小专题(八) 轴对称变换的应用.doc
- 格式:doc
- 大小:115.07 KB
- 文档页数:3
教学内容
知识概述
对称是我们熟悉的初中数学三大变换之一,考试的时候也是经常遇见,往往无从下手;我们学习对称要分三个阶段去学习:
1、了解对称的基本性质;
2、熟悉常见的一些隐藏条件或者结论;
3、学会构造对称去解决问题;
一、对称的基本性质(对称前后是全等的)
1、
2、
3、
以上几点是必然会用到的性质,在题目里面要根据题目选择合适的性质去解决问题;当然,这类几何问题还需要练习和独立思考去加深理解,培养几何感,所以学习数学知识的同时,也要学会反思和总结哦!多问问自己:从这个题目里面我获得了什么?
例题剖析
一、对应角度相等的应用
【例1】.
【变式训练】。
轴对称图形的性质及应用如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1已知直线l 外有一定点 P ,试在l 上求两点A ,B ,使AB m =(定长),且PA PB +最短.分析:当把P 点沿l 方向平移至C (如图1),使PC m =,那么问题就转化为在l 上求一点B ,使CB PB +为最短.作法:过P 作//PC l ,使PC m =,作P 关于l 的对称点P ',连结CP '交l 于B .在l 上作AB m =,点A ,B 为所求之两点.证:在l 上另任取A B m ''=,连PA ,PA ',PB ',CB ',A P '',B P '',则P A PA'''=,PB P B '''=,又PA B C ''为平行四边形,∴CB PA ''=. ∵CB '+B P ''>CP ', ∴PA '+PB '>PA +PB .例2如图2,△ABC 中,P 为∠A 外角平分线上一点,求证:PB +PC >AB +AC .分析:由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP,CP,则DP=CP,BD=AB+AC.这样,把AB+AC,AC,PB,PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证:(略).点评:通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解:如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD,BC的中点M,N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.求证:EFGH的周长不小于.证:如图4,连结AA 2,EE 3.正方形ABCD 和正方形A 1BCD 1关于BC 对称;EFGH和E 1FG 1H 1关于BC 对称;A 1BCD 1和A 2B 1CD 1关于 CD 1对称;E 1FG 1H 1和 E 2F 1G 1H 2关于CD 1对称;A 2B 1CD 1和A 2B 2C 1D 1关于A 2D 1对称,E 2F 1G 1H 2和E 3F 2G 2H 2关于A 2D 1对称.2AA =,又23AE A E =32EE AA ==1122332EF FG GH HE EF FG G H H E EE AA ∴+++=+++==≥例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知:如图5.四边形ABCD 中,M ,F ,N ,E 分别为各边的中点,且MN ,EF 为它的对称轴.求证:ABCD 是矩形.分析:欲证ABCD 是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证:∵四边形ABCD 关于EF 成轴对称,∴DC ⊥EF ,AB ⊥EF , ∴AB ∥DC .同理AD ∥BC .∴ABCD 是平行四边形.∴DC =AB .又∵2DC DE =,2AB AF =.∴D E AF ,∴ADEF 为平行四边形.∴AD ∥EF ,而DE ⊥EF ,∴DE ⊥AD ,∠D =90.∴ABCD 是矩形.轴对称应用举例山东 徐传军生活中很多图形的形状都有一个共同的特性———轴对称.在日常生活中利用轴对称的性质能解决很多问题,下面举例说明.一、确定方向例1 如图1,四边形ABCD 是长方形的弹子球台面,有黑白两球分别位于E 、F 两点的位置,试问,怎样撞击黑球E ,才能使黑球先碰撞台边DC ,反弹后再击中白球F ?解:作E 点关于直线CD 的对称点E ′,连接FE ′,与CD 的交点P 即为撞击点,点P即为所求.例2 如图2,甲车从A 处沿公路L 向右行驶,乙车从B 处出发,乙车行驶的速度与甲车行驶的速度相同,乙车要在最短的时间追上甲车,请问乙车行驶的方向?解:作AB 的垂直平分线EF ,交直线L 于点C ,乙车沿着BC 方向行驶即可.二、确定点的位置找最小值例3 如图3,AB ∥CD ,AC ⊥CD ,在AC 上找一点E,使得BE +DE 最小.解:作点B 关于AC 的对称点B ′,连接DB ′,交AC 于点E ,点E 就是要找的点.例4如图4,点A是总邮局,想在公路L1上建一分局D,在公路L2上建一分局E,使AD+DE+EA的和最小.解:作点A关于L1和L2的对称点B、C.连接BC,交L1于点D,交L2于点E.点D、E就是要找的点.三、与其他学科结合唐朝某地建造了一座十佛寺,竣工时,太守在庙门右边写了一副上联“万瓦千砖百匠造成十佛寺”,望有人对出下联,且表达恰如其分,你能对出下联来吗?对联中有数字万、千、百、十,几个月过去了,无人能对,有个文人李生路过,感觉庙前没有下联不像话,十分感慨.一连几天在庙前苦思冥想,未能对出下联,有次在庙前散步,望见一条大船由远而来,船夫正使劲的摇橹,这时李生突发灵感,对出了下联———“一舟二橹四人摇过八仙桥”.太守再次路过此庙时,看到下联,连连称赞“妙妙妙”.这副对联数字对数字,事物对事物,对称美如此的和谐.可见,对称美在文学方面也有生动深刻的体现.生活中的轴对称无处不在,只要你善于观察,将会发现其间所蕴涵的丰富的文化价值和对称美给人带来的回味无穷的享受.用轴对称解实际问题山东于秀坤在我们实际生活中,许多问题设计到轴对称的应用,下面介绍几例.例1要在河岸所在直线l上修一水泵站,分别向河岸同侧的A、B两村送水,请你设计水泵站应修在何处,所用管道最短?分析:设水泵站修在C点,此题的实质是求折线AC+BC的最短长度,可作出A点关于直线l的对称点A′,如图1,根据对称性,AC+BC=A′C+BC,所以连结BA′交直线l于点C,点C便是水泵站的位置,因为此时折线长AC+CB化成线段A′B的长,根据两点之间线段最短的道理便可确定点C是水泵的位置.图1 图2例2如图2,角形铁架∠MON小于60°,A、D是OM、ON上的点,为实际应用的需要,须在OM和ON上各找点B、C,使AB+BC+CD最小,问应如何找?分析:学习了轴对称,可以利用对称性化折为直的道理,分别作出点A、点D关于ON、OM的对称点A′、D′,连结A′D′与ON、OM交于B、C,则点B、C便是所求的点.例3如图3,EFGH是一个长方形的弹子球台面,有黑白两球分别位于A、B两点的位置.(1)试问:怎样撞击黑球A,使黑球A先碰撞台边EF反弹后再撞击白球B?(2)怎样撞击黑球A,使黑球先碰撞台边GH反弹后再击台边EF,最后击白球B?图3分析:利用轴对称的性质,分别作出B点关于EF的对称点,A点关于HG的对称点,问题得解.解:(1)①作点B关于EF的对称点B′,②连结AB′交EF于C点,则沿AC撞击A,球A必沿BC反弹击中白球B(如图4).图4 图5(2)如图5,作法类似(1).例4如图5,小河边有两个村庄,要在河对岸建一自来水厂向A村与B村供水,要符合条件:(1)若要使厂部到A、B的距离相等,则应选在哪儿?(2)若要使厂部到A村、B村的水管最省料,应建在什么地方?图5 图6 图7解:(1)如图6,取线段AB的中点G,过中点G作AB的垂线,交EF于P,则P到A、B的距离相等.(2)如图7,作点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到A、B 的距离和最短.用轴对称知识解决打台球一题山东于秀坤题目:小强和小勇利用课本上学过的知识来进行台球比赛.(1)小强把白球放在如图1所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看小强这样击打,黑球能进F洞吗?请画图的方法验证你的判断,并说明理由.图1 (2)小勇想通过击打白球撞击黑球,使黑球至多撞台球桌边一次后进A洞,请你猜想小勇有几种方案?并分别在下面的台球桌上画出示意图,解释你的理由.分析:本题是一道操作型探究题,主要根据轴对称的知识的有关进行探究.第(1)题可以通过击打AC边使球反弹进F洞.第(2)题有多种方法.击球入洞需要对每一杆的角度进行适当的估算,实质上等同于几何角度的计算,二者有着密切的关系.要想至多撞台球桌边一次击黑球于F洞.方案可以有以下情况:(1)不击台球桌边,直接用白球撞击黑球;(2)通过白球击CF边反弹再撞击黑球进A洞;(3)用白球撞击DF边反弹撞击黑球进F洞.要想准确撞击黑球,必须找准击球的方向角度,准确估算击球的方向.在数学上,可以借助轴对称的知识来解决问题.解: (1)如图2,将白球与黑球视为两点,过这两点画直线交台球桌边AC于M,过点M 作法线MN⊥AC,在MN右侧∠F′MN=∠PMN,由于射线MF′过F洞,知黑球经过一次反弹后必进入F洞.图2(2)方案1:如图3,视白球、黑球为两点P,G,使A、G、P在同一直线上.方案2:如图4,延长AC到H点,使AC=CH,连接GH交FC于点K,根据轴对称的知识可知,用白球沿GK方向撞击边CF反弹后可进行A洞.方案3:如图5,延长AD到M点,使MD=AD,连结GM交DF于N,根据轴对称知识可知,沿GN方向用白球撞击黑球经反弹后可进入A洞.图3 图4 图5最短线路问题河北欧阳庆红吴立稳同学们,对于最短线路问题你一定很陌生吧?运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.古今中外的任何旅行者总希望寻求最佳的旅行路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短线路问题.另外,从某种意义上说,一笔画问题也属于这类问题,这类问题在生产、科研、生活中应用广泛.请同学们看下面几个生活中的最短线路问题.一、两点一线问题例1 如图1,某同学打台球时想绕过黑球,通过击黑球A,使主球A撞击桌边MN后反弹,来击中白球B.请在图中标明,黑球撞在MN上哪一点才能达到目的?(以球心A、B来代表两球)?分析:要撞击黑球A,使黑球A先撞击台边MN上的P点后反弹击中白球B,需∠APN=∠BPM,如图2,可作点A关于MN的对称点A’,连结A’B交MN于点P,则P点即为所求作的点.作法:(图2):⑴作点A关于MN的对称点A’;⑵连结A’B,交MN于P.则经AP撞击台边MN,必沿P B反弹击中白球B.∴点P就是所要求的点.N图1说明:本题黑球A ,白球B 在MN 的同侧,直接确定撞击点的位置不容易,但若A 、B 在MN 的异侧,击球路线就容易确定了.本题可利用轴对称的特征将A 点转化到MN 的另一侧,设为A ’,连接A ’B 即可确定撞击点.二、一点两线问题例2 在一条大的河流中有一形如三角形的小岛(如图3),岸与小岛有一桥相连.现准备在小岛的三边上各设立一个水质取样点.水利部门在岸边设立了一个观测站,每天有专人从观测站步行去三个取样点取样,然后带回去化验.请问,三个取样点应分别设在什么位置,才能使得每天取样所用时间最短(假设速度一定)? 分析:此题要求时间最短,而速度一定,所以可转化为求最短路程.如图4,小桥DE为必走之路,所以容易得到D 为BC 边上的取样点.关键是确定另外两边上的取样点,这是线段之和最小的问题,我们的想法是将三条线段拼起来,关于线段最短,我们有“两点之间,线段最短”,利用对称便可使问题得到解决.解析:如图4,作点D 关于AB 的对称点F ;点D 关于AC 的对称点G , 连接FG ,交AB 于M ,交AC 于N .∴D 、M 、N 即所求三个取样点.(请同学们试着证一证).三、同类变式 例3 某班举行文艺晚会,桌子摆成两直条(如图5中的AO ,BO ),AO 桌面上摆满了糖果,BO 桌面上摆满了桔子,坐在C 处的学生小亮先拿糖果再拿桔子,然后回到座位,请你帮他设一条行走路线,使其所走的总路程最短?分析:此题是轴对称的特殊应用,需分两种情况讨论:①∠AOB 小于90°;②∠AOB 等于90°。
教师寄语春来春去,燕离燕归,枝条吐出点点新绿,红花朵朵含苞欲放,杨柳依依书写无悔年华,白云点点唱响人生奋斗的凯歌,微冷的春风淡去了烟尘与伤痛,沉淀在内心的却是缤纷的梦想以及那收获前的耕耘与奋斗。
轴对称变换·要点全析1.变换在《现代汉语词典》中,变换的意思是:事物的一种形式或内容换成另一种,如变换位置、变换手法.在前面学习全等三角形时,学习和介绍了全等变换.所谓全等变换,即把一个图形经过平移、翻折、旋转后,得到另一个图形的过程.在这个过程中,原来图形的形状、大小都没有改变,只是位置、方向发生了改变.如图 14-2-1 中,(1)图是△ ABC平移后得到△ DEF,( 2)图是△ ABC翻折后得到△ DBC,(3)图是△ ABC 旋转一个角(即∠ BAD)后,得到△ ADE,(4)图是△ABC先平移( BE),后翻折,得到△ DEF,以上这几种图形变化的过程都是全等变换.变换前后,两图形全等.2 .轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.例如:图 14-2-2 中,△ DEF与△ ABC成轴对称,同样得到△ ABC的一系列对称图形△GHK、△ PQR、△ LMN等,并且△ ABC≌△ DEF≌△ GHK≌△ PRQ≌△LMN.以上这些图形的变化过程就是轴对称变换.3.轴对称变换的性质(1)变换前后的两个图形的形状、大小完全一样.(2)新图形的每一个点,都是原图形上每一个点关于某直线的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.【说明】如图 14-2-2 中,以△ ABC与△ DEF关于直线 l 对称为例说明如下:①△ ABC与△ DEF全等,只是图形的位置与方向发生变化,而形状、大小没变.②点 A、B、 C 分别与点 D、E、F 关于直线 l 对称.③线段 AD、 CF被直线 l 垂直平分.(4)①当对称轴平行时,变换一次,方向改变;变换两次,与原图形方向相同.依此类推,当变换奇数次时,方向改变,当变换偶数次时,方向不变.如图 14-2-3 .②当对称不平行时,方向改变的幅度随对称轴的倾斜程度而变化.如图14-2-4 .4.轴对称变换的应用利用轴对称变换可以设计出精美的图案,在许多美术作品和工艺制品中,经常看到轴对称变换的例子.如图 14-2-5 中的设计图:再如图 14-2-6 中的剪纸图:5.如何作一个图形关于某直线的对称图形由轴对称图形的性质可知,对称点的连线被对称轴垂直平分.因此,先把一个几何图形看成由一些点组成,只要作出这些点关于对称轴的对应点,再连接这些对应点,就可得到原图形关于对称轴的对称图形.对于一些由特殊直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可得到原图形关于对称轴的对称图形.例如:如图 14-2-7 中,已知△ ABC和直线 l .作出△ ABC关于直线 l 的对称图形.分析:在( 1)图中,△ ABC的三个顶点已确定,只要作出三个顶点关于直线 l 的对称点,连接这三个对称点,就得△ ABC关于直线 l 对称图形.作法:( 1)图中,(1)过点 A 作直线 l 的垂线,垂足为 G,在垂直线上截取 GA′= GA.则点A′,就是点 A 关于直线 l 的对称点(因 AA′被直线 l 垂直平分).(2)同样道理和方法,分别作出点B、 C 关于直线 l 的对称点 B′、 C′.(3)连接 A′B′、 B′C′、 C′ A′,得到△ A′ B′ C′即为所求.在( 2)图中,作法同( 1)图的作法,图形如( 2)图所示.再如一些几何图形的对称图形的画法,如图 14-2-8 所示.6.应用轴对称,寻找最佳方案问题例如:如图 14-2-9 ,在金水河的同一侧有两个村庄A、 B.要从河边同一点修两条水渠到 A、B 两村浇灌蔬菜,问抽水站应修在金水河MN何处使两条水渠最短?分析:先将具体问题抽象成数学模型.河流为直线MN,在直线 MN的同一侧有 A、B 两点.在直线 MN上找一点 P,使 P 点到 A、B 两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图 14-2-9 所示,作 B 点关于直线 MN的对称点 B′,连接 AB′与 MN 相交于点 P,则 P 点即为所求.事实上,如果不是 P 点而是 P′点时,则连接 AP′、P′B和 P′B′.由轴对称性可知, P′B=P′B′, PB=PB′,所以 P′到 A、B 的距离之和AP′+P′B=AP′+ P′B′.而 P 到 A、B 的距离之和 AP+ PB=AP+PB′= AB′,在△ AB′P′中,三角形两边之和大于第三边,即 AP′+ P′B′>AB′.所以 P 点即为所求的点.【说明】(1)此题为典型的最佳方案选择问题,问题的核心是如何节省材料,反映在数学上就是寻找最小值问题.(2)与此类型相似,前几节学过的利用角平分线、线段垂直平分线的性质解决等距问题,也是按此方法处理的.(3)解决这类问题时,先把具体问题抽象成数学模型,再用数学中学过的有关法则、定理等去解决.(4)在本例中,充分利用了轴对称的性质.7.轴对称的坐标表示方法点( x, y)关于 x 轴对称点的坐标为( x,- y);点( x, y)关于 y 轴对称点的坐标为(- x,y).如图 14-2-10 中,点 P(2,3)关于 x 轴的对称点为P2(2,- 3),关于 y轴的对称点为 P 1 ,(- 2, 3);点 P 2 关于 y 轴的对称点为 P 3(- 2,- 3);而点 P 3 (- 2,- 3)与点 P 1(- 2, 3)关于 x 轴对称.因此,我们得到规律:关于 x 轴对称的两个点的坐标, 横坐标不变, 纵坐标变成它的相反数; 关于y 轴对称的两个点,纵坐标不变,横坐标变成它的相反数.反过来,也成立.例如:判断下列各点的位置关系: C (- ,- ) D (-,)A (,-)B (,)2 5 2 5 2 5 2 5解:由坐标特点知, A 与 B 关于 x 轴对称, A 与 C 关于 y 轴对称, B 与 D 关于 y 轴对称.8 .点 P ( x , y )关于直线 x =a 的对称点坐标如图 14-2-11中,点 P ( , )关于直线 x = 2 的对称点为 P 1( , );关于1 43 4 直线 x =- 1的对称点为 P 2(- , ).3 4,而 P 1 、P 2 的横坐标发 由此可以看出,点 P 、P 1、P 2 的纵坐标都没变,都是 4生了变化,变化的规律是: P 1 点的横坐标比 A 点横坐标 2 多了一个 AP 1(即 AP ) 的长,而 AP 的长为 - = ,∴ P 1 横坐标为 +( - )= .2 1 1 2 2 1 3同样道理, P 2 点的横坐标是比 B 点横坐标- 1 多了一个 BP 2(即 BP )的长,而 BP 的长为|- - |= ,∴ P 2 横坐标为- +(- - )=- .1 12 1 1 1 3因此,得出规律:点 P (x ,y )关于直线 x = m 的对称点 P 1 的横坐标为 m +( m - x )= m - x ,纵坐标不变,即点 P 1、坐标为(m -x ,y ).2 2P x , y )关于直线 y = m 的对称点 P 2 的纵坐标为 m m y )=同样,点 (+( -m -y ,横坐标不变,即点 P 2 坐标为(x , m - y ).2 2 的对称点坐标为 P 1( × - ,由此可以直接写出点 P ( , )关于直线 x =5 3 2 P 2(,) 2 5 3 2),即 P 1 ( , ),关于 y = 3的对称点 P 2 的坐标为7 2 3 4 例如:写出下列点关于直线 x =4 和直线 y =5 的对称点的坐标. A (2,3) B (4,5)C (- 3, 1)D (- 2,- 1) 解:由上面的式子可知, 点关于直线 x = 4 的对称点和关于直线 y = 5 的对称 点坐标列表如下:A (2,3)B (4,5)C (- 3,1)D (- 2,- 1) 关于直线 x = 4 A 1(,)B 1( ,5)C 1(,1)D 1( ,- )的对称点6 341110 1关于直线 y = 5A 2( ,7)B 2( ,5)C 2(- , )D 2(- , )的对称点243 9 2 11同样,关于 x 轴(y =0)对称的点的坐标中 x 坐标不变, y 坐标为其相反数;关于 y 轴( x=0)对称的点的坐标中, y 坐标不变, x 坐标为其相反数.9.轴对称在生产实际中的应用应用点的对称性质能解决生产实践中遇到的寻求最佳点的问题,看下面两个例子.例 1 :如图 14-2-12 ,EFGH是一个长方形的台球桌面,有黑、白两球分别位于 A、B 位置上.试问:怎样撞击黑球 A,使黑球先撞击台边 EF,反弹后再击中白球 B?试画出黑球 A 的运动路线.画法:( 1)作点 A 关于 EF 的对称点 A′.(2)连接 A′B 交 EF于点 M.点 M就是黑球 A 撞击边框 EF的位置,黑球 A 的运动路线为 AMB.根据物理知识,黑球 A 的入射角∠ AMC只有与黑球 A 撞击边框 EF反弹后的反射角∠ BMC相等,黑球 A 才能击中白球 B.证明:过点 M作垂线 CD.∵EF是线段 A′A 的中垂线,∴MA=MA′,∴ ∠AMF=∠ A′ MF.又∵∠FMC=∠ FMD=90°(已知),∴∠AMC+∠ AMF= 90°,∠ A′MD+∠ A′MF=90°.∴∠AMC=∠ A′MD(等角的余角相等).又∵∠A′MD=∠ BMC(对顶角相等).∴∠AMC=∠ BMC(等量代换).例 2 :如图 14-2-13 ,甲、乙、丙三人做接力游戏.开始时,甲站在∠ AOB 内的 P 点,乙站在 OA上,丙站在 OB上.游戏规则:甲将接力棒传给乙,乙将接力棒传给丙,最后丙跑到终点 P 处.如果甲、乙、丙三个人速度相同,试找出乙、丙站在何处,他们比赛所用的时间最短.画法:( 1)作点 P 关于 OA的对称点 P1.(2)作点 P 关于 OB的对称点 P2.(3)连接 P1P2交 OA于点 M,交 OB于点 N.则点 M是乙所站的位置,点N 是丙所站的位置.证明:若在 OA上取一点 M′,连接 M′P1,M′P.∵P 和 P1关于 OA对称,∴M′ P1= M′ P,同理在 OB上取一点 N′,则 N′P=N′P2.若乙站在 M′位置,丙站在 N′位置,接力棒传递路线为: PM′+ M′N′+ N′P.∵P1M′= PM′, N′ P2=N′P,∴PM′+ M′N′+ N′ P= P1′+ M′N′+ N′P2.∵两点间直线段最短,∴P1M′+ M′N′+ N′P2>P1P2=P1M+MN+NP2=PM+MN+NP.因此,乙站在 M点,丙站在 N 点,甲、乙、丙三人传递接力棒的距离最短.。
轴对称及中心对称变换平移及旋转变换轴对称及中心对称变换、平移及旋转变换变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。
一、轴对称变换把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F和F'关于这条直线l对称。
两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。
轴对称图形有以下两条性质:1.对应点的连线被对称轴垂直平分;2.对应点到对称轴上任一点的距离相等。
例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。
分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。
证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。
连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。
∴ BE+AE>AB ①EC'+ED'>C'D' ②①+②,得BC'+AD'>AB+C'D'。
∴BC+AD>AB+CD。
注:(1)本题的结论对于凹四边形仍然成立;(2)还可将四边形推广成2n边形,也有类似结论。
其证明思路也完全相同,读者试自证。
二、中心对称变换如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F叫做中心对称图形。
轴对称变换在解题中的作用大家知道,如果将平面图形f1绕这平面内一直线l翻转180°后与图形f2重合,就说f1与f2两图形关于l成轴对称,简称f1与f2关于l对称。
直线l称为对称轴。
若图形f关于直线l与f成轴对称,就说f是一个轴对称图形。
将图形f1变换到与它关于直线l成轴对称的图形f2,这样的几何变换就叫关于直线l的轴对称变换。
可归纳成下列方法:方法一:若问题的整个图形或其一部分是一个轴对称图形,可以尝试找出对称轴,从对称轴上想办法。
具体说,涉及一点与一直线,尝试过点作直线的垂线;涉及一点及一圆,尝试将点与圆心用直线连接起来;涉及两条相交直线,尝试作它们交角的平分线;有两条平行直线,尝试作一条与它们垂直的直线或者作与它们等距的一条平行线;若涉及一圆及一直线,尝试过圆心作直线的垂线;若涉及不同心的两个圆,可尝试作它们的连心线。
[例1]以o为圆心的两个同心圆,与已知直线顺次交于a、b、c、d四点。
求证:∠aob=∠cod分析:证几何题时,最难的步骤是添加辅助线,如果较多的解题经验,是会想到由圆心作已知直线的垂线的,但若运用了几何变换的观点,只要注意到问题的图形是一个轴对称图形,就需要太多的机制和经验,也能迅速想到试作图形的对称轴。
证明:作om⊥ad,垂足为m(如图),则∠aom=∠dom,∠bom=∠com两式相减,可得∠aom=∠cod方法二:问题中的图形或其中一部分是一个轴对称图形,尝试添加一些对称的线,使图形结构更加完整,从而显示出解题途径。
[例2]已知正方形abcd的边ab的延长线上有一点e,ad的延长线上有一点f,满足ae=ac=af,若直线ef交bc于g,交cd于h。
求证:eg=gc=ch=hf分析:本题图形关于正方形的对角线ac对称,所以关键在于证明eg=gc。
但已知ae=ac,故可试连ec,通过证明∠ceg=∠ecg得出eg=gc。
证明:连ac,由对称性得gc=hc,ke=kf,kg=kh,相减得eg=fh。
八年级数学轴对称变换1.轴对称变换知识要点1.由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.2.轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)•经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.3.作一个图形关于某条直线的轴对称图形的步骤:(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.典型例题例:在锐角∠AOB内有一定点P,试在OA、OB上确定两点C、D,使△PCD的周长最短.分析:△PCD的周长等于PC+CD+PD,要使△PCD的周长最短,•根据两点之间线段最短,只需使得PC+CD+PD的大小等于某两点之间的距离,于是考虑作点P关于直线OA•和OB的对称点E、F,则△PCD的周长等于线段EF的长.作法:如图.①作点P关于直线OA的对Array称点E;②作点P关于直线OB的对称点F;③连接EF分别交OA、OB于点C、D.则C、D就是所要求作的点.证明:连接PC、PD,则PC=EC,PD=FD.在OA上任取异于点C的一点H,连接HE、HP、HD,则HE=HP.∵△PHD的周长=HP+HD+PD=HE+HD+DF>ED+DF=EF而△PCD的周长=PC+CD+PD=EC+CD+DF=EF∴△PCD的周长最短.练习题一、选择题1.下列说法正确的是( )A .任何一个图形都有对称轴;B .两个全等三角形一定关于某直线对称;C .若△ABC 与△A ′B ′C ′成轴对称,则△ABC ≌△A ′B ′C ′;D .点A ,点B 在直线1两旁,且AB 与直线1交于点O ,若AO=BO ,则点A 与点B•关于直线l 对称.2.已知两条互不平行的线段AB 和A ′B ′关于直线1对称,AB 和A ′B ′所在的直线交于点P ,下面四个结论:①AB=A ′B ′;②点P 在直线1上;③若A 、A ′是对应点,•则直线1垂直平分线段AA ′;④若B 、B ′是对应点,则PB=PB ′,其中正确的是( ) A .①③④ B .③④ C .①② D .①②③④ 二、填空题3.由一个平面图形可以得到它关于某条直线对称的图形,•这个图形与原图形的_________、___________完全一样. 4.数的运算中会有一些有趣的对称形式,仿照等式①的形式填空,并检验等式是否成立.①12×231=132×21; ②12×462=___________; ③18×891=__________; ④24×231=___________.5.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB•的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________. 三、解答题6.如图,C 、D 、E 、F 是一个长方形台球桌的4个顶点,A 、B•是桌面上的两个球,怎样击打A 球,才能使A 球撞击桌面边缘CF 后反弹能够撞击B 球?请画出A•球经过的路线,并写出作法.7.如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹)8.如图,仿照例子利用“两个圆、•两个三角形和两条平行线段”设计一个轴对称图案,并说明你所要表达的含义.例:一辆小车四、探究题9.如图,已知牧马营地在P 处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.草地河流营地P答案:1.C 2.D 3.形状;大小4.264×21;198×81;132×42 5.20cm6.作点A关于直线CF对称的点G,连接BG交CF于点P,则点P即为A•球撞击桌面边缘CF的位置7.作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置8.略9.分别作P点关于河边和草地边对称的点C、D,连接CD分别交河边和草地于A、B两点,则沿PA→AB→BP的线路,所走路程最短.2.用坐标表示轴对称知识要点1.点P(x,y)关于x轴对称的点的坐标是(x,-y);点P(x,y)关于y轴对称的点的坐标是(-x,y);点P(x,y)关于原点对称的点的坐标是(-x,-y).2.点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);典型例题例:如图,请写出△ABC中各顶点的坐标.在同一坐标系中画出直线m:x=•-1,并作出△ABC 关于直线m对称的△A′B′C′.若P(a,b)是△ABC中AC边上一点,•请表示其在△A′B′C′中对应点的坐标.分析:直线m:x=-1表示直线m上任意一点的横坐标都等于-1,因此过点(-1,0)•作y 轴的平行线即直线m.画出直线m后,再作点A、C关于直线m的对称点A′、C′,•而点B 在直线m上,则其关于直线m对称的点B′就是点B本身.解:(1)△ABC中各顶点的坐标分别是A(1,4)、B(-1,1)、C(2,-1)(2)如右图,过点(-1,0)作y轴的平行线m,即直线x=-1.(3)如右图,分别作点A、B、C关于直线m对称的点A′(-3,4)、B′(-1,1)、C′(-4,-1),并对顺次连接A′、B′、C′三点,则△A′B′C′即为所求.(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1)•减去对应点的横坐标.所以点P的对应点的坐标为(-2-a,b)。
轴对称对称是一个十分宽广的概念,它出现在数学教材中,也存在于日常生活中,能在文学意境中感受它,也能在建筑物、绘画艺术、日常生活用品中看到它,更存在于大自然的深刻结构中.数学和人类文明同步发展,“对称”只是是纷繁数学文化中的标志之一.让我们来认识下轴对称在生活中的应用吧一、从轴对称图形中发现对称原理的运用根据轴对称图形的一半和对称轴可以精确的画出轴对称图形的另一半图形,这是在教学了轴对称图形后常见的习题。
在数学中,轴对称图形同时也为人们研究数学提供了某些启示,例如它在博弈问题中也常运用这一原理。
如:桌面上有21个棋子,排成一排,你一次可以拿一粒也可以拿两粒棋子,甚至可以拿三个棋子。
想拿哪里的棋子都行,不必按顺序拿,但拿两粒或三粒棋子时必须是相邻的即中间没有空隔或其他棋子,问:“两人轮流拿谁拿到最后一粒谁赢,你如果先拿能保证赢吗?”这题看上去挺复杂,按排列组合众多拿法要想一一分析清楚太费力,其实运用对称原理就非常简单,先拿的人只要先拿走中间一粒,即第十一粒棋,这样左、右两边各剩十粒,这样对方拿左边的棋子,你就拿右边的棋子,并且个数和位置和他对称,如果对方拿右边的棋子,你就按照他拿左边的棋子,总之只要保持左、右两边的棋子剩下的个数和位置一样,只要他有的拿,你也有的拿,因此最后一粒必然落入你手中,因此先拿必胜,如果棋子是20粒(偶数个),你就先拿中间的两粒,让左右两边各剩9粒棋子,这样你就必胜。
类似的题目还有如:用若干一元的硬币两人轮流将它摆在一个大圆盘上,要求硬币之间不能重叠,谁摆不下谁算输,是先摆赢还是后摆赢?显然根据对称原理,先摆的人只要先占住圆心,以后对方摆哪你就照他在对面对称着摆出,只要他有空间摆,那么在相对称的地方也必定有空间摆,直至对方摆不下为止,对方先输。
其实这两题的思维方法都来自轴对称图形的基本特征,教师在教学完轴对称图形的内容后可以适当的渗透这方面的知识,学生即乐于学习,又加深对轴对称图形知识的运用和深层理解,发现对称的美,感受到数学的魅力。
小专题(八)轴对称变换的应用
类型1轴对称图形的展开与折叠
1.(绥化中考)把一张正方形纸片如图①,图②对折两次后,再如图③挖去一个三角形小孔,则展开后的图形是(C)
类型2翻折式的轴对称变换
2.(娄底中考)将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为13.
3.(潜江中考)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,求∠CDE的度数.
解:∵在Rt△ABC中,∠ACB=90°,∠A=26°,
∴∠B=64°.
∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,且∠ACB=90°,
∴∠BCD=∠ECD=45°,∠CED=∠B=64°.
∴∠CDE=180°-∠ECD-∠CED=71°.
4.(枣庄中考改编)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,求线段BP的最短长度.
解:过点B 作BM ⊥AD 于点M ,由题意可知△ABC ≌△ABC′,
∴S △ABC =S △ABC′=6.
∵S △ABC ′=12
AC′·BM =6,AC ′=AC =3,∴BM =4. 根据垂线段最短可知BM ≤BP ,∴BP ≥4.
∴BP 的最短长度为4.
类型3 轴对称变换与坐标
5.已知点M(2a -b ,5+a),N(2b -1,-a +b).
(1)若点M ,N 关于x 轴对称,求a 、b 的值;
(2)若点M ,N 关于y 轴对称,求(4a +b)2 017的值.
解:(1)∵M ,N 关于x 轴对称,
∴⎩⎪⎨⎪⎧2a -b =2b -1,5+a -a +b =0.
解得⎩
⎪⎨⎪⎧a =-8,b =-5. (2)∵M ,N 关于y 轴对称,
∴⎩
⎪⎨⎪⎧2a -b +2b -1=0,5+a =-a +b. 解得⎩
⎪⎨⎪⎧a =-1,b =3. ∴(4a +b)2 017=-1.
6.如图所示,在平面直角坐标系xOy 中,A(-1,5),B(-1,0),C(-4,3),直线m 为横坐标都为2的点组成的一条直线.
(1)作出△ABC关于直线m对称的△A1B1C1;
(2)直接写出A1,B1,C1的坐标;
(3)求出△A1B1C1的面积.
解:(1)如图所示.
(2)A1(5,5),B1(5,0),C1(8,3).
(3)△A1B1C1的面积为7.5.。