二次函数压轴题的经典做法
- 格式:ppt
- 大小:463.50 KB
- 文档页数:13
二次函数是一次函数的延续和发展,类似于反比例函数但又不同于反比例函数,其图像抛物线是曲线,具有对称性,当二次项系数a的绝对值越大时,其开口越小;反之,开口就越大。
特别地,当a=0时,抛物线开口大到变成一条直线(此时该函数已不是二次函数了,是一个一次函数);从数、式的角度分析,二次函数的解析式可以看作二元二次方程,二次方程显然比一次方程复杂多了,若其系数再来个字母,难度就更大了。
二次函数是个大箩筐,初中绝大多数知识点都可以往里装,代数方面数、式的计算(含幂的运算或根式的运算),因式分解、绝对值、相反数、用字母表示数(量)、列方程(组)求数值、列不等式(组)求字母的取值范围等等;几何方面线段的计算、角的计算三角形、四边形乃至圆都可以往里放,或全等或相似,或判定形状等等。
破解压轴题,是个系统工程。
不是一蹴而就的,需要一个积累和磨砺的过程。
你要有广博的知识根基,要有强大的运算能力,还必须掌握一定的数学思想方法和解题技巧,数学思想方法不是光记住两个名称,而是要掌握其本质核心的东西,比如转化思想,转化谁?怎么转化?没有谁告诉你,你得自己完成;再如分类讨论思想在什么情况下要分类讨论,分类的标准是什么?为什么要这样分而不是那样分呢?有时还涉及二次分类,即分类之后再分类,你看得出吗?你要会画草图,能从繁杂的信息里面提取有效的信息,能从复杂的图形里面抽岀基本图形,能准确理解语句的含义建立问题模型,形成简洁思路,并规范正确地表述解题过程.解题示范:边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.破解第一招——耐心读题,瞬时记忆压轴题通常字数多,字母符号多,你得有好心态,集中思想心平气和地愉悦地读完它,第一遍读题时要在关键词语处做上记号(比如标上序号),平时要有意识地训练自己的瞬时记忆能力,即读一遍题要力求把题意90%的信息复述出来(这点非常重要)破解第二招——建立问题模型,理清解题思路第一小题求函数解析式,一看到求函数解析式的问题,应立马想到待定系数法的四个基本步骤:(见图1)—解题也有套路的;从题目中寻求可用条件,直接条件有两个:点C的坐标(0,2),对称轴AB为直线×=2;条件“抛物线经过点E",E点坐标没有直接给出,所以要先想办法求出,由“DE=DC,且∠CDE=90°”想到基本图(图2)构造三角形全等,求E点坐标,至此基本思路形成:①由全等求出E点坐标,②由C,E两点坐标及对称轴方程求函数解析式。
一道《二次函数》压轴题的解法大全
(几乎涵盖代数和几何的所有常规思路)
分析:直角三角形的存在性问题一般分两类题型考察,单动点型(较简单),双动点型(难度较大)。
解决方案一般有3种,第一种:代数法盲解(分别表示出三边,根据勾股定理分类列方程求解);第二种,几何画图求解(单动点构造“两线一圆”)即过2定点构造两条垂线和以2定点长度为直径构造圆,(双动点,抓定点定线与定角)。
第三种,数形结合求解。
本题虽然只有P点一个动点,看起来题目很简单,仔细一想就会发现P点的轨迹是圆,初中阶段学生未接触过圆方程,难以表示出P点坐标,进而写出三边长度来运用勾股定理列方程。
代数法盲解是否无法进行呢?我们在观察发现虽然我们不能用单个未知量表示P点坐标,但可将P点用2个未知量表述,列方程组求解。
因代数法盲解较复杂,本题仅提供其中一种分类解答:。
第16题QP N Oyx初中二次函数综合题专项讲解引言:二次函数综合题题目难度较大,也称压轴题。
解压轴题有三个步骤:认真审题;理解题意、探究解题思路;正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
二次函数一般会出现在选择题(或填空题)、解答题的倒数几个题目中。
选择题和填空题时易时难。
解答题较难,一般有2—3小题。
第1小题通常是求解析式:这一小题简单,直接找出坐标或者用线段长度而确定坐标,进而用待定系数法求出解析式即可。
第2—3小题通常是以动点为切入口,结合三角形、四边形、圆、平移、对称、解方程(组)与不等式(组)等知识呈现,知识面广,难度大;解这类题要善于运用转化、数形结合、分类讨论等数学思想,认真分析条件和结论、图形的几何特征与代数式的数量结构特征的关的关系,系,确定解题的思路和方法;同时需要心态平和,切记急躁:当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系;既要防止钻牛角尖,又要防止轻易放弃。
一、重庆一中13—14学年度上期半期考试二次函数习题1212..如图,直线y kx c =+与抛物线2y ax bx c =++的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线1x =,且OA OD =直线y kx c =+与x 轴交于点C (点C 在点B 的右侧)则下列命题中正确命题的个数是(下列命题中正确命题的个数是( )). ①0abc >; ; ②②30a b +>; ; ③③10k -<<; ④k a b >+; ; ⑤⑤0ac k +>A .1 B .2 C .3 D .4 16.如右图是二次函数2y ax bx c =++的部分图象,由图象可知20ax bx c ++>时x 的取值范围是的取值范围是_______________________________________________________________________________________..1818.已知抛物线.已知抛物线2122y x x =-+的图象如左图所示,点N 为抛物线的顶点,直线ON 上有两个动点P 和Q ,且满足22PQ =,在直线x=1DCBAoyx第12题xy OEB A第25题 xyOEBA备用图备用图轴的对称图象的解析式为轴的对称图象的解析式为 ________关于关于对称图象的解析式为对称图象的解析式为 __________________,关于顶点旋转______ 对称轴为 _ ____ _ ____ x 时,时,Yy x O 22x21(轴的交点:抛物线与的图像与轴的两个交点的横坐标、轴的交点情况可以由对应的一元二次方程的①有两个交点抛物线与24b acx a-③没有交点抛物线与)直线与抛物线的交点:一次函数:一次函数与二次函数的交点, 与与212212)()(y y x x -+- 元的苹果,物价部门规定每箱元的价格调查,平均每天销售90箱,价箱)之间的函数关系式.(3分)分)开口方向0112Oxy 对称轴对称轴在对称轴在与;与轴交于正半轴;与25.已知二次函数()22a +b=0+b=0;;的横坐标分别为的横坐标分别为-1,3-1,3-1,3,,0;②20a b +=; ③⑤只有 D.5x)三点. ,)三点.x,)过点xA 72x = B(0,4) A(6,0) E F xyO 为斜边且一个角为30的直角三角形?若存,5-4-3-2-1-1 2 3 4 5 5 4 3 2 1 AEBC¢1-O2l1lx y【陈老师*专用】二次函数综合题21 轴的另一个交点为B ,过B 作⊙作⊙A A 的切线L.(1)以直线l 为对称轴的抛物线过点A 及点(及点(00,9),求此抛物线的解析式;,求此抛物线的解析式;(2)抛物线与x 轴的另一个交点为D ,过D 作⊙作⊙A A 的切线DE DE,,E 为切点,求此切线长;为切点,求此切线长;(3)点F 是切线DE 上的一个动点,当△上的一个动点,当△BFD BFD 与EAD EAD△相似时,求出△相似时,求出BF 的长的长 .。
二次函数压轴题总结:(凡解析几何问题,均是以几何性质探路,代数书写竣工。
) 已知、 y=322--x x (以下几种分类的函数解析式就是这个)1、和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标 在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标解决方案:识别模型,A 、若为过河问题模型,根据“异侧和最小,同侧差最大,根据问题同侧异侧相互转化”;B 、若有绝对值符号或不隶属于过河问题,可将问题形式平方,构建函数,转化为求函数最值问题(若表达式中含有根式等形式,可考虑用换元法求最值)。
2、求面积最大 连接AC,在第四象限抛物线上找一点P ,使得ACP ∆面积最大,求出P 坐标解决方案:熟悉基本图形的面积公式【或根据拼图思想,采用割补法求面积(注意不重不漏)。
】,根据问题,灵活选择面积公式,务必使表达式简单,变量的最值好求,讲变量的最值问题转化为:”定值+变量的最值“3、讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.解决方案:此类问题是分类讨论思想能力的考察,由于直角三角形的”直角边“”和“斜边”不确定而展开讨论。
在不忘三角形满足三边关系的条件下,勿忘“等腰直角三角形”。
4、讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ∆为等腰三角形,求出P 坐标 解决方案:分析同上4,在能组成△的大前提下,根据谁作为腰,谁作为底边展开讨论。
5、讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四 边形为平行四边形,求点F 的坐标解决方案:从平行四边形的性质入手,已知三点求另外一点,分析其位置情况(分别以3点中任一已知两点的线段为平行四边形的边或其对角线来展开所有的情况的讨论)。
6、相似三角形 问抛物线上是否存在一动点D ,使得△ABD ∽△ABC 。
二次函数压轴题解题技巧
常数问题:
(1)点到直线的距离中的常数问题:
“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:
先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。
(2)三角形面积中的常数问题:
“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:
先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。
(3)几条线段的齐次幂的商为常数的问题:
用K点法设出直线方程,求出与抛物线(或其它直线)的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可。
“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最
小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。
二次函数的实际应用六大压轴题型归纳总结【题型1 利用二次函数解决几何图形问题】【例1】(2020春•萧山区月考)如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)【解题思路】(1)根据2AB+7半径+弧长=6列出代数式即可;(2)设面积为S,列出关于x的二次函数求得最大值即可.【解答过程】解:(1)根据题意得:2AB+7x+πx=2AB+10x=6,整理得:AB=3﹣5x;根据3﹣5x>0,所以x的取值范围是:0<x<3 5;(2)设面积为S,则S=2x(3﹣5x)+32x2=−172x2+6x=−172(x−617)2+1817,当x=617时,S最大=1817.【变式1-1】(2020•安徽模拟)如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.【解题思路】(1)根据矩形的性质得到CD=AB=16,AD=BC=12,根据正方形AEFG和正方形JKCI 形状大小相同,矩形GHID和矩形EBKL形状大小相同,得到DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.【解答过程】解:(1)在矩形ABCD中,CD=AB=16,AD=BC=12,∵正方形AEFG和正方形JKCI形状大小相同,矩形GHID和矩形EBKL形状形状大小相同,AG=x,∴DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,∵S矩形LJHF=FL•LJ,∴y=(2x﹣12)(16﹣2x)=﹣4x2+56x﹣192;(2)由(1)得,y=﹣4x2+56x﹣192=﹣4(x﹣7)2+4,∵FL=2x﹣12>0,LJ=16﹣2x>0,∴6<x<8,∵a=﹣4<0,∴当x=7时,y的最大值=4;故矩形观赏鱼用地LJHF面积的最大值为4m2.【变式1-2】(2020•富顺县三模)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【解题思路】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,再利用二次函数增减性求得最值;(3)根据题意确定x的取值范围,利用二次函数增减性计算即可.【解答过程】解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:{28−x≥ax≥6,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.【变式1-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长. (1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【解题思路】(1)①设AB 的长是x 米,根据矩形的面积公式列出方程; ②列出面积关于x 的函数关系式,再根据函数的性质解答;(2)设AB =x ,能围成的矩形花圃的面积为S ,根据题意列出S 关于x 的函数关系,再通过求最值方法解答.【解答过程】解:(1)①设AB 的长是x 米,则AD =20﹣3x , 根据题意得,x (20﹣3x )=25, 解得:x 1=5,x 2=53, 当x =53时,AD =15>6, ∴x =5, ∴AD =5,答:AD 的长是5米;②设BC 的长是x 米,矩形花圃的最大面积是y 平方米,则AB =13[20﹣x ﹣(x ﹣6)]=263−23x , 根据题意得,y =x (263−23x )=−23x 2+263x =−23(x −132)2+1696(x >6), ∴当x =132时,y 有最大值为1696.答:按图乙的方案,能围成的矩形花圃的最大面积是1696平方米;(2)设BC =x ,能围成的矩形花圃的面积为S ,按图甲的方案,S =x ×20−x 3=−13x 2+203x =−13(x −10)2+1003, ∴在x =a <10时,S 的值随x 的增大而增大,∴当x =a 的最大值n 时,S 的值最大,为S =−13(n −10)2+1003;按图乙方案,S =13[20﹣x ﹣(x ﹣a )]x =−23(x −a+204)2+(a+20)224,∴当x =a+204时,S 的值最大为S =(a+20)224,此时a 取最大值n 时,S 的值最大为S =(n+20)224; ∵(n+20)224−[−13(n ﹣10)2+1003]=9n 2−120n+40024>0, ∴(n+20)224>−13(n −10)2+1003,故第二种方案能围成面积最大的矩形花圃.【题型2 利用二次函数解决销售利润问题】【例2】2020年1月,全国爆发新型冠状病毒肺炎,2月某工厂购进某防护材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价但不高于成本价2倍,经试销,销售量y (千克)与销售单价x (元)的关系如图所示.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少元时,当天该工厂日利润最大,最大日利润为多少元?【解题思路】(1)直接利用待定系数法求出一次函数关系式;(2)利用销量×每件利润=总利润,进而结合二次函数增减性得出答案. 【解答过程】解:(1)设y 与x 的函数关系式为:y =kx +b (k ≠0),根据图象可得方程组{30k +b =14050k +b =100,解得:{k =−2b =200,∴y 与x 的函数关系式为:y =﹣2x +200,x 的取值范围是:30≤x ≤60; (2)设日利润为w ,则可以列出函数关系式为: w =(﹣2x +200)(x ﹣30)﹣450 =﹣2x 2+260x ﹣6450, 当x =−b2a=65, 又∵30≤x ≤60,∴当x =60时,w 取得最大值,w =1950,答:当销售单价为60元时,当天该工厂日利润最大,最大日利润为1950元.【变式2-1】某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解题思路】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【解答过程】解;(1)设y 关于x 的函数解析式为y =kx +b , {85k +b =17595k +b =125,得{k =−5b =600,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【变式2-2】(2020•安徽二模)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解题思路】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x之间的函数关系式,再利用配方法求函数最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【解答过程】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则{100k+b=20 b=30,解得:{k=−110 b=30,故z与x之间的关系式为z=−110x+30;(2)W=zx﹣y=−110x2+30x−110x2=−15x2+30x=−15(x2﹣150x)=−15(x﹣75)2+1125,∵−15<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得110x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=−15(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【变式2-3】(2020•邢台二模)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a 元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.【解题思路】(1)根据实际售价﹣进价=进价×利润率建立关于a的方程,解之可得a的值;用原销售量﹣因价格上涨而减少的销售量可得答案.(2)根据“总利润=每个硒鼓利润×销售量”列出关于x的函数,配方成顶点式,再利用二次函数的性质求解可得;(3)根据以上相等关系,并结合新进价列出关于x的二次函数,找到其对称轴,利用二次函数的增减性求解可得.【解答过程】解:(1)30×0.8﹣a=20%a,解得a=20.y=500﹣10(x﹣30),即y=﹣10x+800(20≤x≤48).(2)根据题意,得W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000.∵﹣10<0,销售单价不能超过48元/个,即当20≤x≤48时,W随x的增大而增大,∴当x=48时,W有最大值,最大值为8960.答:当售价为48元/个时,每月获得的利润最大,最大利润为8960元.(3)根据题意,得G=(x﹣n)(﹣10x+800)=﹣10x2+(800+10n)x﹣800n,对称轴x=80+n 2.∵a=﹣10<0,∵当n ≤x ≤48时,该商品利润G 随x 的增大而增大, ∴80+n 2≥48,解得n ≥16. ∵进价是降低的,∴n 的取值范围是16≤n <20.【题型3 利用二次函数解决抛物线形轨迹问题】【例3】(2020秋•渑池县期末)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,球达到最大高度12米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距8√3米. (1)求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点,并说明理由.【解题思路】(1)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)OA 与水平方向OC 的夹角为30°,OA =8√3米,解直角三角形可求点A 的坐标,把点A 的横坐标x =12代入抛物线解析式,看函数值与点A 的纵坐标是否相符. 【解答过程】解:(1)∵顶点B 的坐标是(9,12), ∴设抛物线的解析式为y =a (x ﹣9)2+12, ∵点O 的坐标是(0,0)∴把点O 的坐标代入得:0=a (0﹣9)2+12, 解得a =−427,∴抛物线的解析式为y =−427(x ﹣9)2+12 即y =−427x 2+83x ;(2)在Rt△AOC中,∵∠AOC=30°,OA=8√3,∴AC=OA•sin30°=8√3×12=4√3,OC=OA•cos30°=8√3×√32=12.∴点A的坐标为(12,4√3),∵当x=12时,y=323≠4√3,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.【变式3-1】如图,运动员甲在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?(3)运动员乙跳离地面时,最高能摸到3.3m,问:在(2)的条件下,运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?【解题思路】(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.(3)当y=3.3m,进而代入函数解析式,求出x的值,即可得出答案.【解答过程】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.(3)由题意可得出:y=3.3,则3.3=﹣0.2x2+3.5解得:x1=1,x2=﹣1,∴2.5﹣1=1.5(m),1.5﹣1=0.5(m)∴乙在距离甲1.5米以内或离篮板0.5米以内能在空中截住球.【变式3-2】(2021•嘉善县一模)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A'(如图3),请直接写出m的取值范围.【解题思路】(1)根据条件可以得到抛物线的顶点坐标是(6,4.4),利用待定系数法即可求得函数的解析式;(2)求出当y=2.44时,x的值,取正;(3)先求出y=0时,x的值,取正,减去恰好击中球门横梁时,足球的水平距离.【解答过程】解:(1)抛物线的顶点坐标是(6,4.4),设抛物线的解析式是:y=a(x﹣6)2+4.4,把(0,0.4)代入得36a+4.4=0.4,解得a=−1 9,则抛物线是y=−19(x﹣6)2+4.4;(2)∵球门高为2.44米,即y=2.44,则有2.44=−19(x﹣6)2+4.4,解得:x1=10.2,x2=1.8,从题干图2中,发现球门在CD右边,∴x=10.2,即足球运动的水平距离是10.2米;(3)不后退时,刚好击中横梁,∴往后退,则球可以进入球门,而当球落地时,球刚好在门口,是一个临界值,当y=0时,有0=−19(x﹣6)2+4.4,解得:x1=6+35√110,x2=6−35√110,取正值,x=6+35√110,∴后退的距离需小于6+35√110−10.2=(35√110−4.2)米故0<m<35√110−4.2.【变式3-3】(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)【解题思路】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6√2=8.4,即可求解.【解答过程】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=−1 50,故抛物线的表达式为:y=−150(x﹣7)2+2.88;当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,当x=18时,y=−150(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6√2=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.【题型4 利用二次函数解决车过隧道问题】【例4】(2020秋•海淀区校级月考)小宇遇到了这样一个问题:如图是一个单向隧道的断面,隧道顶MCN是一条抛物线的一部分,经测量,隧道顶的跨度MN为4m,最高处到地面的距离CO为4m,两侧墙高AM和BN均为3m,今有宽2.4m的卡车在隧道中间行驶,如果卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,那么卡车载物后的限高应是多少米?(精确到0.1m)为解决这个问题,小宇以AB中点O为原点,建立了如图所示的平面直角坐标系,根据上述信息,设抛物线的表达式为y=ax2+c.(1)写出M、C、N、F四个点的坐标;(2)求出抛物的表达式;(3)利用求出的表达式,帮助小宇解决这个问题.【解题思路】(1)根据题中信息直接写出M、C、N、F四个点的坐标即可;(2)将点M、C点的坐标代入抛物线的表达式为y=ax2+c,利用待定系数法求解即;(3)在y=−14x2+4中,令x=1.2,求得相应的y值,从而可得点D的坐标,结合卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,可得卡车载物最高点距地面的距离,然后精确到0.1m,即可得出答案.【解答过程】解:(1)由题意得:M(﹣2,3)、C(0,4)、N(2,3)、F(1.2,0);(2)将M(﹣2,3)、C(0,4)代入y=ax2+c,得:{4a+c=3c=4,解得:{a=−14 c=4,∴抛物的表达式为y =−14x 2+4;(3)在y =−14x 2+4中,令x =1.2,得:y =−14×1.22+4=3.64,∴点D 的坐标为(1.2,3.64),即点D 与地面的距离为3.64m ,∵卡车载物后的最高点E 到隧道顶面对应的点D 的距离应不小于0.6m ,∴点E 离地面的距离不超过3.04m ,∴卡车载物后的限高应是3.0m .【变式4-1】(2021•海城市模拟)如图,隧道的横截面由抛物线形和矩形OABC 构成.矩形一边OA 的长是12m ,另一边OC 的长是1m .抛物线上的最高点D 到地面OA 的距离为7m .以OA 所在直线为x 轴,以OC 所在直线为y 轴,建立平面直角坐标系.(1)求该抛物线所对应的函数表达式.(2)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为5m ,求两排灯之间的水平距离.(3)隧道内车辆双向通行,规定车辆必须在中心线两侧行驶,并保持车辆顶部与隧道有不少于13m 的空隙.现有一辆货运汽车,在隧道内距离道路边缘2m 处行驶,求这辆货运汽车载物后的最大高度.【解题思路】(1)设抛物线所对应的函数表达式为y =a (x ﹣6)2+7,将点C (0,1)代入所设解析式求出a 的值即可得出函数解析式;(2)将y =5代入解析式求出x 的值,将所求x 的值相减可得答案;(3)求出x =2时y 的值,再减去13可得答案. 【解答过程】解:(1)由题意设抛物线所对应的函数表达式为y =a (x ﹣6)2+7,将点C (0,1)代入上式,36a +7=1,解得a =−16,∴该抛物线所对应的函数表达式为y =−16(x −6)2+7.(2)把y=5代入y=−16(x−6)2+7中,−16(x−6)2+7=5,解得x1=6+2√3,x2=6−2√3,6+2√3−(6−2√3)=4√3,所以两排灯之间的水平距离为4√3m;(3)把x=2代入y=−16(x−6)2+7中,y=−16(2−6)2+7=133,13 3−13=4,所以这辆货运汽车载物后的最大高度为4m.【变式4-2】(2020•武汉模拟)某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【解题思路】(1)根据题目可知A,B,C的坐标,设出抛物线的解析式代入可求解.(2)把x=5代入可求出支柱的长度,然后算出总造价即可.(3)先求出坦克方队的长,然后算出速度,从而求得通过隧道的时间即可.【解答过程】【解】(1)设y=ax2+c,把C(0,6)、B(10,0)代入,得a=−350,c=6.∴y=−350x2+6.(2)当x=5时,y=−350×52+6=92,∴EF=10−92=112,CD=10﹣6=4,支柱的总造价为2(2×112+2×10+4)=70(万元). (3)∵坦克的高为3米,令y =3时,−350x 2+6=3,解得:x =±5√2,∵7<5√2<8,坦克宽为2米,∴可以并排3辆坦克行驶,此时坦克方阵的长为120÷3×4=160(米),坦克的行驶速度为24km /h =400米/分,∴通过隧道的最短时间为1000+160400=2.9(分).【变式4-3】(2020秋•海州区校级期末)施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM 为16米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x 的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A .D 点在抛物线上.B 、C 点在地面OM 线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.【解题思路】(1)抛物线的顶点坐标为(8,8),则其表达式为:y =a (x ﹣8)2+8,将点O (0,0)代入上式,即可求解;(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x =7.5﹣3.5=4,即可求解;(3)点A 、D 关于函数对称轴对称,则设AD =2m ,则AB =y =−18(x ﹣8)2+8=8−18m 2,w =AB +AD +DC =2m +2AB =−14m 2+2m +16,即可求解.【解答过程】解:(1)抛物线的顶点坐标为(8,8),则其表达式为:y =a (x ﹣8)2+8,将点O (0,0)代入上式得:0=64a +8,解得:a =−18,故函数的表达式为:y =−18(x ﹣8)2+8,即y =−18x 2+2x (0≤x ≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x =7.5﹣3.5=4,当x =4时,y =6,即允许的最大高度为6米,5.8<6,故该车辆能通行;(3)设点B (m ,0),则点A (m ,−18m 2+2m ),由抛物线的表达式知,其对称轴为x =8,则BC =2(8﹣m )=16﹣2m =AD ,则AB =−18m 2+2m ,则设:w =AB +AD +DC =2m +2AB =−14m 2+2m +16,∵−14<0,故w 有最大值,当m =4时,w 的最大值为20,故AB 、AD 、DC 的长度之和的最大值是20.【题型5 利用二次函数解决拱桥形问题】【例5】(2020秋•渝水区校级月考)某河上有抛物线形拱桥,当水面离拱顶5m 时,水面宽8m .一木船宽4m ,高2m ,载货后,木船露出水面的部分为34m .以拱顶O 为坐标原点建立如图所示的平面直角坐标系,A 、B 为抛物线与水面的交点.(1)B 点的坐标为 ;(2)求抛物线解析式;(3)当水面离拱顶1.8米时,木船能否通过拱桥?【解题思路】(1)当水面距拱顶5m 时,水面宽8m ,则B (4,﹣5);(2)设抛物线的解析式为y =ax 2,将点B 的坐标代入上式即可求解;(3)将x =2代入上式,得y =−516x 2=−54,则54+34=2,而1.8<2,即可求解.【解答过程】解:(1)当水面距拱顶5m 时,水面宽8m ,则点B (4,﹣5),故答案为(4,﹣5);(2)设抛物线的解析式为y =ax 2,将点B 的坐标代入上式得﹣5=a ×42,解得a =−516,∴该抛物线的解析式为y =−516x 2; (3)将x =2代入上式,得y =−516x 2=−54, ∵54+34=2,而1.8<2,当水面离拱顶1.8米时,木船不能通过拱桥.【变式5-1】(2020秋•泗阳县期末)河上有一座抛物线形的石拱桥,水面宽6m 时,水面离桥拱顶部3m .(1)如图建立平面直角坐标系,试求抛物线的解析式;(2)一艘装满货物的小船,露出水面部分的高为0.5m ,宽为4m .现因暴雨河水水位上升了1m ,这艘小船能从这座石拱桥下通过吗?请说明理由.【解题思路】(1)根据题意可以知道A 、B 的坐标,在利用点C 得坐标从而求出抛物线的解析式.(2)代入x =2求出y 的值,用其减去1求出可通过船的做最高高度,与0.5比较大小从而得出答案.【解答过程】解:(1)设抛物线的解析式为y =a (x ﹣x 1)(x ﹣x 2).A (﹣3,0),B (3,0),C (0,3).y =a (x +3)(x ﹣3).在将点C (0,3)带入y =a (x +3)(x ﹣3)中的得a =−13,所以抛物线的解析式为y =−13x 2+3,(2)小船可以通过,理由:当x =2时,y =−13×22+3=53,∵53−1=23>0.5,∴暴雨后这艘船能从这座拱桥下通过.【变式5-2】(2021•衢州)如图1是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24m ,在距离D 点6米的E 处,测得桥面到桥拱的距离EF 为1.5m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离.(2)如图2,桥面上方有3根高度均为4m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m .①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.【解题思路】根据题意设出适当的二次函数表达式,利用待定系数法求出表达式,再结合图形进行求解即可;【解答过程】解:(1)根据题意可知点F 的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y 1═a 1x 2.将F (6,﹣1.5)代入y 1═a 1x 2有:﹣1.5═36a 1,求得a 1═−124,∴y 1═−124x 2,当x ═12时,y 1═−124×122═﹣6,∴桥拱顶部离水面高度为6m .(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y 2═a 2(x ﹣6)2+1, 将H (0,4)代入其表达式有:4═a 2(0﹣6)2+1,求得a 2═112, ∴右边钢缆所在抛物线表达式为:y 2═112(x ﹣6)2+1,左边钢缆所在抛物线表达式为:y 3═112(x +6)2+1 ②设彩带的长度为Lm ,则L ═y 2﹣y 1═112(x ﹣6)2+1﹣(−124x 2)═18x 2−x +4═18(x −4)2+2, ∴当x ═4时,L 最小值═2,答:彩带长度的最小值是2m .【变式5-3】(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA =8m ,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处,有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y =ax 2+bx +c (a ≠0),该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m (m >0)个单位长度,平移后的函数图象在8≤x ≤9时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.【解题思路】(1)根据题意结合图象可以求出函数的顶点B (4,4),先设抛物线的顶点式y =a (x ﹣4)2+4,再根据图象过原点,求出a 的值即可;(2)先求出工人矩原点的距离,再把距离代入函数解析式求出y 的值,然后和1.68比较即可;(3)根据倒影与桥对称,先求出倒影的解析式,再平移m 各单位,根据二次函数的性质求出m 的取值范围.【解答过程】解:(1)如图②,由题意得:水面宽OA 是8m ,桥拱顶点B 到水面的距离是4m ,。
二次函数压轴基本结构和解题方法一、线1、线段与距离 (1)改“斜”归正已知:A(x 1,y 1),B(x 2,y 2),直线AB :y =kx +b ,AB ⊥BC 水平线段:AC =|x 1−x 2| 铅垂线段:AC =|y 1−y 2|斜线段: AB =√(x 1−x 2)2+(y 1−y 2)2=√k 2+1|x 1−x 2|(2)点到直线距离公式:d =PH =|km +b −n|√k 2+1(3)于涵定理 一般位置:条件:直线AB 交抛物线(二次项系数为a )于AB 两点,铅垂线PQ 交抛物线于P ,交直线AB 于P ,AE ⊥PQ ,BF ⊥PQ 结论:①PQ =|a|∙AE ∙BF ;S △PAB =12PQ ∙(AE +BF )=12|a |∙AE ∙BF ∙(AE +BF )=12|a (x A −x P )(x P −x B )(x A −x B )|特殊位置① 若AB 为水平直线: PQ =|a|∙AQ ∙BQ ② 若AB 为水平直线,且AP ⊥BP : PQ =1|a|(PQ =|a|∙AQ ∙BQ ,且PQ 2=AQ ∙BQ )③ 若AB 为水平直线,且P 为抛物线顶点(类似于圆中的垂径结构)AB =√4PQ|a|④ 若AB 为x 轴,且P 为抛物线顶点:AB =√∆|a|(4)焦点准线焦点准线的定义:将抛物线的顶点向上/下平移14|a|个单位,就得到焦点和准线的位置。
焦点:F(−b2a ,14a);准线:直线y=−14a条件:点P是抛物线上任意一点,过P点的直线(非铅垂线)与抛物线有位移公共点(“切线”),与对称轴交于S,与过顶点的水平线交于A,PM⊥准线于M;PQ过焦点F,过P、Q 的切线交于T结论:①PF=PM,DE=DF②PF=FS③FA⊥PS,PA=SA④当直线PQ绕焦点F转动时候,T点在准线上移动(阿基米德三角形特殊情况)⑤TP⊥TQ,TM=TN⑥以MN为直径的圆切PQ于F,以PQ为直径的圆切MN于T准线2、平行“弦”条件:AB//CD//l P结论:x A+x B=x C+x D=2x P变式一:若CE和DF为铅垂线,则AE=BF变式二:若将抛物线向下平移交直线AB于E、F,则AE=BF变式三:将抛物线沿着PQ方向平移,若AB//PQ,则AB=EF,AE=BF3、线段相等和比值(1)左右对称(纵向角平分线)特殊情况:条件:P为抛物线(顶点为M)对称轴上一点,过P点的直线PA交抛物线于C,过C作水平直线BC交抛物线于B点,连接AB交对称轴于Q,连接PB交抛物线于D;结论:①k PA+k PB=0;②PM=QM一般情况:条件:过抛物线内一点T作铅垂、水平直线,交抛物线于M、B、C,在铅垂线上取一点P,连接PC交抛物线于A,连接AB交铅垂线于Q结论:TBTC =QMPM(2)上下对称条件:水平直线与抛物线交于P、Q两点,直线PA、PB分别交抛物线于A、B,且∠APQ=∠BPQ,连接AB,过Q点的直线作抛物线的切线。
专题01 二次函数的定义压轴题四种模型全攻略考点一 二次函数的识别 考点二 二次函数的二次项系数、一次项系数、常数项 考点三 根据二次函数的定义求参数 考点四 列二次函数关系式考点一 二次函数的识别例题:(2022·江苏·盐城市初级中学一模)下列函数中为二次函数的是( )A .31y x =-B .231y x =-C .2y x =D .323y x x =+-【答案】B【解析】【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:A 、31y x =-,是一次函数,故此选项不符合题意;B 、231y x =-,是二次函数,故此选项符合题意;C 、2y x =,不是二次函数,故此选项不符合题意;D 、323y x x =+-,未知数的最高次为3,不是二次函数,故此选项错误.故选:B .【点睛】本题考查了二次函数的定义;熟练掌握二次函数解析式的一般形式2y ax bx c =++(0a ≠),是解题的关键.【变式训练】1.(2020·陕西·西安市大明宫中学三模)观察:①26y x =;②235y x =-+;③2200400y x x =+;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有( )个. A .2B .3C .4D .5【答案】B【解析】【分析】 根据二次函数的定义判断即可.典型例题【详解】①26y x =是二次函数;②235y x =-+是二次函数;③2200400y x x =+是二次函数;④32y x x =-不是二次函数;⑤213y x x=-+不是二次函数; ⑥()22121y x x x =+-=+不是二次函数;这六个式子中二次函数有①②③故选:B .【点睛】本题考查二次函数的定义,即一般地,形如2y ax bx c =++(a ,b ,c 是常数,0a ≠)的函数,叫做二次函数.2.(2022·全国·九年级课时练习)下列函数①55y x =-;②231y x =-;③3243y x x =-;④2221y x x =-+;⑤21y x =.其中是二次函数的是____________. 【答案】②④##④②【解析】【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①y =5x -5为一次函数;②y =3x 2-1为二次函数;③y =4x 3-3x 2自变量次数为3,不是二次函数;④y =2x 2-2x +1为二次函数;⑤y =21x 函数式为分式,不是二次函数. 故答案为②④.【点睛】本题考查二次函数的定义,熟记定义“函数式为整式且自变量的最高次数为2,二次项系数不为0”是解题关键.考点二 二次函数的二次项系数、一次项系数、常数项例题:(2022·福建省福州外国语学校八年级期末)二次函数223y x x =-+的一次项系数是( )A .1B .2C .2-D .3【答案】C【解析】【分析】 根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项作答.【详解】解:二次函数y =x 2-2x +3的一次项系数是-2;故选:C .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式训练】1.(2022·全国·九年级)设a ,b ,c 分别是二次函数y =﹣x 2+3的二次项系数、一次项系数、常数项,则( ) A .a =﹣1,b =3,c =0B .a =﹣1,b =0,c =3C .a =﹣1,b =3,c =3D .a =1,b =0,c =3【答案】B【解析】【分析】根据二次函数的一般形式可得答案.【详解】解:二次函数y =﹣x 2+3的二次项系数是a =﹣1,一次项系数是b =0,常数项是c =3;故选:B .【点睛】此题主要考查了二次函数的一般形式,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.2.(2022·全国·九年级)已知二次函数y =1﹣5x +3x 2,则二次项系数a =___,一次项系数b =___,常数项c =___.【答案】 3 -5 1【解析】【分析】形如:()20y ax bx c a =++≠这样的函数是二次函数,其中二次项系数为,a 一次项系数为,b 常数项为,c 根据定义逐一作答即可.【详解】解:二次函数y =1﹣5x +3x 2,则二次项系数a =3,一次项系数b =﹣5,常数项c =1,故答案为:3,﹣5,1.【点睛】本题考查了二次函数的定义,熟记二次函数的定义是解题关键.考点三 根据二次函数的定义求参数例题:(2022·全国·九年级课时练习)已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.【答案】-1【解析】【分析】若y =21(1)m m x +-+2x ﹣3是二次函数式,则二次项系数不等于零,可得答案;【详解】 解:由题意得:21012m m -≠⎧⎨+=⎩, 解得:m =-1,故答案为:-1.【点睛】本题考查了二次函数的定义,理解二次函数的定义是解题关键.【变式训练】1.(2021·黑龙江·塔河县第一中学校九年级期中)已知(2)21m y m x x =-+-是y 关于x 的二次函数,那么m 的值____.【答案】2-【解析】 【分析】根据二次函数的定义,(2)m m x -中,未知数x 的指数为2,系数不为0,列式计算即可. 【详解】解:∵(2)21m y m x x =-+-是y 关于x 的二次函数,∵2m =且20m -≠,∵2m =-.故答案为:2-.【点睛】本题考查的是二次函数的定义,熟练掌握形如y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的函数,叫做二次函数是解题的关键.2.(2021·广东广州·九年级期中)关于x 的函数()21m m y m x -=+是二次函数,则m 的值为__________.【答案】2【解析】【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数,求出m 的值即可解决问题.【详解】解:∵()21m m y m x -=+是关于x 的二次函数,∵m 2-m =2,m +1≠0,解得:m =2.故答案为:2.【点睛】本题主要考查了二次函数的定义及解一元二次方程;牢固掌握定义和方程的解法是解题的关键.考点四 列二次函数关系式例题:(2022·上海市青浦区教育局二模)为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为x ,第一季度的总产值为y (亿元),则y 关于x 的函数解析式为________________.【答案】233y x x =++【解析】【分析】根据题意分别求得每个月的产值,然后相加即可求解.【详解】解:∵某医药公司一月份的产值为1亿元,若每月平均增长率为x ,∵二月份的为()111x x +⨯=+三月份的为()()()2111x x x +⨯+=+第一季度的总产值为y (亿元),则()2211133y x x x x =++++=++ 故答案为:233y x x =++【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.【变式训练】1.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为【答案】2105607350y x x =-+-【解析】【分析】由题意分析出每件商品的盈利为:()21x -元,再根据:总利润等于每件商品的利润乘以销售的数量,再化简即可.【详解】解:由题意得:每件商品的盈利为:()21x -元,所以:()()2135010y x x =--2102103507350x x x =-++-2105607350x x =-+-故答案为:2105607350y x x =-+-【点睛】本题考查的是列二次函数关系式,掌握“总利润等于每件商品的利润乘以销售的数量”是解题的关键. 2.(2022·全国·九年级课时练习)如图,在长方形ABCD 中,8cm AB =,6cm AD =,点M ,N 从A 点出发,点M 沿线段AB 运动,点N 沿线段AD 运动(其中一点停止运动,另一点也随之停止运动).若设cm AM AN x ==,阴影部分的面积为2cm y ,则y 与x 之间的关系式为______.【答案】y =-212x +48 【解析】【分析】先求出212AMN S x =,进而即可得到答案. 【详解】由题意得:21122AMN S AM AN x =⋅=, ∵阴影部分的面积=6×8-212x ,即:y =-212x +48. 故答案是:y =-212x +48.本题主要考查列二次函数解析式,解题的关键是掌握割补法求面积.一、选择题1.(2022·吉林·安图县第三中学九年级阶段练习)下列函数中是二次函数的是( )A .y =2x +1B .22y x =-C .y =-8xD .3y x = 【答案】B【分析】根据二次函数的定义进行判断.【详解】解:A 、该函数是一次函数,不是二次函数,故本选项错误;B 、该函数是二次函数,故本选项正确;C 、该函数是反比例函数,故本选项错误;D 、该函数是三次函数,故本选项错误;故选B .【点睛】本题考查二次函数的定义.熟知一般地,形如2y ax bx c =++(a 、b 、c 是常数,a ≠0)的函数,叫做二次函数是解答此题的关键.2.(2020·北京房山·九年级期中)二次函数24+3y x x =-的二次项系数、一次项系数和常数项分别是( )A .1,4,3B .0,4,3C .1,-4,3D .0,-4,3【答案】C【分析】根据二次函数的定义:一般地,形如()2,,0y ax bx c a b c a =++≠是常数,的函数,叫做二次函数.其中x ,y 是变量,,,a b c 是常量, a 是二次项系数, b 是一次项系数, c 是常数项作答.【详解】解:解:二次函数24+3y x x =-的二次项系数是1,一次项系数是4-,常数项是3.故选:C .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数, 一次项系数和常数项时,不要漏课后训练3.(2022·江苏·九年级专题练习)一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( ) A .y =100(1﹣x )B .y =100﹣x 2C .y =100(1+x )2D .y =100(1﹣x )2【答案】D【分析】根据两年后机器价值=机器原价值×(1﹣折旧百分比)2可得函数解析式.【详解】解:根据题意知y =100(1﹣x )2,故选:D .【点睛】本题主要考查根据实际问题列二次函数关系式,根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图像要根据自变量的取值范围来确定.4.(2021·河北·唐山市第九中学九年级阶段练习)若函数24(m 2)3m m y x mx +-=++-是关于x 的二次函数,则m 的取值为( )A .3-B .2C .3D .3-或2 【答案】D【分析】根据二次函数的定义,必须二次项系数不等于0,且未知数的次数等于2,据此列不等式组并求解即可. 【详解】解:由二次函数的定义可知,当22042m m m +≠⎧⎨+-=⎩时,该函数是二次函数, ∵m =-3或m =2,故选:D .【点睛】本题考查了二次函数的定义,明确二次函数的定义并正确列式,是解题的关键.5.(2022·江苏·九年级专题练习)如图所示,在Rt ABO 中,AB OB ⊥,且3AB OB ==,设直线x t =截此三角形所得的阴影部分的面积为S ,则S 与t 之间的函数关系式为( )A .S t =B .212S t =C .2S t =D .2112S t =- 【答案】B【分析】Rt ABO 中,AB OB ⊥,且3AB OB ==,可得45AOB A ∠=∠=︒;再由平行线的性质得出45OCD A ∠=∠=︒,即45COD OCD ∠=∠=︒,进而证明CD OD t ==,最后根据三角形的面积公式,求出S与t 之间的函数关系式.【详解】解:如图所示,∵Rt ABO 中,AB OB ⊥,且3AB OB ==,∵45AOB A ∠=∠=︒,∵CD OB ⊥,∵CD AB ∥,∵45OCD A ∠=∠=︒,∵45COD OCD ∠=∠=︒,∵CD OD t ==,∵12OCD S OD CD =⨯△ ()21032t t =<≤, 即:()21032S t t =<≤. 故选:B .【点睛】本题主要考查的是二次函数解析式的求法,考查了等腰直角三角形的性质,平行线的判定和性质,等腰三角形的判定,三角形的面积等知识点.解题的关键是能够找到题目中的有关面积的等量关系.二、填空题6.(2021·全国·九年级课前预习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】 23x - -16 12【解析】略7.(2022·全国·九年级课时练习)如图,△ABC 中,AB =AC ,CD ∵AB 于D ,BD =1,设BC =x ,AD =y ,当x >2时,y 关于x 的函数解析式为 _____.【答案】21122y x x【分析】由BD =1,AD =y ,可得AB =AC =y +1,在Rt ∵ACD 中,CD 2=AC 2-AD 2=2y +1,在Rt ∵BCD 中,CD 2=BC 2-BD 2=x 2-1,即得2y +1=x 2-1,可得答案.【详解】解:∵BD =1,AD =y ,∵AB =y +1,∵AB =AC ,∵AC =y +1,在Rt ∵ACD 中,CD 2=AC 2-AD 2=(y +1)2-y 2=2y +1,在Rt ∵BCD 中,CD 2=BC 2-BD 2=x 2-12=x 2-1,∵2y +1=x 2-1,∵2112y x =-. 故答案为:21122yx x . 【点睛】本题考查勾股定理的应用,解题的关键是将CD 2作等量,列出y 与x 的关系式.8.(2021·重庆·垫江第八中学校九年级阶段练习)若函数y =(a +1)x |a |+1是二次函数,则a 的值是 ______ .【答案】1【分析】根据二次函数的定义,列出关于a 的方程和不等式,即可求解.【详解】根据二次函数的定义可得:1210a a ⎧+=⎨+≠⎩,解得:a =1. 故答案为:1.【点睛】本题主要考查二次函数的定义,掌握二次函数的最高次项的次数为2,二次项系数不等于零,是解题的关键.9.(2021·山东·泰安市泰山区大津口中学九年级阶段练习)已知2324m m ym x 是二次函数,则m 的值为___________.【答案】-1【分析】根据二次函数的定义,即可求解.【详解】解:∵2324m m y m x 是二次函数,∵2322m m --=且40m -≠,解得:1m =-.故答案为:-1【点睛】本题主要考查了二次函数的定义,熟练掌握二次函数()20y ax a =≠是解题的关键.10.(2021·全国·九年级专题练习)下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 2 【答案】③【分析】根据二次函数的定义: 一般地,把形如y =ax ²+bx +c (a ≠0)(a 、b 、c 是常数)的函数叫做二次函数,据此判断即可.【详解】解:①2y ax bx c =++,必须满足a ≠0才为二次函数,故①不一定是二次函数;②等号右边为分式,故②不是二次函数;③2431y x x =-+是二次函数,故③是二次函数;④2(1)y m x bx c =-++,1m =时,该式不是二次函数;⑤2222(3)6969y x x x x x x =--=-+-=-+,该式不是二次函数;故答案为:③.【点睛】本题考查了二次函数的识别,熟知二次函数的定义是解本题的关键.三、解答题11.(2022·全国·九年级专题练习)下列函数中,哪些是二次函数?(1)y =3x —1;(2)232y x =+ ;(3)3232y x x =+ ;(4)2221y x x =-+ ;(5)2()1y x x x =-+ ;(6)2y x x -=+【答案】(2)(4)是二次函数【分析】根据二次函数的定义,即可求解.【详解】解∵(1)不是二次函数,因为自变量的最高次数是1.(2)是二次函数,因为符合二次函数的概念.(3)不是二次函数,因为自变量的最高次数是3.(4)是二次函数,因为符合二次函数的概念.(5)不是二次函数,因为原式整理后为y =-x .(6)不是二次函数,因为x -2为分式,不是整式.故(2)(4)是二次函数.【点睛】本题主要考查了二次函数的定义,熟练掌握形如2y ax bx c =++(其中a 、b 、c 均为常数,且0a ≠)的函数关系称为二次函数是解题的关键.12.(2022·全国·九年级课时练习)已知函数y =(a +1) 21ax ++(a ﹣2)x (a 为常数),求a 的值:(1)函数为二次函数;(2)函数为一次函数.【答案】(1)a =1(2)a =0或﹣1【分析】(1)直接利用二次函数的定义得出a 2+1=2,a +1≠0得出即可;(2)利用一次函数的定义分别求出即可.(1) 当 21210a a ⎧+=⎨+≠⎩时,函数为二次函数, 解得:a =±1,a ≠-1,∵a =1;(2)当 211120a a a ⎧+=⎨++-≠⎩时,函数为一次函数, 解得:a =0,当a +1=0,即a =﹣1时,函数为一次函数,所以,当函数为二次函数时,a =1,当函数为一次函数时,a =0或﹣1.【点睛】此题主要考查了二次函数与一次函数的定义,正确把握相关定义是解题关键.13.(2022·全国·九年级课时练习)一个二次函数234(1)21kk y k x x -+=-+-.(1)求k 的值.(2)求当x =3时,y 的值?【答案】(1)k =2;(2)14【分析】(1)根据二次函数的定义列出关于k 所满足的式子,求解即可;(2)在(1)的基础上,先求出二次函数解析式,然后代入x =3求解即可. 【详解】解:(1)依题意有234210k k k ⎧-+=⎨-≠⎩, 解得:k =2,∵k 的值为2;(2)把k =2代入函数解析式中得:221y x x =+-,当x =3时,y =14,∵y 的值为14.【点睛】本题考查二次函数的定义,以及求二次函数的函数值,理解并掌握二次函数的基本定义是解题关键.14.(2022·全国·九年级专题练习)已知函数y =(k 2﹣k )x 2+kx +k +1(k 为常数).(1)若这个函数是一次函数,求k 的值;(2)若这个函数是二次函数,则k 的值满足什么条件?【答案】(1)k =1;(2)k ≠0且k ≠1【分析】(1)由一次函数的定义求解可得;(2)由二次函数的定义求解可得.【详解】解:(1)若这个函数是一次函数,则k 2﹣k =0且k ≠0,解得k =1;(2)若这个函数是二次函数,则k 2﹣k ≠0,解得k ≠0且k ≠1.【点睛】本题主要考查了一次函数的定义、二次函数的定义,准确分析判断是解题的关键.15.(2022·浙江宁波·八年级期末)荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元.(1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示).(2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?【答案】(1)()4010x +(2)21060400y x x =-++(3)24元/千克【分析】(1)根据“当售价每降低1元/千克时,平均每天能多售出10千克”可直接得出结论;(2)利用利润=(售价-成本)×销售量可得出结论;(3)令y =480,求出x 的值,再根据题意对x 的值进行取舍即可.(1)根据题意得,降价后平均每天可以销售荔枝:(40+10x )千克,故答案为:(40+10x ).(2)根据题意得,()()40102818y x x =+--整理得21060400y x x =-++(3)令480y =,代入函数得,21060400480x x -++=解方程,得14x =,22x =因为要尽可能地清空库存,所以2x =舍去取4x =此时荔枝定价为28424-=(元/千克)答:应将价格定为24元/千克.【点睛】本题考查了一元二次方程的应用,列函数关系式,列代数式,根据题意列出函数关系式是解题的关键.。
二次函数常见题型及解题策略(压轴题)二次函数常见题型及解题策略1、两点间的距离公式:、中点坐标:线段AB的中点C的坐标为:3、一元二次方程有整数根问题,解题步骤如下:① 用和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x的一元二次方程x2-=0有两个整数根,m<5且m为整数,求m的值。
4、二次函数与x轴的交点为整数点问题。
(方法同上)例:若抛物线与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于x的方程(m为实数),求证:无论m为何值,方程总有一个固定的根。
解:当时,;当时,,,、; m2m综上所述:无论m为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线(m是常数),求证:不论m为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。
解:把原解析式变形为关于m的方程;,解得:;∴ 抛物线总经过一个固定的点(1,-1)。
(题目要求等价于:关于m的方程不论m为何值,方程恒成立) 2小结:关于x的方程有无数解..第 1 页共 4 页7、路径最值问题(待定的点所在的直线就是对称轴)(1)如图,直线l1、l2,点A在l2上,分别在l1、l2上确定两点M、N,使得之和最小。
(2)如图,直线l1、l2相交,两个固定点A、B,分别在l1、l2上确定两点M、N,使得之和最小。
(3)如图,A、B是直线l同旁的两个定点,线段a,在直线l上确定两点E、F(E在F的左侧),使得四边形AEFB的周长最小。
8、在平面直角坐标系中求面积的方法:直接用公式、割补法9、函数的交点问题:二次函数(y=ax+bx+c)与一次函数(y=kx+h)2=ax2+bx+c(1)解方程组可求出两个图象交点的坐标。
二次函数压轴题解题技巧引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
一、动态:动点、动线1.如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1、x2是方程x2-2x-8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE 的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.二、圆2.如图1,在平面直角坐标系xOy,二次函数y=ax2+bx+c(a>0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO= 1 3.(1)求这个二次函数的解析式;(2)若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.图1 图2三、比例比值取值范围3.如图是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4). (1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.4. 如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形? 若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.1.在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D .(1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标;(3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.2.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.3.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-3,0)、B 两点,与y 轴相交于点C (0,3).当x =-4和x =2时,二次函数y =ax 2+bx +c (a ≠0)的函数值y 相等,连结AC 、BC . (1)求实数a ,b ,c 的值; (2)若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;4. 如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值.面积最大5、如图,在平面直角坐标系中,点A 、C 的坐标分别为(-1,0)、(0,3-),点B 在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线x =1,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F .(1)求该二次函数的解析式;(2)若设点P 的横坐标为m ,试用含m 的代数式表示线段PF 的长; (3)求△PBC 面积的最大值,并求此时点P 的坐标.6、在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.讨论等腰7、如图,已知抛物线y =21x2+bx +c 与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标; (3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.8、(武汉市中考)如图,已知抛物线y =x2+bx +3与x 轴交于点B (3,0),与y 轴交于点A ,P 是抛物线上的一个动点,点P 的横坐标为m (m >3),过点P 作y 轴的平行线PM ,交直线AB 于点M . (1)求抛物线的解析式;(2)若以AB 为直径的⊙N 与直线PM 相切,求此时点M 的坐标;(3)在点P 的运动过程中,△APM 能否为等腰三角形?若能,求出点M 的坐标;若不能,请说明理由.备用图论直角三角形9、如已知:如图一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.10、(九市联考)如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D . (1)求该抛物线的解析式与顶点D 的坐标; (2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.讨论四边形11、二次函数y =x2+px +q (p <0)图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45.(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.2018中考二次函数压轴题专题分类训练题型一:面积问题【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.【变式练习】1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.2.如图,抛物线y = ax 2+ bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积.3.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.题型二:构造直角三角形【例2】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90º的点P的坐标.E【变式练习】1.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.3.在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值2E的直线y x b=+与抛物线ABE与ACE的面积大小关系如何?当4>-时,上述关系还成立吗,为什么?,使得BOC是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由.【例3】如图,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1)求抛物线的解析式;(2)在x 轴上是否存在一点Q 使得△ACQ 为等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.2.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC .(1)写出A,B,C 三点的坐标并求抛物线的解析式;(2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.【例4】如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式练习】1.如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.7),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6.2. 如图,二次函数的图象经过点D(0,39(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.3.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且P A=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.题型六:构造平行四边形【例7】如图,在平面直角坐标系中,抛物线经过A(—1,0),B(3,0),C(0,—1)三点。