点C 关于抛物线的对称轴对称,点P 在抛物线上,连接DP 交线段BC 于点E.(点E 不与点B 、C 重合)(1)求抛物线的解析式;(2)设点P 的坐标横坐标为t ,设PE d DE=,求d 与t 之间的函数关系式;(直接写出自变量t 的取值范围)(3)连接BD ,当45BDP ∠=︒时,求点P 的坐标.备用图1 备用图2图3图2图1。
2016-2017学年黑龙江省哈尔滨六十九中九年级(上)期中数学试卷(五四学制)一.选择题(每小题3分,共计30分)1.(3分)﹣的相反数是()A.B.﹣ C.﹣2 D.22.(3分)下列计算正确的是()A.a2•a3=a5 B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+13.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣45.(3分)某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%6.(3分)已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大B.减小C.先增大再减小D.先减小再增大7.(3分)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C 处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.8.(3分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于()A.B.C.D.9.(3分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.10.(3分)如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.二.填空题(每小题3分,共计30分)11.(3分)将38000用科学记数法表示为.12.(3分)函数y=中自变量x的取值范围是.13.(3分)计算:﹣=.14.(3分)把多项式xy2﹣4x分解因式的结果为.15.(3分)不等式组的整数解是.16.(3分)方程=的解为.17.(3分)如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则=.18.(3分)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为.19.(3分)在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD 与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为.20.(3分)如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG=.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.(7分)先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.22.(7分)图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.23.(8分)南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?24.(8分)在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC相等的线段(线段AC除外).25.(10分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?26.(10分)已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.27.(10分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C,=.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y 轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.2016-2017学年黑龙江省哈尔滨六十九中九年级(上)期中数学试卷(五四学制)参考答案与试题解析一.选择题(每小题3分,共计30分)1.(3分)﹣的相反数是()A.B.﹣ C.﹣2 D.2【解答】解:﹣的相反数是,故选:A.2.(3分)下列计算正确的是()A.a2•a3=a5 B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+1【解答】解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.3.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.4.(3分)反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10 B.﹣10 C.4 D.﹣4【解答】解:∵反比例函数y=的图象经过点(﹣2,5),∴2﹣3k=﹣2×5=﹣10,∴﹣3k=﹣12,∴k=4,故选:C.5.(3分)某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10% B.20% C.25% D.40%【解答】解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.故选:B.6.(3分)已知抛物线的解析式为为y=(x﹣2)2+1,则当x≥2时,y随x增大的变化规律是()A.增大B.减小C.先增大再减小D.先减小再增大【解答】解:∵抛物线y=(x﹣2)2+1的对称轴为x=2,且开口向上,∴当x≥2时,y随x增大而增大,故选:A.7.(3分)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C 处测得AC=a,∠ACB=α,那么AB等于()A.a•sinαB.a•tanαC.a•cosαD.【解答】解:根据题意,在Rt△ABC,有AC=a,∠ACB=α,且tanα=,则AB=AC×tanα=a•tanα,故选:B.8.(3分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于()A.B.C.D.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S=MN•AC=AM•MC,△AMC∴MN==.故选:C.9.(3分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A.B.C.D.【解答】解:∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC,∴==,==,∵EF∥AB,∴=,=,∴,故选:C.10.(3分)如图,在四边形ABCD中,动点P从点A开始沿ABCD的路径匀速前进到D为止.在这个过程中,△APD的面积S随时间t的变化关系用图象表示正确的是()A.B.C.D.【解答】解:当点p由点A运动到点B时,△APD的面积是由小到大;然后点P由点B运动到点C时,△APD的面积是不变的;再由点C运动到点D时,△APD的面积又由大到小;再观察图形的BC<AB<CD,故△APD的面积是由小到大的时间应小于△APD的面积又由大到小的时间.故选:B.二.填空题(每小题3分,共计30分)11.(3分)将38000用科学记数法表示为 3.8×104.【解答】解:38000=3.8×104,故答案为:3.8×104.12.(3分)函数y=中自变量x的取值范围是x≠﹣.【解答】解:由题意得,3x+1≠0,解得x≠﹣.故答案为:x≠﹣.13.(3分)计算:﹣=.【解答】解:原式=3﹣=2.故答案为:2.14.(3分)把多项式xy2﹣4x分解因式的结果为x(y+2)(y﹣2).【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)15.(3分)不等式组的整数解是2.【解答】解:,解不等式①得:x>1;解不等式②得:x<3.∴不等式组的解为1<x<3,∴不等式组的整数解是2.故答案为:2.16.(3分)方程=的解为x=5.【解答】解:去分母得3(x﹣1)=2(x+1),去括号得:3x﹣3=2x+2,解得:x=5,检验:当x=5时,(x+1)(x﹣1)≠0,则原方程的解为x=5.故答案为x=5.17.(3分)如图,在▱ABCD中,E在DC上,若DE:EC=1:2,则=.【解答】解:∵DE:EC=1:2,∴EC:DC=2:3,;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△ABF∽△CEF,∴BF:EF=AB:EC,∵AB:EC=CD:EC=3:2,∴BF:FE=3:2,故答案为:.18.(3分)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为4,则弦AB的长为4.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故答案为:4.19.(3分)在△ABC中,AC=6,点D为直线AB上一点,且AB=3BD,直线CD与直线BC所夹锐角的正切值为,并且CD⊥AC,则BC的长为或15.【解答】解:如图1中,当点D在AB的延长线上时,作BE⊥CD垂足为E,∵AC⊥CD,∴AC∥BE,∴==,∵AC=6,∴BE=,∵tan∠BCE=,∴EC=2BE=3,∴BC===.如图2中,当点D在线段AB上时,作BE⊥CD于E,∵AC∥BE,AC=6,∴==,∴BE=3,∵tan∠BCE=,∴EC=2BE=6,∴BC==15.故答案为:或15.20.(3分)如图,在正方形ABCD中,E、F分别是AB、BC的中点,点G是线段DE上一点,且∠EGF=45°,若AB=10,则DG=.【解答】解:如图,连接EF、DF,作FM⊥DE于M.∵四边形ABCD是正方形,∴AB=BC=CD=AD=10,∵AE=EB=BF=FC=5,∴ED==5,EF==5,=100﹣×10×5﹣×10×5﹣×5×5=×DE•FM,∴S△DEF∴FM=3,在Rt△EFM中,EM==,∴DM=DE﹣EM=4,∵∠MGF=45°,∴∠MGF=∠MFG=45°,∴MG=FM=3,∴DG=DM﹣MG=.故答案为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共60分)21.(7分)先化简,再求代数式÷的值,其中m=tan60°﹣2sin30°.【解答】解:∵m=tan60°﹣2sin30°=﹣2×=﹣1,∴÷=×===.22.(7分)图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长为1,点A、B、D在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形顶点上),使△ABC是等腰三角形,且∠ABC=45°;(2)在图b中画出△DEF(E、F在小正方形顶点上),使△DEF∽ABC且相似比为1:.【解答】(1)解:如图a(2)如图b.23.(8分)南岗区某中学的王老师统计了本校九年一班学生参加体育达标测试的报名情况,并把统计的数据绘制成了不完整的条形统计图和扇形统计图.根据图中提供的数据回答下列问题:(1)该学校九年一班参加体育达标测试的学生有多少人?(2)补全条形统计图的空缺部分;(3)若该年级有1200名学生,估计该年级参加仰卧起坐达标测试的有多少人?【解答】解:(1)由图可知,坐位体前摆的人数与仰卧起坐的人数是25+20=45人,这些人占班级参加测试总人数的百分数为(1﹣10%)=90%,所以这个班参加测试的学生有45÷90%=50人,答:该学校九年级一班参加体育达标测试的学生有50人.(2)立定跳远的人数为50﹣25﹣20=5人,(3)用样本估计总体,全校参加仰卧起坐达标测试的人数有1200×(20÷50)=480人,答:估计参加仰卧起坐测试的有480人.24.(8分)在△ABC中,点D在AB边上,AD=CD,DE⊥AC于点E,CF∥AB,交DE的延长线于点F.(1)如图1,求证:四边形ADCF是菱形;(2)如图2,当∠ACB=90°,∠B=30°时,在不添加辅助线的情况下,请直接写出图中与线段AC相等的线段(线段AC除外).【解答】解:(1)证明:如图1,∵AD=CD,DE⊥AC,∴∠DCA=∠ADC,CE=AE,∵CF∥AB,∴∠ECF=∠EAD,∴∠DCA=∠ECF,即CE平分∠DCF,而CE⊥DF,∴CD=CF,∴AD=CF,∴AD∥CF,∴四边形ADCF为平行四边形,而DA=DC,∴四边形ADCF是菱形;(2)如图2,∵∠ACB=90°,∠B=30°,∴∠BAC=60°,而DA=DC,∴△ADC为等边三角形,∴AC=AD=CD,∠ACD=60°,∵四边形ADCF为菱形,∴AC=AD=DC=CF=AF,∵∠B=∠DCB=30°,∴BD=CD,∴AC=AD=DC=CF=AF=BD.25.(10分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.26.(10分)已知,AB是半圆O的直径,弦CD∥AB,动点M、N分别在线段OC、CD上,AM的延长线与射线ON相交于点E,与弦CD相交于点F.(1)如图1,若DN=OM,求证:AM=ON;(2)如图2,点P是弦CD上一点,若AP=OP,∠APO=90°,求∠COP的度数;(3)在(1)的条件下,若AB=20,cos∠AOC=,当点E在ON的延长线上,且NE=NF时,求线段EF的长.【解答】解:(1)如图1,连接OD,∴OA=OD,∵CD∥AB,∴∠BOD=∠NDO,,∴∠AOC=∠BCD,∴∠AOC=∠CDO,在△AMO和△OND中,,∴△AMO≌△OND,∴AM=ON,(2)如图2,过点C作CG⊥AB,PH⊥AB,∴CG=PH,∵AP=OP,∠APO=90°,∴∠AOP=45°,PH=OA,∴CG=OA=OC,∴∠AOC=30°,∴∠COP=∠AOP﹣∠AOC=15°.(3)如图3,作OG⊥CD于G,连接OD,∵AB=20,∴OC=10CG=OC•cos∠C=OC•cos∠AOC=10×=8∴CD=2CG=16∵NE=NF,∴∠E=∠EFN∵CD∥AB,∴∠EFN=∠A∴∠E=∠A,∴OE=OA∵CD∥AB,∴∠BOD=∠D=∠C=∠AOC∴∠AOE=∠COD∴△AOE≌△COD,∴AE=CD=16∵△AOM≌△ODN,∴∠NOD=∠A=∠E∴AE∥OD,∴四边形AODF是平行四边形∴AF=OD=10∴EF=AE﹣AF=16﹣10=6,27.(10分)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,与y轴交于点C,=.(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y 轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.【解答】解:(1)对于抛物线y=mx2﹣6mx+5m,令y=0,得mx2﹣6mx+5m=0,解得x=1或5,∴A(1,0),B(5,0),∴AB=4,∵=,∴OC=5,∴5m=5,∴m=1.(2)如图2中,设P(t,t2﹣6t+5).∵OC=OB=5,∠AOB=90°,∴∠OCB=∠OBC=∠EBF=45°,∵PE⊥AB于F,∴△BEF是等腰直角三角形,∴BF=EF=t﹣5,∴点E坐标(t,5﹣t),∵A(1,0),P(t,t2﹣6t+5),设直线AP的解析式为y=kx+b,则有,解得,∴D(0,5﹣t),∴D、E两点纵坐标相同,∴DE∥AB.(3)如图3中,在DE上截取一点M,使得DM=MG.设P(t,t2﹣6t+5).则PE=t2﹣5t.∵EG=2PG,∴GE=(t2﹣5t),∵MD=MG,设DM=MG=a,∴∠MDG=∠MGD,∴∠GME=2∠MDG,∵∠DPE=2∠GDE,∴∠DPE=∠GME,∴tan∠DPE=tan∠GME,∴=,在Rt△MGE中,a2=(t﹣a)2+[(t2﹣5t)]2,∴a=t3﹣t2+t,∴EM=t﹣a=﹣t3+t2﹣t,∴=,整理得到16t2﹣160t+391=0,解得t=或(舍弃),∴点P坐标(,).。