考试复习-非线性光学
- 格式:pdf
- 大小:564.95 KB
- 文档页数:10
非线性光学非线性光学(NonlinearOptics)是光学中一个新兴的领域,它涉及到光与物质间相互作用的基础理论及其在实验室中的应用。
它是由20世纪50年代以来经过不断推进发展而来,逐渐成为光学研究中一个重要组成部分。
在光学研究中,随着大量研究,人们发现了下面几种形式的非线性光学现象:非线性折射、非线性屈折、非线性发射、非线性衍射、介质中的非线性共振及非线性干涉等。
首先,谈谈非线性折射。
非线性折射是指在介质中的光强度发生变化的情况下,光的折射率也会随之发生变化。
这种变化经常在激光器及光纤中出现。
非线性折射也能被用来实现光学元件的聚焦及散焦。
非线性折射可以利用介质中的离子链中空心光纤的实现。
其次,讨论非线性屈折。
这是一种可以改变介质中光的传播方向的现象,它能将光从原来的方向转向新的方向。
它可以用来调节光。
这种现象通常发生在非线性介质中,例如晶体、液体,及其他类型的介质中。
再次,探讨非线性发射。
非线性发射是指在介质中,由于光的强度发生改变,导致物质对光的反应也发生变化,也就是说物质会产生自发辐射。
当物质在强光场中受到激发,会产生一类新的光,该光被称为非线性发射。
非线性发射,例如荧光(fluorescence)、激发荧光(excitation fluorescence),它的发射品质可能比原始光的品质要高,也可能比原始光的品质要低。
此外,非线性衍射也是一种常见的非线性光学现象。
它指的是当物质在入射的光的波长或强度发生变化时,反射的光会发生变化。
这种变化可以使反射的光被分离成不同的波长,或者可以使反射的光变成多个光束。
再者,讨论一下介质中的非线性共振。
它是指在一定的条件下,当光入射到动态可变的介质中,会产生对光变化的反馈,以达到共振或稳定性的效果。
非线性共振也是实现光学元件的一种方法,如激光器、调制器等。
最后,介绍一下非线性干涉。
它是指当入射的光的强度与介质的参数相互作用时,可以通过相干、共振抑制等现象来调节光的传播过程,从而形成有特定的干涉图案。
非线性光学知识点总结1. 非线性光学基础知识1.1 非线性极化在非线性光学中,光在介质中的传播会引起介质极化现象。
通常情况下,介质的极化与光场的电场强度成正比。
在非线性光学中,介质的极化与光场的电场强度不再呈线性关系,而是存在非线性极化效应。
非线性极化效应包括二阶非线性极化、三阶非线性极化等。
1.2 介质的非线性光学特性介质的非线性光学特性通常由介质的非线性极化特性决定。
不同类型的介质具有不同的非线性极化特性,如各向同性介质、各向异性介质、非晶介质等。
介质的非线性光学特性对于光的强度、频率、极化方向等都有影响。
2. 非线性光学效应2.1 二次谐波产生二次谐波产生是一种光学非线性效应,它是指当一个介质中的光场具有足够强的非线性极化能力时,光会发生频率加倍的现象。
这种效应通常用于频率加倍和广谱显示等光学应用。
2.2 自聚焦效应自聚焦效应是一种非线性光学效应,它是指在介质中传播的光束因介质本身的非线性光学特性而产生自聚焦的现象。
自聚焦效应可用于激光聚焦、钻孔加工等应用。
2.3 自相位调制效应自相位调制效应是一种光学非线性效应,它是指光在介质中传播时,介质的非线性光学特性引起了光场相位的调制现象。
自相位调制效应对于光信息处理、光通信等领域具有重要意义。
3. 非线性光学器件3.1 光学双折射晶体光学双折射晶体是一种常用的非线性光学器件,它具有很强的非线性极化特性,可用于二次谐波发生、自聚焦等应用。
3.2 光学相位共轭镜光学相位共轭镜是一种利用光学非线性效应实现的器件,它可以实现光的自相位调制、波前修正等功能,可应用于激光稳频、激光通信系统等领域。
3.3 光学非线性晶体光学非线性晶体是一种常用的非线性光学器件,它具有很强的非线性极化特性,可用于二次谐波发生、频率加倍、光学调制等应用。
4. 非线性光学应用4.1 激光频率加倍激光频率加倍是一种常用的非线性光学应用,它可以实现激光的频率加倍,从而获得更高的激光频率。
闭卷题1.什么是非线性效应?答:非线性光学效应的唯象描述为⋅⋅⋅⋅⋅⋅+⋅+⋅=E E E p)2()1(χχ标量形式为⋅⋅⋅⋅⋅⋅+++=32E E E p γβα2.非线性效应的应用价值。
(1) 利用非线性光学效应能够改变或控制激光器的参数通过谐波、混频、参量振荡和放大及喇曼散射过程,可以做成各种变频器,即可将一种频率的激光辐射转换为另一种波段的相干辐射,而且这种转换效率可以做得很高。
这对扩展相干辐射的波段具有相当重要的意义。
利用非线性光学效应还可以改变或控制激光器输出的其它特性,如:脉宽、功率、频率稳定性等。
(2)利用非线性光学效应研究介质本身的原子或分子的微观性质由于可调谐激光器的发展,为利用共振增强的非线性光学效应研究原子或分子的高激发态及至自电离态提供了可能性。
(3)某些非线性效应也制约了强激光在介质中的传输3.波动方程组推导。
答:麦克斯韦方程J tH tB=⋅∇=⋅∇+∂∂=⨯∇∂∂-=⨯∇ρ 物质方程0+=ε 0μ= σ=()E B t∂∇⨯∇⨯=-∇⨯∂000B H D J tμμμ∂∇⨯=∇⨯=+∂()NL 00022E E P E t t tμεμμσ∂∂∂∇⨯∇⨯=-⋅--∂∂∂根据矢量关系:()2E E E ∇⨯∇⨯=∇∇⋅-∇由()NL D E P 0ε∇⋅=∇⋅⋅+= 得出E 0∇⋅= (ε 和NL P都不是空间坐标函数)()NL 200022E E E P t t tμσμεμ∂∂∂∇=+⋅+∂∂∂为非线性介质中的波动方程。
这就是所要求的电场源P 产生的光波电场E随时间、空间变化的波动方程。
形式上类似于经典的强迫振动方程,式中右边第一项是阻尼项,第三项是激励项,即电极化强度P 作为场的激励源。
由它激发电磁场。
知道P 可以求场E 。
4.耦合方程组的推导。
答:(),E E r t =是空间坐标和时间t 的函数,通常是不同频率分量之和()(),,n nE r t E r t =∑同样非线性电极化强度也写成多个频率分量之和()(),,NL NL n nP r t P r t =∑每一个频率分量用复振幅表示,并沿空间z 方向传播()(),.n n ik z i n n E z t E z e c c ω-=+()(),..n n NL ik z i t n n P z t E z e c c ω-=+对每一个频率分量都满足波动方程,并假设介质无损耗()0σ=()()()22200222,,,NL n n n E z t E z t P z t z ttμεμ∂∂∂⎡⎤=+⎣⎦∂∂∂方程左边:()()()()()()222222n n n n n n n n n n n n ik z i t ik z i tn n n n ik z i t ik z i t ik z i t n n nE z E z e ik E z e z z z E z E z e ik e k E z e z zωωωωω-----⎡⎤∂∂∂=+⎢⎥∂∂∂⎢⎥⎣⎦∂∂=+-∂∂方程右边 ()()'200222200,n n nn NLnn NL ik z i t ik z i tn n n n P E z t t t E z e P e ωωμεμμωεμω--∂∂⎡⎤⋅+⎣⎦∂∂=-- 方程左右两边消掉n i teω-项,并令'n n n k k k ∆=-()()()22220022n NLn n i k z n n n n n n E z E z ik k E E P z e z zμωεμω-∆∂∂+-=-⋅-∂∂线性响应条件且介质无损耗条件下,0NL n P = ,()()22,,0;0n n E z t E z t z z∂∂==∂∂()()220n n n n k E z E z μωε=⋅在非线性响应条件下,0NLn P ≠()()()2022n NLn n i k z n n n E z E z ik P z e z zμω-∆∂∂+=-∂∂在慢变化振幅近似下,即 ()()22n n n E z E z k z z∂∂∂∂ 振幅空间慢变化近似的物理意义:在空间约化波长2λπ的范围内,振幅变化很小,可以忽略。
非线性光学试题1、简要说明线性光学与非线性光学的不同之处。
线性光学:光的独立传播定理;光的传播方向、空间分布在传播过程中可以发生变化,但光频率不发生变化;介质的主要光学参数只是入射光频率与偏振方向的函数,与光的强度无关。
非线性光学:光的独立传播定理不成立;光在传播过程中频率可能发生变化;介质的折射率与入射光的强度有关2、证明具有反演对称中心的晶类,其偶数阶非线性极化率为零。
证明:设A 为某对称操作,对于二阶非线性极化率(2)χ有(2)(2)'ijk ia jb kc ijkA A A χχ=,类似地,对于n 阶非线性极化率()n χ有()(2)......'...n ijk l ia jb kc lf ijk l A A A A χχ= 对于极化率张量(2)χ,实施对称操作后应保持不变,即(2)(2)'ijk ijk χχ= 所以(2)3(2)(1)ijk ijkχχ=-; 同理()(1)()......(1)n n n ijk l ijk l χχ+=-,当n 为偶数时,()...n ijk l χ为零3、 KDP 晶体是负单轴晶体,考虑I 类位相匹配。
(1) 设光波矢均沿(θ,ϕ)方向,求出此时有效非线性系数eff d 的表达式注:已知KDP 晶体的非线性系数矩阵为141436000000000000000d d d ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭(2)若要得到最佳倍频输出,问光波矢的方向(θ,ϕ)应取何值。
解:(1) 负单轴I 类:(2)eff jk i ijk j k d b d a a δ=-,其中,sin cos 0j a ϕϕ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,cos cos sin cos sin j b ϕθϕθθ-⎛⎫⎪=- ⎪ ⎪⎝⎭所以,36362sin sin (cos )sin sin 2eff d d d θϕϕθϕ=-=-(2)222221/22222))arcsin[()]))((((eo o mooen n n n n n ωωωωωωθ-=- ,得到41o m θ=;将m θ代入上面的eff d 表达式,易得45o ϕ=因此,要得到最佳倍频输出,光波矢方向为(41,45)o o3 B 、考虑BBO 晶体中的II 型(o e e +→)相位匹配下的共线传播倍频过程2ωωω+→;(1)设光波矢均沿(θ,ϕ)方向,求出此时有效非线性系数eff d 的表达式。
非线性光学天津大学精仪学院光电一室2013-3-25非线性光学讲议授课对象:光电子技术专业高年级本科生课程要求:理解非线性光学的基本原理,掌握倍频、混频及光参量振荡等非线性光学频率变换的基本手段及其应用。
了解激光束的自作用、受激散射、光学相位共轭及光学双稳态的原理和实验装置。
学时:32 学分:2目录绪论 (1)第一章非线性光学极化率的经典描述 (5)1.1极化率的色散特性 (5)1.1.1介质中的麦克斯韦方程 (5)1.1.2极化率的色散特性 (6)1.1.3极化率的单位 (10)1.2非线性光学极化率的经典描述 (11)1.2.1一维振子的线性响应 (11)1.2.2一维振子的非线性响应 (13)1.3非线性极化率的性质 (16)1.3.1真实性条件 (17)1.3.2本征对易对称性 (17)1.3.3完全对易性对称性 (18)1.3.4空间对称性 (20)第二章 电磁波在非线性介质内的传播 (23)2.1介质中的波动方程一般形式 (23)2.2线性介质中单色平面波的波动方程 (23)2.3稳态情况下的非线性耦合波方程 (24)2.4瞬态情况下的非线性耦合波方程 (26)2.5门雷-罗威(Manley-Rowe)关系 (27)第三章 光学二次谐波的产生及光混频 (28)3.1光倍频及光混频的稳态小信号解 (28)3.2相位匹配技术 (29)3.3有效非线性系数 (43)3.4光倍频及光混频高转换效率时的稳态解 (46)3.5高斯光束的倍频 (47)3.6典型倍频激光器技术 (48)第四章 光学参量振荡及放大 (52)4.1引言 (52)4.2光学参量振荡的增益 (52)4.3光学参量振荡的阈值 (54)4.4光学参量振荡输出频率的调谐 (56)4.5典型光学参量振荡技术 (59)第五章 二阶非线性光学材料 (62)第六章 克尔效应与自聚焦 (65)6.1引言 (65)6.2克尔效应 (65)6.3自聚焦 (70)第七章 受激散射 (73)7.1引言 (73)7.2受激喇曼散射 (73)7.3受激布里渊散射 (79)第八章 光学相位共轭 (81)8.1相位共轭的特性 (81)8.2获得相位共轭波的非线性光学方法 (81)8.3非线性光学相位共轭的应用 (82)第九章光学双稳态 (83)9.1光学双稳态的理论 (83)9.2光学双稳态器件 (85)9.2光学双稳态器件的应用 (85)绪论非线性光学是一门光电子技术专业的专业基础课程,对于研究生深造和从事相关光电子专业的工作奠定理论基础。
非线性光学复习资料1. 高斯单位制下的麦克斯韦方程组,并由此推导波动方程:2222224)(1)(tc t c NL∂∂-=∂∙∂+⨯∇⨯∇P E E πε 高斯单位制下麦克斯韦方程组tc c tc ∂∂+=⨯∇=⋅∇∂∂-=⨯∇=⋅∇Ej B B BE E 14014ππρ2. 线性光学与非线性光学的主要区别。
A 为线性光学,B 为非线性光学 E(1)A :单束光在介质中传播,通过干涉、衍射、折射可以改变光的空间能量分布和传播方向,但与介质不发生能量交换,不改变光的频率。
B :一定频率的入射光可以通过与介质的相互作用而转换成其他频率的光(倍频等),还可以产生一系列在光谱上周期分布的不同频率和光强的光(受激拉曼散射等)。
(2)A :多束光在介质中交叉传播,不发生能量相互交换,不改变各自的频率。
B :多束光在介质中交叉传播,可能发生能量相互转移,改变各自频率或产生新的频率。
(3)A :光与介质相互作用,不改变介质的物理参量,这些物理参量只是光频的函数,与光场强度变化无关;B :光与介质相互作用,介质的物理参量如极化率、吸收系数、折射率等是光场强度的函数(非线性吸收和色散、光克尔效应、自聚焦等)。
(4)A :光束通过光学系统,入射光强与透射光强之间一般呈线性关系;B :光束通过光学系统,入射光强与透射光强之间呈非线性关系。
(5)多束光在介质中交叉传播,各束光的相位信息彼此不能相互传递。
B :多束光在介质中交叉传播,光束之间可以相互传递相位信息,而且两束光的相位可以互相共轭(光学相位共轭)。
3. 写出电场强度的付氏振幅的表达形式,并对电强度进行付氏分解。
对于角频率为1ω、波矢为1k 、初相位为1φ的单色平面波:)cos()(),(11111φωω-∙-=r k E r E t t)cos()(),(11111φωω-∙-=r k E r E t t引入付氏振幅:])(exp[)(21),(1111φωω+∙=r k E E i r将其所代表的单色平面波改写成:)exp(),()exp(),(),(11111t i t i t ωωωωr E r E r E *+-=这样,(1-2-3)式可改写成对称形式:)exp(),()exp(),(),(11111t i t i t ---+-=ωωωωr E r E r E其中n n -=-ωω ,),(),(r E r E n n -*=ωω, n 为整数。
一.非线性基本概念线性极化率的基本概念:一、电场的复数表示法:E(r,t)=1/2E(r,ω)exp(-iωt)+c.c. (1)E(r,t)=Re{E(r,ω)exp(-iωt)} (2)E(r,t)=1/2E(r,ω)exp(-iωt) (3)以上三者物理含义是一致的,其严格数学表示是(1)式。
(注意是数学表达式,所以这种表示法主要还是为了运算的方便,具体那些系数、共轭神马的物理意义是其次的,不用太纠结。
)称为复振幅,代表频率为的简谐振动,的频率仅是数学描述,物理上不存在。
1/2是归一化系数。
即可或Re{ }对于线性算符,可采用(3)式进行简化计算,然后加c.c. 1)式的数学形式计算对非线性算符,必须采用(:某时刻的电场只能引起在此时刻以后介质的响应,而对此时刻以前的介质响应二、因果性原理时刻的光t没有贡献。
也可以这样说,当光在介质中传播时,t时刻介质所感应的极化强度P(t)不仅与(先有电场电场有关,也与此前的光电场有关。
E,后有极化P)与此相关的是时间不变性原理:在某时刻介质对外电场的响应只与此前所加电场的时间差有关,而与所取的时间原点无关。
内电场的作用,=dτ之前附近的一段微小时间于是,极化强度表达的思路即是先找到时刻tt-τ再对从电场产生开始以来的时间进行积分,求得总的效应。
时刻电场,影响其后的极化:τ时刻的极化,来自其前面t时刻的电场贡献:或t 时刻的电场贡献:时刻的极化,来自前面三、线性极化率:其中四、介电常数(各向同性介质):五、色散:由于因果性原理,导致必然是频率的函数,即介质的折射率和损耗都随光波长变化,称为色散现象。
正常色散:折射率随波长增加而减小。
:关系六、KK以上两式为著名的KK色散关系,由K-K关系课件,只要知道极化率的实部和虚部中任何一个与频率的函数关系(光谱特性)就可通过此关系求出另外一个。
以,:,件真同张量样满足实性条所率极线性化这两式是线性极化率的KK关系。
1 说出电极化率的 4 种对易对称性,并说明满足的条件?本征对易对称性(不需要任何条件)、完全对易对称性(介质无耗)、时间反演对称性(介质无耗)、空间对称性χ(1)是对称张量(介质无耗); 2 说出下式的物理意义:表示由频率为ωm ,场振动方向为x 方向的场分量E x (ωm ),频率为ωn 、场振动方向为y 方向的场分量E y (ωn )以及频率为ωl ,场振动方向为z 方向的场分量E z (ω1 )三者间的非线性相互作用所引起的在x 方向上的三阶非线性电极化强度的一个分量。
3 对于二次谐波和三次谐波,相干长度的物理意义?参量过程中的位相匹配有和物理意义?举例说明两种实现位相匹配的方法?1)Lc 物理意义: 三次谐波强度第一次达到其最大值的路程长度,典型值为1~100mm.如∆K=0,Lc 为无穷大。
2) 位相匹配的物理意义:在位相匹配条件下,二次谐波和三次谐波等非线性效应产生过程效率会大到最高,相应的位相不匹配条件下,产生效率会大大降低。
3)利用晶体的双折射特性补偿晶体的色散效应,实现相位匹配。
在气体工作物质中,利用缓冲气体提供必要的色散,实现相 位匹配。
4 为什么参量振荡器能够产生连续输出频率,而激光器只能输出单个频率?能量守恒 ω3=ω1+ω2 动量守恒 n 3ω3=n 1ω1+n 2ω2改变温度、角度(对非常光)、电场、压力等可改变晶体的折射率,从而改变参量振荡器的输出频率1,2。
因此参量振荡器可实现连续调谐。
而激光振荡器是利用原子跃迁的机理工作的,不能连续调谐。
这是参量振荡器和激光振荡器的区别5 在拉曼散射中,为何观察不到高阶斯托克斯散射?在受激拉曼散射中,高阶斯托克斯散射 光却较强?高阶斯托克斯光的散射角有什么变化规律?由ωp ,ωs 非线性作用产生。
如一级反斯托克斯散射光ω's =ωp +ωv = ωp + ωp - ωs 由ωp , ωp , ωs 通过三阶非线性产生。
非线性光学(复习)2015非线性光学复习绪论非线性光学进展发展阶段,重要事件(时间),著作第一章光与物质相互作用的经典理论非简谐振子模型, 电极化强度 P(n), 极化率的一般性质补充一晶体学基面础晶系的划分,晶体的对称性,点群表及国际符号,点群国际符号对应方向补充二晶体性质的数学描述张量的基本知识,张量分量的坐标变换,对称矩阵及逆变换,坐标变换矩阵,宏观对称性对张量分量的约化第三章光波在非线性介质传播的电磁理论光波在晶体中传播特性,波法线菲涅耳方程,光在单轴晶体中的传播规律,折射率椭球及折射率曲面,耦合波方程,相位匹配概念及方法,相位匹配条件及偏振分析第四章二阶非线性光学效应线性电光效应,光学整流效应,谐波、和频及差频,有效非线性系数,光参量放大与振荡,参量振荡的频率调谐第五章三阶非线性光学效应自聚焦效应、三次谐波的产生,四波混频,双光子吸收,受激Raman散射第七章四波混频与光学相位共轭四波混频与光学相位共轭第一章非线性光学极化率的经典描述线性光学过程的经典理论1、光和物质相互作用的经典理论组成物质的原子、分子,在入射光波电磁场作用下感生出电偶极矩,运动产生电磁波辐射。
2、谐振模型原子(分子)中电子在光频电磁场驱动下,作带阻尼的强迫运动。
3、光的散射与吸收、发射非线性光学可观察的非线性光学效应,通常要用激光,甚至脉冲强激光1、非线性过程A 、强光在介质中感应出非线性响应(本构方程)B 、介质反作用,非线性的改变光场(Maxwell eqs )耦合波方程组 2、电极化强度 P (n) (1.2-35~38) 3、非简谐振子模型ω02 x + a x 2 + b x 3 + … 谐振子非简谐振子线性二阶三阶… 非线性4、非线性光学极化率的对称性㈠两个普遍关系真实性条件: ),,;(),,;(1)(1)(11n n j j i n n j j i n n ωωωχωωωχσσ--=-*ΛΛΛΛ (E ,P 实数) 本征对易对称性: ),,;(),,;(1)(1)(11n n j j i n n j j i n n P ωωωχωωωχσσΛΛΛΛ-=-∧算符∧P 代表数对),(,),,(11n n j j ωωΛ的任何交换㈡透明(无损耗)介质:① 完全对易对称性: 上式中的算符∧P 还包括数对),(σωi 与其它数对的任何交换.这一对称性把同一阶的不同非线性光学效应的极化率分量之间建立关系.② Kleinman 对称性: 当介质为弱色散时, 非线性光学极化率基本上与频率无关. 例如二阶非线性极化率),;()2(βασωωωχ-ijk 若满足此对称性时便有Λ=-=-=-),;(),;(),;()2()2()2(βασβασβασωωωχωωωχωωωχjki jik ijk 它使极化率的独立分量数目大为减少.简并度:1212!(......)!!......!r r N M M M N M M M +++= ㈢空间对称性:晶体具有空间对称性,各阶非线性极化率的分量之间有一定关系,使极化率的独立分量数目大为减少.设坐标变换:j ij i e A e =',n 阶张量T , 经过座标变换,变成T ')(...)(......n f abc lf kc jb ia n l ijk T A A A A T ='如果坐标变换是按对称操作R进行,则有T T ='。
闭卷题1.什么是非线性效应?答:非线性光学效应的唯象描述为⋅⋅⋅⋅⋅⋅+⋅+⋅=E E E p)2()1(χχ标量形式为⋅⋅⋅⋅⋅⋅+++=32E E E p γβα2.非线性效应的应用价值。
(1) 利用非线性光学效应能够改变或控制激光器的参数通过谐波、混频、参量振荡和放大及喇曼散射过程,可以做成各种变频器,即可将一种频率的激光辐射转换为另一种波段的相干辐射,而且这种转换效率可以做得很高。
这对扩展相干辐射的波段具有相当重要的意义。
利用非线性光学效应还可以改变或控制激光器输出的其它特性,如:脉宽、功率、频率稳定性等。
(2)利用非线性光学效应研究介质本身的原子或分子的微观性质由于可调谐激光器的发展,为利用共振增强的非线性光学效应研究原子或分子的高激发态及至自电离态提供了可能性。
(3)某些非线性效应也制约了强激光在介质中的传输3.波动方程组推导。
答:麦克斯韦方程H D J tDH tBE =⋅∇=⋅∇+∂∂=⨯∇∂∂-=⨯∇ρ 物质方程P E D 0+=ε H B 0μ= E J σ=()E B t∂∇⨯∇⨯=-∇⨯∂ 000B H D J t μμμ∂∇⨯=∇⨯=+∂()NL 00022E E P E t t tμεμμσ∂∂∂∇⨯∇⨯=-⋅--∂∂∂根据矢量关系:()2E E E ∇⨯∇⨯=∇∇⋅-∇由()NL D E P 0ε∇⋅=∇⋅⋅+=得出E 0∇⋅=(ε和NL P 都不是空间坐标函数)()NL200022E E E P t t tμσμεμ∂∂∂∇=+⋅+∂∂∂为非线性介质中的波动方程。
这就是所要求的电场源P 产生的光波电场E 随时间、空间变化的波动方程。
形式上类似于经典的强迫振动方程,式中右边第一项是阻尼项,第三项是激励项,即电极化强度P 作为场的激励源。
由它激发电磁场。
知道P 可以求场E 。
4.耦合方程组的推导。
答:(),E E r t =是空间坐标和时间t 的函数,通常是不同频率分量之和()(),,n nE r t E r t =∑同样非线性电极化强度也写成多个频率分量之和()(),,NLNLnnPr t P r t =∑每一个频率分量用复振幅表示,并沿空间z 方向传播()(),.n n ik z i n n E z t E z e c c ω-=+ ()(),..nnNLik z i t nn P z t E z e c c ω-=+对每一个频率分量都满足波动方程,并假设介质无损耗()0σ=()()()22200222,,,NLn n n E z t E z t P z t z tt μεμ∂∂∂⎡⎤=+⎣⎦∂∂∂ 方程左边:()()()()()()222222n n n n n n n n n n n n ik z i t ik z i t n n n n ik z i t ik z i t ik z i t n n nE z E z e ik E z e z z z E z E z e ik e k E z e z zωωωωω-----⎡⎤∂∂∂=+⎢⎥∂∂∂⎢⎥⎣⎦∂∂=+-∂∂方程右边 ()()'200222200,n n n n NLn n NLik z i t ik z i tn n n n P E z t t t E z e P e ωωμεμμωεμω--∂∂⎡⎤⋅+⎣⎦∂∂=--方程左右两边消掉n i teω-项,并令'n n n k k k ∆=-()()()22220022n NLn n i k z n n n n n n E z E z ik k E E P z e z zμωεμω-∆∂∂+-=-⋅-∂∂ 线性响应条件且介质无损耗条件下,0NLnP=,()()22,,0;0n n E z t E z t z z∂∂==∂∂()()220n n n n k E z E z μωε=⋅在非线性响应条件下,0NLn P ≠()()()2022n NL n n i k z n n n E z E z ik P z e z zμω-∆∂∂+=-∂∂ 在慢变化振幅近似下,即()()22n n nE z E z k z z∂∂∂∂ 振幅空间慢变化近似的物理意义:在空间约化波长2λπ的范围内,振幅变化很小,可以忽略。
非线性光学试题1、简要说明线性光学与非线性光学的不同之处。
线性光学:光的独立传播定理;光的传播方向、空间分布在传播过程中可以发生变化,但光频率不发生变化;介质的主要光学参数只是入射光频率与偏振方向的函数,与光的强度无关。
非线性光学:光的独立传播定理不成立;光在传播过程中频率可能发生变化;介质的折射率与入射光的强度有关2、证明具有反演对称中心的晶类,其偶数阶非线性极化率为零。
证明:设A为某对称操作,对于二阶非线性极化率⑵有j ' A a A jb A kc类似地,对于n阶非线性极化率(n)有狀1' A a A bAc…A f (?.」同理i(k°.i ( 1)(n 1)(Il,当n为偶数时,(;)..1为零3、KDP晶体是负单轴晶体,考虑I类位相匹配(1)设光波矢均沿(,)方向,求出此时有效非线性系数d eff的表达式000d1400注: 已知KDP晶体的非线性系数矩阵为0000d1400000d36(2)若要得到最佳倍频输出,问光波矢的方向()应取/ 何值解:(1)负单轴1类:d eff(2 jk )b i d ijk a j a k,sin cos cos其中,a cos b sin cos0sin所以,d eff2si n sin(cos )d36 d36 sin sin 2(2)m arcsin[(222 (n o22 22(n;2]1/2,得到m 41o;n。
(n o)2(n°)2(2)ij,对于极化率张量⑵,实施对称操作后应保持不变,即⑵,ijk ⑵ijk所以⑵ijk(1)3⑵.ijk ;将 m 代入上面的 d eff 表达式,易得45o因此,要得到最佳倍频输出,光波矢方向为 (41o ,45o )1 )设光波矢均沿( , )方向,求出此时有效非线性系数 d eff 的表达式。
注:已 知 BBO 晶体(负单轴晶体)的非线性系数矩阵为d 11 d 11 0 0 d 31 d 22 d 22 d 22 0 d 31 0 d 11d 31 d 31 d 33 0 0 02 )用折射率曲面的方法画出相位匹配的示意图sin 负单轴 II 类: d eff b i d ijk a j b k ,其中, a jcos ,b j对其分类有:1)d 11d 12d 26 ;2)d 22 d 21d 16 ;3)d 31d 32d 24 d 15 ;4)d 33则1 )d xxxd xyydyxyd yyx ,对应求和d effd 11(a 1b 12a 2b 1b 2 a 1b 22a 2b 1b 2) d 11 (3sin 2 cos2 3 2cos sin cos )所以3 B 、考虑 BBO 晶体中的 II 型e)相位匹配下的共线传播倍频过程3 )若要得到最佳倍频输出,问光波矢的方向()应取何值cos cos sin cos sin2) dyyy d yxx d xxyd xyx ,求和d effd 22(a 2b 22a 1b 1b 2 a 1b 1b 2a 2b 12)3)d zxxd zyyd yyz dyzyd xxzd xzx ,d effd 31(a 1b 1b 3 a 2b 2b 3 a 2b 2b 3 a 3b 22d 22( 3cos sin 2 cos 2cos 3 cos 2 )求和2a 1b 1b 3 a 3b 1 ) 0 22d eff d 11 (3sin cos cossin 3 cos 2 ) d 22( 3cos sin 2 cos 23cos cos 2)4) d 33 d eff⑶ ne (2 ,m )2[n e(,m )n 0()]4、 请简要分析二次谐波相位匹配的物理图像,并写出相位匹配的条件 。