山东省东营市胜利一中2016届高考数学考前最后一卷(理科) Word版含解析
- 格式:doc
- 大小:828.00 KB
- 文档页数:25
百校联盟2016年山东省高考最后一卷(押题卷)理科数学(第五模拟)一、选择题:共10题1.已知集合A={x|y=ln(x-3)},集合B={y|y=2x,x∈A},则A∩(∁R B)=A.(3,8)B.(3,8]C.(8,+∞)D.(3,+∞)【答案】B【解析】本题考查集合的运算.求出集合A,B后按照集合的运算法则求解即可.集合A=(3,+∞),集合B=(8,+∞),∁R B=(-∞,8],所以A∩(∁R B)=(3,8].2.已知复数z=(i为虚数单位),则复数z的共轭复数在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】本题考查复数的运算、复数的几何意义等知识,考查考生基本的运算能力.∵i2015=i4×503+3=i3=-i,∴z=-i,∴+i,其在复平面内对应的点位于第一象限,故选A.3.已知a,b是实数,则“a>0或b>0”是“a+b>0且>0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】本题主要考查充要关系的判断.解题时,利用充分条件、必要条件的定义,从两个方面进行判断.若“a>0或b>0”,则不一定有“a+b>0且>0”成立,如取a=1,b=-1,则a+b=0,且=-1;反之,若“a+b>0且>0”,则a>0且b>0,从而“a>0或b>0”成立.综上,选B.4.已知直线3x+ay=0(a>0)被圆(x-2)2+y2=4所截得的弦长为2,则a的值为A. B. C.2 D.2【答案】B【解析】本题主要考查直线与圆的位置关系.解题时,利用点到直线的距离公式构建方程求a.由已知条件可知,圆的半径为2,又直线被圆所截得的弦长为2,故圆心到直线的距离为,即,得a=.5.若关于x的不等式|a-1|≥|2x+1|+|2x-3|的解集非空,则实数a的取值范围为A.(-∞,-3]∪[5,+∞)B.(-∞,-3)∪(5,+∞)C.[-3,5]D.(-3,5)【答案】A【解析】本题考查绝对值不等式的性质及其解法,考查考生的运算求解能力.只要|a-1|不小于函数f(x)=|2x+1|+|2x-3|的最小值即可.又|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,所以|a-1|≥4,解得a≤-3或a≥5.6.函数f(x)=ln||的图象可能是A. B. C. D.【答案】A【解析】本题考查函数的图象与性质,考查数形结合思想.易知函数f(x)是偶函数,故其图象关于y轴对称,排除选项C.函数的定义域是x≠0,排除选项D.||=||=|1+|>1,所以f(x)>0,排除选项B.故选A.7.在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,点M是BB1的中点,则三棱锥C1-AMC的体积为A. B. C.2 D.2【答案】A【解析】本题考查线面垂直的证明、三角形的面积公式、三棱锥的体积公式,考查考生的空间想象能力.由题目条件知选取△MCC1(或△ACC1)作为三棱锥的底面时,计算该三棱锥的体积更为简单.取BC的中点D,连接AD.在正三棱柱ABC-A1B1C1中,△ABC为正三角形,所以AD⊥BC,又BB1⊥平面ABC,AD⊂平面ABC,所以BB1⊥AD,又BB1∩BC=B,所以AD⊥平面BCC1B1,即AD⊥平面MCC1,所以点A到平面MCC1的距离就是AD.在正三角形ABC中,AB=2,所以AD=,又AA1=3,点M是BB1的中点,所以×2×3=3,所以×3×.8.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,-π<φ<π)的部分图象如图所示,则g(x)=f(x)+f(+x)的单调递增区间是A.[2kπ-,2kπ+](k∈Z)B.[2kπ+,2kπ+](k∈Z)C.[kπ-,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)【答案】C【解析】本题考查三角函数的图象与性质,考查数形结合思想.根据图象可得A=,-,解得ω=2.因为,故sin(2×+φ)=,即sin(2×+φ)=1.由于-π<φ<π,所以+φ<,即+φ=,得φ=-,所以f(x)=sin(2x-),所以g(x)=sin(2x-)+sin(+2x-)=sin(2x-)+cos(2x-)=sin(2x-+)=sin(2x-).由不等式2kπ-≤2x-≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z),故函数g(x)的单调递增区间是[kπ-,kπ+](k∈Z).9.已知函数f(x)=e x-1+4x-4,g(x)=ln x-,若f(x1)=g(x2)=0,则A.0<g(x1)<f(x2)B.f(x2)<g(x1)<0C.f(x2)<0<g(x1)D.g(x1)<0<f(x2)【答案】D【解析】易知f(x)=e x-1+4x-4,g(x)=ln x-在各自的定义域内是增函数,而f(0)=e-1+0-4=-4<0,f(1)=e0+4×1-4=1>0,g(1)=ln 1-=-1<0,g(2)=ln 2-=ln>ln 1=0.又f(x1)=g(x2)=0,所以0<x1<1,1<x2<2,所以f(x2)>f(1)>0,g(x1)<g(1)<0,故g(x1)<0<f(x2).10.已知抛物线y2=2px(p>0)的焦点为F,点A、B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为A. B.2 C. D.2【答案】C【解析】本题考查抛物线的定义及简单几何性质,考查利用基本不等式求最值,余弦定理的应用等知识.先画出图形,作出辅助线,设|AF|=a,|BF|=b,由抛物线的定义及梯形的中位线得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2-ab,再根据基本不等式求得|AB|2的取值范围,代入化简即可得到结果.如图,过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,由抛物线的定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.在△ABF中,由余弦定理得|AB|2=a2+b2-2ab cos 120°=a2+b2+ab,配方得|AB|2=(a+b)2-ab,因为ab≤()2,则(a+b)2-ab≥(a+b)2-()2=(a+b)2,即|AB|2≥(a+b)2,当且仅当a=b时等号成立,所以≥=3,则≥,即所求的最小值为.二、填空题:共5题11.执行如图所示的程序框图,则输出的结果是.【答案】173【解析】本题考查程序框图的知识,考查考生的运算求解能力.按照程序逐步计算即可求出结果.第一次循环后,S=1,i=2;第二次循环后,S=5,i=3;第三次循环后,S=32,i=4;第四次循环后,S=48,i=5;第五次循环后,S=173,i=6.故输出的结果为173.12.已知(x+1)(x-2)n的展开式中x的系数为-128,则n=.【答案】6【解析】本题考查二项式定理的简单应用.列出关于n的方程解之即可求出n的值.(x+1)(x-2)n 的展开式中x的系数为(-2)n-1+(-2)n=-128,即n(-2)n-1+(-2)n=-128,验算解得n=6.13.已知在△ABC中,AB=10,AC=6,BC=8,点M为AB边上任意一点,则·+·的取值范围是.【答案】[36,64]【解析】本题考查平面向量的基础知识,考查考生的运算求解能力,考查数形结合思想.可以把向量坐标化后,使用坐标方法求解.显然△ABC是直角三角形,以点C为坐标原点,射线CA、CB 分别为x轴、y轴正方向建立直角坐标系,则A(6,0),B(0,8),设=λ,则+λ=(6,0)+λ(-6,8)=(6-6λ,8λ),其中0≤λ≤1.·+··(+)=(6-6λ,8λ)·(6,8)=36+28λ,因为0≤λ≤1,所以36≤·+·≤64.14.已知x,y满足不等式组若目标函数z=x+3y的最大值的取值范围是[6,10],则k的取值范围是.【答案】[-2,0]【解析】本题考查简单的线性规划,考查数形结合思想,考查考生分析问题、解决问题的能力.当k>时,不等式组表示的是一个无限区域,根据目标函数的几何意义可知,此时目标函数不存在最大值,故k≤.当<k≤时,不等式组不表示任何区域.当k=时,不等式组表示点(4,0),此时目标函数只取一个值4.当k<时,不等式组表示的平面区域如图中阴影部分所示,根据目标函数的几何意义,可知此时在直线x+y=4与直线kx+y=1的交点B处取得最大值,解方程组得B(,),且目标函数的最大值+3×.由不等式6≤≤10,解得-2≤k≤0.15.对于实数a,b,定义运算“”:ab=.设f(x)=(x-4)(x-4),若关于x的方程|f(x)-m|=1(m∈R)恰有四个互不相等的实数根,则实数m的取值范围是.【答案】(-1,1)∪(2,4)【解析】本题考查分段函数的解析式及图象,考查函数与方程思想、数形结合思想、转化与化归思想和分类讨论思想的应用等.根据新定义写出分段函数f(x)的解析式,并将关于x的方程|f(x)-m|=1(m∈R)的实数根的个数转化为两直线y=m±1(m∈R)与曲线y=f(x)交点的个数问题进行处理,最后利用数形结合思想和函数与方程思想列出关于实数m的不等式组求解.由题意得,f(x)=(x-4) (x-4)=,画出函数f(x)的大致图象如图所示.因为关于x的方程|f(x)-m|=1(m∈R),即f(x)=m±1(m∈R)恰有四个互不相等的实数根,所以两直线y=m±1(m∈R)与曲线y=f(x)共有四个不同的交点,则或或,得2<m<4或-1<m<1.三、解答题:共6题16.已知在△ABC中,角A,B,C的对边分别为a,b,c,若A=120°,a=3.(1)求bc的最大值;(2)若D为BC边上靠近点B的一个三等分点,求AD的取值范围.【答案】(1)根据余弦定理得(3)2=b2+c2-2bc cos 120°,又b2+c2≥2bc(当且仅当b=c时等号成立),所以27≥2bc+bc,所以bc≤9,即bc的最大值为9.(2)如图,由于点D为靠近点B的一个三等分点,故BD=.根据正弦定理,所以AB=6sin C.在△ABD中,由余弦定理,得AD2=AB2+BD2-2AB·BD·cos B=36sin2C+3-12sin C cos B=36sin2C+3-12sin C cos(60°-C)=36sin2C+3-12sin C(cos C+sin C)=18sin2C-6sin C cos C+3=9(1-cos 2C)-3sin 2C+3=12-3(sin 2C+3cos 2C)=12-6sin(2C+60°).因为在△ABC中,0°<C<60°,0°<2C<120°,所以60°<2C+60°<180°,所以0<sin(2C+60°)≤1,所以12-6≤12-6sin(2C+60°)<12.所以≤AD<,即3-≤AD<2,故AD的取值范围是[3-,2).【解析】本题考查利用正弦定理、余弦定理解三角形,三角函数的性质等知识.(1)使用余弦定理和基本不等式求解;(2)先将AD用角C的正弦函数表示,再利用三角函数的性质即得结果.【备注】解三角形试题求解的关键是使用正弦定理、余弦定理得出三角形中边和角满足的方程,在三角形中处理取值范围问题时,要注意使用变量表达求解目标,然后利用三角函数的性质求解.17.为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km/h的有40人,不超过100 km/h的有15人;在45名女性驾驶员中,平均车速超过100 km/h 的有20人,不超过100 km/h的有25人.(1)完成下面2×2列联表,并判断有多大的把握认为“平均车速超过100 km/h与性别有关”?附:K2=,其中n=a+b+c+d.(2)在被调查的驾驶员中,从平均车速不超过100 km/h的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(3)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h且为男性驾驶员的车辆数为X,求X的分布列和数学期望EX.【答案】(1)完成的2×2列联表如下:K2=≈8.249>7.879,所以有99.5%的把握认为“平均车速超过100 km/h与性别有关”.(2)平均车速不超过100 km/h的驾驶员有40人,从中随机抽取2人的方法总数为,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A,则事件A所包含的基本事件数为,所以所求的概率P(A)=.(3)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h且为男性驾驶员的概率为,故X~B(3,).所以P(X=0)=()0()3=;P(X=1)=()()2=;P(X=2)=()2()=;P(X=3)=()3()0=.所以X的分布列为EX=0×+1×+2×+3×(或EX=3×).【解析】本题主要考查独立性检验、古典概型、离散型随机变量的分布列和数学期望等,考查考生的运算求解能力和应用意识.(1)计算K2的值后与临界值比较即可;(2)属于古典概型,利用组合数求基本事件总数和所求的随机事件含有的基本事件个数后,使用古典概型的概率计算公式求解;(3)首先分析得到X服从二项分布,然后按照相关公式计算即可.【备注】离散型随机变量及其分布是高中概率与统计的核心内容,也是高考考查的重点,备考中要通过各类练习,熟练掌握其解法.18.如图1,已知△ABC为正三角形,D为AB的中点,AE=A C.现沿DE将△ADE折起,折起过程中点A仍然记作点A,使得平面ADE⊥平面BCED,如图2.图1 图2(1)证明:AD⊥CE;(2)求平面ABD与平面ACE所成角(锐角)的余弦值.【答案】(1)在正三角形ABC中,取AC的中点G,连接BG,此时E为AG的中点,所以DE∥BG,因为BG⊥AC,所以DE⊥CE,DE⊥AE.在折起的图形中,因为平面ADE⊥平面BCED,所以AE⊥平面BCED,所以AE⊥CE.因为AE∩DE=E,所以CE⊥平面ADE.因为AD⊂平面ADE,所以AD⊥CE.(2)由(1)的证明可知ED,EC,EA两两垂直,以点E为坐标原点,射线ED,EC,EA的正方向分别为x,y,z轴的正方向建立如图所示的空间直角坐标系.设正三角形ABC的边长为4,则A(0,0,1),B(2,1,0),D(,0,0),=(2,1,-1),=(,1,0).设平面ABD的法向量为m=(x,y,z),则m·=0,m·=0,即2x+y-z=0,x+y=0,令x=,得y=-3,z=3,所以平面ABD的一个法向量为m=(,-3,3).显然n=(1,0,0)为平面ACE的一个法向量.设平面ABD与平面ACE所成角(锐角)的大小为θ,则cosθ=|cos<m,n>|=.所以平面ABD与平面ACE所成角(锐角)的余弦值为.【解析】本题考查空间垂直关系的证明、二面角的计算,考查空间向量在立体几何中的应用,考查考生的空间想象能力、推理论证能力和运算求解能力.(1)根据折起后不变的垂直关系和平面ADE⊥平面BCED,证明CE⊥平面ADE,进而可得结论;(2)建立空间直角坐标系后使用空间向量法求解.【备注】立体几何解答题重点考查的是空间位置关系的证明和空间角的求解,在空间位置关系的证明中一般采用几何法,空间角的求解一般使用向量法,复习备考中注意立体几何解答题的这种考查方式,通过不同类型的题目,熟练掌握其解法.19.已知数列{a n}的前n项和为S n,且S n=(+a n),a n>0.(1)求数列{a n}的通项公式;(2)若b n=,数列{b n}的前n项和为T n,则是否存在正整数m,使得m≤T n<m+3对任意的正整数n 恒成立?若存在,求出m的值;若不存在,请说明理由.【答案】(1)S n=(+a n),即+a n-2S n=0,①当n≥2时,S n-1=(+a n-1),即+a n-1-2S n-1=0,②①-②得(a n-a n-1)(a n+a n-1)+a n-a n-1-2a n=0,(a n+a n-1)(a n-a n-1-1)=0,∵a n>0,∴a n-a n-1=1,当n=1时,+a1-2a1=0,∵a n>0,∴a1=1,∴a n=1+(n-1)=n.(2)由(1)知b n=,所以T n=1×()0+2×()1+…+n()n-1,③T n=1×()1+2×()2+…+n()n,④③-④得T n=1++…+()n-1-n()n=2[1-()n]-n()n,故T n=4[1-()n]-2n()n=4-4×()n-2n()n=4-(2n+4)()n.易知T n<4,∵T n+1-T n=4-(2n+6)()n+1-4+(2n+4)()n=(n+1)()n>0,∴T n≥T1=1,故存在正整数m=1满足题意.【解析】本题考查等差数列的通项公式、错位相减法求和等知识,考查运算求解能力,属于中等难度题.(1)先判断{a n}为等差数列,再求通项公式;(2)先利用错位相减法求和,再求出T n的最值,最后判定m存在.【备注】数列是山东高考试卷的一个难点,对数列的考查主要涉及数列的基本公式、基本性质,递推数列,数列求和,简单的数列不等式的证明等,考生要重视教材和基础知识、基本方法、基本技能,重视考纲的导向作用.20.已知椭圆Ω:+=1(a>b>0)与双曲线Ε:x2-y2=1有共同的焦点,且双曲线Ε的一条渐近线被椭圆Ω截得的线段长为.(1)求椭圆Ω的方程;(2)设B为椭圆Ω的上顶点,e为椭圆Ω的离心率,直线l与椭圆Ω交于不同的两点P,Q(均异于点B),且BP,BQ的斜率之积等于e2,求直线l的斜率的取值范围.【答案】(1)双曲线Ε的焦点坐标为(±,0),一条渐近线方程为y=x,设椭圆Ω的半焦距为c,则c=.把y=x代入椭圆Ω的方程,得x2=,根据已知,得x2+y2=()2,因为y=x,所以x2=,即,即4a2b2=3(a2+b2),将a2=b2+2代入上式,得2b4+b2-3=0,即(b2-1)(2b2+3)=0,因为2b2+3>0,所以b2=1,a2=3,所以椭圆Ω的方程为+y2=1.(2)由(1)知B(0,1),e=.因为BP,BQ的斜率之积等于e2=>0,故直线l的斜率不等于零.设直线l的方程为x=ty+m,代入椭圆方程,得(3+t2)y2+2tmy+m2-3=0.设P(x1,y1),Q(x2,y2),则y1+y2=-,y1y2=.k BP·k BQ=·,即3(y1-1)(y2-1)=2x1x2=2(ty1+m)(ty2+m),整理得(2t2-3)y1y2+(2tm+3)(y1+y2)+2m2-3=0,即(2t2-3)·-(2tm+3)·+2m2-3=0,整理得3t2+2tm-m2=0,即(t+m)(3t-m)=0,所以m=-t或m=3t.当m=-t时,直线l的方程为x=ty-t,该直线过点B,不合题意,所以m=3t,直线l的方程为x=ty+3t.因为直线l与椭圆Ω交于不同的两点,所以方程(3+t2)y2+2tmy+m2-3=0有两个不相等的实根,所以Δ=(2tm)2-4(3+t2)(m2-3)=-12(m2-t2-3)=-12(8t2-3)>0,t2<,所以直线l的斜率k满足k2=,即k>或k<-,即直线l的斜率的取值范围是(-∞,-)∪(,+∞).【解析】本题考查椭圆的方程、直线与椭圆的位置关系等知识,考查运算求解能力、分析问题和解决问题的能力.(1)根据条件列出关于a2,b2的方程组,解方程组求出a2,b2,即得椭圆Ω的方程;(2)设出直线l的方程,联立直线与椭圆Ω的方程,利用根与系数的关系求解.21.已知函数f(x)=ln x+(k∈R).(1)若f(x)存在极小值h(k),且不等式h(k)≤ak对f(x)存在极小值的任意k恒成立,求实数a的取值范围;(2)当k>0时,如果存在两个不相等的正数α,β,使得f(α)=f(β),求证:α+β>2k.【答案】(1)f'(x)=-,x>0.当k≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增,无极值.当k>0时,当0<x<k时,f'(x)<0,当x>k时,f'(x)>0,故f(x)的单调递减区间是(0,k),单调递增区间是(k,+∞),f(x)的极小值为h(k)=f(k)=ln k+1.当k>0时,h(k)≤ak恒成立,即ln k+1≤ak,即a≥恒成立.令φ(k)=,则φ'(k)=,令φ'(k)=0,得k=1,当0<k<1时,φ'(k)>0,φ(k)单调递增,当k>1时,φ'(k)<0,φ(k)单调递减,故k=1为φ(k)在(0,+∞)上唯一的极大值点,也是最大值点,所以φ(k)max=φ(1)=1,所以a≥1,即实数a的取值范围是[1,+∞).(2)由(1)知,当k>0时,f(x)在(0,k)上单调递减,在(k,+∞)上单调递增,设α<β,则一定有0<α<k<β.构造函数g(x)=f(x)-f(2k-x)=ln x+-ln (2k-x)-,0<x<k,g'(x)=+---.因为0<x<k,所以g'(x)<0,即g(x)在(0,k)上单调递减,又f(k)-f(2k-k)=0,所以g(x)>0,所以f(x)>f(2k-x).因为0<α<k,所以f(α)>f(2k-α),因为f(α)=f(β),所以f(β)>f(2k-α),因为0<α<k,所以2k-α>k,又函数f(x)在(k,+∞)上单调递增,所以β>2k-α,所以α+β>2k.【解析】本题考查导数及其应用,考查运算求解能力、逻辑推理能力,考查函数与方程思想、分类与整合思想、化归与转化思想等.(1)求出k在何种范围内取值时,f(x)有极小值,然后使用分离参数的方法把问题转化为求一个关于k的函数的最值;(2)即证明β>2k-α,利用(1)的结论得出α,β的范围,构造函数g(x)=f(x)-f(2k-x),研究该函数的性质即可.【备注】函数的单调性、极值、最值是高考命题的重点与热点,导数与不等式等结合的题目成为整套试卷的压轴题,并且其难度仍有上升趋势,因而预测2016年高考对函数的单调性、极值、最值等问题还会继续考查,但已知条件中函数表达式的背景和结构形式不会太复杂,因而本卷试图在函数表达式简单的基础上加大问题设置上的变化,在不增加考生理解题意难度的基础上,力争考查考生更多的知识与能力.。
数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件,A B 互斥,那么P (A+B )=P (A )+P (B );如果事件,A B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足其中i 为虚数单位,则z =( )A. 12i +B. 12i -C. 12i -+D. 12i --2. 设集合{}{}22,,10xA y y xB x x ==∈=-<R ,则AB =( )A. 1,1-()B. 0,1()C. 1,-+∞()D. 0,+∞()3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[,30],样本数据分组为17.5[,20),20,2[ 2.5),22.5[,25),25,2[7.5),27.5[,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A. 56B. 60C. 120D. 1404. 若变量x ,y 满足+2,2-39,0,x y x y x ⎧⎪⎨⎪⎩≤≤≥则22+x y 的最大值是( )A. 4B. 9C. 10D. 125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.12+33π B.12+33π C.12+36π D. 216π+6. 已知直线a ,b 分别在两个不同的平面αβ,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期是( )A.2πB. πC. 32πD. 2π8. 已知非零向量m ,n 满足4|m |=3|n |,cos <m ,n >=13,若n ⊥(t m+n ),则实数t 的值为( )A. 4B. 4-C.94 D. 94-9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f = ( )A. 2-B. 1-C. 0D. 210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )A. y=sin xB. y=ln xC. x y=eD. 3y=x232i,z z +=--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分. 11. 执行如图所示的程序框图,若输入的a b ,的值分别为0和9,则输出的i 的值为 .12. 若251)ax x+(的展开式中5x 的系数是80-,则实数a =________.13. 已知双曲线2222y 100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.14. 在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为_______. 15. 已知函数2|| ()24 x x m x mx m x m f x ⎧⎨-+⎩=,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______. 三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)在ABC △中,角,,A B C 的对边分别为a,b,c ,已知2(tanA+tanB)=tanA tanB+cosB cosA. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.17. (本小题满分12分)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(Ⅰ)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC ;(Ⅱ)已知1232EF =FB =AC =,AB =BC ,求二面角F -BC -A 的余弦值.18. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+. (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .19. (本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(Ⅰ)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和X 的分布列和数学期望EX .20. (本小题满分13分)已知221()(ln ),R x f x a x x a x -=-+∈. (Ⅰ)讨论()f x 的单调性; (Ⅱ)当1a =时,证明3()()2f x f x '>+对于任意的[]1,2x ∈成立.21. (本小题满分14分)平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率是32,抛物线2:2E x y =的焦点F 是C 的一个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .(ⅰ)求证:点M 在定直线上;(ⅱ)直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.2016年普通高等学校招生全国统一考试(山东卷)理科数学答案解析(0,A B=+∞【提示】求解指数函数的值域化简案.【考点】并集及其运算【答案】D【答案】B【解析】()n tm n⊥+,()0n tm n∴+=,2||||cos,||0t m n m n n∴<>+=,4||3||m n=,1,3m n<>=,231||||||043t n n n∴+=,104t∴+=,4t∴=-.【提示】若(π)n t n⊥+,则(π)0n t n+=,进而可得实数t的值.【考点】平面向量数量积的运算【答案】D12x>时,1122f x f x⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,11x-≤≤【解析】输入的数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)22232b c a =,即为a.2b24,x mx m x m-+>⎩x m >时,程()f x b =m ∴的取值范围是【提示】作出函数(Ⅱ)2a b +=22)b a b =+0b >,∴由余弦定理231cos 122c ab -≥sin tan cos A A A =cos cos A B +G 、H 为GQ EF ∴∥又EF BO ∥GQ BO ∴∥且∴平面GQH GH ⊂面GQH GH ∴∥平面(Ⅱ)AB BC =数学试卷 第13页(共18页)数学试卷 第14页(共18页)数学试卷 第15页(共18页),又OO '⊥面OA 为x 轴,建立空间直角坐标系,则(23,0,0)C -,(0,23,0)B 3,0),(23,3,FC =---(23,23,0)CB =,由题意可知面的法向量为(0,0,3)OO '=,设000(,,)n x y z FCB 的法向量,则00n FC n CB ⎧=⎪⎨=⎪⎩,即0=⎪⎩,取01x =,则1,2,n ⎛=-- ⎝7cos ,7||||OO n OO n OO n ''∴<>==-'二面角--F BC A 的平面角是锐角,二面角--F BC A 的余弦值为77n n a b =+1n n a b -∴=1n n a a -∴-11a b =+1112b =+14b ∴=,4n b ∴=+(Ⅱ)1)2nn C ,126[2232(1)2]n n T n ∴=++++…①,2316[22322(1)2]n n n n ++++++…②,②可得:231112222(1)2]2(12)6(1)212)232n n n n n n n n n ++++++++-+--+-=-…,232n n +.【提示】(Ⅰ)求出数列{}n a 的通项公式,再求数列(Ⅱ)求出数列{}n c 的通项,利用错位相减法求数列【考点】数列的求和,数列递推式【答案】(Ⅰ)“星队”至少猜对22112233232211443433C ⎛⎫⎛⎫⎛⎫⎛⎫⎛-+-+ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝队”两轮得分之和为X 可能为22321143144⎫⎛⎫--=⎪ ⎪⎭⎝⎭,22332322101111443433144⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯--+--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦323232323232323225111111114343434343434343144⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+--+--+--= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3232114343144⎛⎫⎛⎫--=⎪ ⎪⎝⎭⎝⎭223322236011443334144⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-=⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎦222363144⎛⎫= ⎪⎝⎭,的分布列如下图所示: 12346572 25144x 1)2x数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)1a =32ln x x =-()F x f =0001122y FG x x =⎛⎫+= ⎪⎝⎭30000000022004441111424148x y x x x y PM x y x x +-⎛⎫-=+= ⎪++⎝⎭220220)(41)(21)x x x ++,令12x +22221(122)(1)(21)2122t t t t t t t t t -⎫++-⎪+-+-⎭===0001212FG x x y ⎛⎫+ ⎪⎝⎭=00414x y x x -+,整理可得t 的二次方程,进而得到最大值及此时【考点】椭圆的简单性质。
2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.(5分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1404.(5分)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.125.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC. D.2π8.(5分)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x ≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.210.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.12.(5分)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.13.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.14.(5分)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题,:本大题共6小题,共75分.16.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.17.(12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.18.(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.19.(12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.20.(13分)已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.21.(14分)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.2016年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.(5分)(2016•山东)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.2.(5分)(2016•山东)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)【分析】求解指数函数的值域化简A,求解一元二次不等式化简B,再由并集运算得答案.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.3.(5分)(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D4.(5分)(2016•山东)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.【解答】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.(5分)(2016•山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【分析】由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C6.(5分)(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据空间直线与直线,平面与平面位置关系的几何特征,结合充要条件的定义,可得答案.【解答】解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.(5分)(2016•山东)函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC. D.2π【分析】利用和差角及二倍角公式,化简函数的解析式,进而可得函数的周期.【解答】解:函数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos (x+)=2sin(2x+),∴T=π,故选:B8.(5分)(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.(5分)(2016•山东)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.2【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.【解答】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.(5分)(2016•山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2016•山东)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为3.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a>b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a>b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a>b,故输出的i值为:3,故答案为:312.(5分)(2016•山东)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=﹣2.=(ax2)5﹣r,化简可得求的x5【分析】利用二项展开式的通项公式T r+1的系数.=(ax2)5﹣r=a5﹣【解答】解:(ax2+)5的展开式的通项公式T r+1r,令10﹣=5,解得r=2.∵(ax2+)5的展开式中x5的系数是﹣80∴a3=﹣80,得a=﹣2.13.(5分)(2016•山东)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD 的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2.【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.【解答】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.14.(5分)(2016•山东)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.【解答】解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.故答案为:.15.(5分)(2016•山东)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞).【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.【解答】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.16.(12分)(2016•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【分析】(Ⅰ)由切化弦公式,带入并整理可得2(sinAcosB+cosAsinB)=sinA+cosB,这样根据两角和的正弦公式即可得到sinA+sinB=2sinC,从而根据正弦定理便可得出a+b=2c;(Ⅱ)根据a+b=2c,两边平方便可得出a2+b2+2ab=4c2,从而得出a2+b2=4c2﹣2ab,并由不等式a2+b2≥2ab得出c2≥ab,也就得到了,这样由余弦定理便可得出,从而得出cosC的范围,进而便可得出cosC的最小值.【解答】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.17.(12分)(2016•山东)在如图所示的圆台中,AC是下底面圆O的直径,EF 是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.【分析】(Ⅰ)取FC中点Q,连结GQ、QH,推导出平面GQH∥平面ABC,由此能证明GH∥平面ABC.(Ⅱ)由AB=BC,知BO⊥AC,以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣BC﹣A的余弦值.【解答】证明:(Ⅰ)取FC中点Q,连结GQ、QH,∵G、H为EC、FB的中点,∴GQ,QH,又∵EF∥BO,∴GQ∥BO,∴平面GQH∥平面ABC,∵GH⊂面GQH,∴GH∥平面ABC.解:(Ⅱ)∵AB=BC,∴BO⊥AC,又∵OO′⊥面ABC,∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),=(﹣2,﹣,﹣3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,﹣1,﹣),∴cos<,>==﹣.∵二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值为.18.(12分)(2016•山东)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【分析】(Ⅰ)求出数列{a n}的通项公式,再求数列{b n}的通项公式;(Ⅱ)求出数列{c n}的通项,利用错位相减法求数列{c n}的前n项和T n.【解答】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,=b n﹣1+b n,∴a n﹣1∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.19.(12分)(2016•山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【分析】(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;(II)由已知可得:“星队”两轮得分之和为X可能为:0,1,2,3,4,6,进而得到X的分布列和数学期望.【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X012346P∴数学期望EX=0×+1×+2×+3×+4×+6×==20.(13分)(2016•山东)已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【分析】(Ⅰ)求出原函数的导函数,然后对a分类分析导函数的符号,由导函数的符号确定原函数的单调性;(Ⅱ)构造函数F(x)=f(x)﹣f′(x),令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),利用导数分别求g(x)与h(x)的最小值得到F(x)>恒成立.由此可得f(x)>f′(x)+对于任意的x∈[1,2]成立.【解答】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数h(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.21.(14分)(2016•山东)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.【分析】(I)运用椭圆的离心率公式和抛物线的焦点坐标,以及椭圆的a,b,c 的关系,解得a,b,进而得到椭圆的方程;(Ⅱ)(i)设P(x0,y0),运用导数求得切线的斜率和方程,代入椭圆方程,运用韦达定理,可得中点D的坐标,求得OD的方程,再令x=x0,可得y=﹣.进而得到定直线;(ii)由直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),运用三角形的面积公式,可得S1=|FG|•|x0|=x0•(+y0),S2=|PM|•|x0﹣|,化简整理,再1+2x02=t(t≥1),整理可得t的二次方程,进而得到最大值及此时P的坐标.【解答】解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),即有b=,a2﹣c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y′=x,即有切线的斜率为x0,则切线的方程为y﹣y0=x0(x﹣x0),可化为y=x0x﹣y0,代入椭圆方程,可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,△=64x02y02﹣4(1+4x02)(4y02﹣1)>0,可得1+4x02>4y02.设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,﹣),直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.即有点M在定直线y=﹣上;(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),则S1=|FG|•|x0|=x0•(+y0)=x0(1+x02);S2=|PM|•|x0﹣|=(y0+)•=x0•,则=,令1+2x02=t(t≥1),则====2+﹣=﹣(﹣)2+,则当t=2,即x0=时,取得最大值,此时点P的坐标为(,).。
2016年普通高等学校招生全国统一考试〔山东卷〕数学〔理科〕第Ⅰ卷〔共50分〕一、选择题:本大题共10小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的. 〔1〕【2016年山东,理1,5分】假设复数z 满足232i z z +=-,其中i 为虚数为单位,则z =〔 〕〔A 〕12i + 〔B 〕12i - 〔C 〕12i -+ 〔D 〕12i -- 【答案】B【解析】设(),,z a bi a b R =+∈,则2()i 23i 32i z z z z z a b a a b +=++=++=+=-,所以1,2a b ==-,故选B . 【点评】此题考查复数的代数形式混合运算,考查计算能力. 〔2〕【2016年山东,理2,5分】已知集合{}{}22,,10x A y y x R B x x ==∈=-<,则A B =〔 〕〔A 〕()1,1- 〔B 〕()0,1 〔C 〕()1,-+∞ 〔D 〕()0,+∞【答案】C【解析】由题意()0,A =+∞,()1,1B =-,所以()1,AB =-+∞,故选C .【点评】此题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题. 〔3〕【2016年山东,理3,5分】某高校调查了200名学生每周的自习时间〔单位:小时〕,制成了如下图的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于小时的人数是〔 〕〔A 〕56 〔B 〕60 〔C 〕120 〔D 〕140 【答案】D【解析】由图可知组距为,每周的自习时间少于小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于小时的人数是()20010.30140⨯-=人,故选D .【点评】此题考查的知识点是频率分布直方图,难度不大,属于基础题目.〔4〕【2016年山东,理4,5分】假设变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是〔 〕〔A 〕4 〔B 〕9 〔C 〕10 〔D 〕12 【答案】C【解析】由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .【点评】此题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题. 〔5〕【2016年山东,理5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为〔 〕〔A 〕1233+π 〔B 〕1233+π 〔C 〕1236+π 〔D 〕216+π【答案】C【解析】由三视图可知,半球的体积为26π,四棱锥的体积为13,所以该几何体的体积为1236+π,故选C .【点评】此题考查的知识点是由三视图,求体积和外表积,根据已知的三视图,判断几何体的形状是解答的关键.〔6〕【2016年山东,理6,5分】已知直线,a b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的〔 〕〔A 〕充分不必要条件 〔B 〕必要不充分条件 〔C 〕充要条件 〔D 〕既不充分也不必要条件【答案】A【解析】由直线a 和直线b 相交,可知平面αβ、有公共点,所以平面α和平面β相交.又如果平面α和平面β相交,直线a 和直线b 不一定相交,故选A .【点评】此题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题. 〔7〕【2016年山东,理7,5分】函数()()()3sin cos 3cos sin f x x xx x =+-的最小正周期是〔 〕〔A 〕2π〔B 〕π 〔C 〕32π 〔D 〕2π【答案】B【解析】由()2sin cos 3cos 22sin 23f x x x x x π⎛⎫=+=+ ⎪⎝⎭,所以,最小正周期是π,故选B .【点评】此题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档.〔8〕【2016年山东,理8,5分】已知非零向量,m n 满足143,cos ,3m n m n =<>= ,假设()n tm n ⊥+则实数t 的值为〔 〕〔A 〕4 〔B 〕4- 〔C 〕94 〔D 〕94-【答案】B【解析】因为21cos ,4nm m n m n n =⋅<>=,由()n tm n ⊥+,有()20n tm n tmn n +=+=,即2104t n ⎛⎫+= ⎪⎝⎭,4t =-,故选B .【点评】此题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题. 〔9〕【2016年山东,理9,5分】已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =〔 〕〔A 〕2- 〔B 〕1- 〔C 〕0 〔D 〕2 【答案】D【解析】由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .【点评】此题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题. 〔10〕【2016年山东,理10,5分】假设函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.以下函数具有T 性质的是〔 〕〔A 〕sin y x = 〔B 〕ln y x = 〔C 〕x y e = 〔D 〕3y x = 【答案】A【解析】因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .【点评】此题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.第II 卷〔共100分〕二、填空题:本大题共5小题,每题5分 〔11〕【2016年山东,理11,5分】执行右边的程序框图,假设输入的的值分别为0和9,则输出i 的值为 . 【答案】3【解析】i 1=时,执行循环体后1,8a b ==,a b >不成立;i 2=时,执行循环体后3,6a b ==,a b >不成立;i 3=时,执行循环体后6,3a b ==,a b >成立;所以i 3=,故填 3.【点评】此题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.〔12〕【2016年山东,理12,5分】假设52ax ⎛+ ⎝的展开式中5x 的系数是80-,则实数a = .【答案】2-【解析】由()2322235555C C 80ax a x x ==-,得2a =-,所以应填2-.【点评】考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.〔13〕【2016年山东,理13,5分】已知双曲线()2222:10,0x y E a b a b-=>>,假设矩形ABCD 的四个顶点在E 上,,AB CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率为 .【答案】2【解析】由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.【点评】此题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A B C D ,,,的坐标是解题的关键,考查运算能力,属于中档题.〔14〕【2016年山东,理14,5分】在[]1,1-上随机的取一个数k ,则事件“直线y kx =与圆()2259x y -+=相交”发生的概率为 .【答案】34【解析】首先k 的取值空间的长度为2,由直线y kx =与圆22(5)9x y -+=相交,得事件发生时k 的取值空间为33,44⎡⎤-⎢⎥⎣⎦,其长度为32,所以所求概率为33224=. 【点评】此题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.〔15〕【2016年山东,理15,5分】在已知函数()2,24,x x mf x x mx m x m ⎧≤⎪=⎨-+>⎪⎩,其中0m >,假设存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 .【答案】()3,+∞【解析】因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. 【点评】此题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到24m m m -<是难点,属于中档题.三、解答题:本大题共6题,共75分.〔16〕【2016年山东,理16,12分】在ABC ∆中,角,,A B C 的对边分别为a,b,c ,已知()tan tan 2tan tan cos cos A BA B B A+=+. 〔1〕证明:2a b c +=; 〔2〕求cos C 的最小值.解:〔1〕由()tan tan 2tan tan cos cos A B A B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,2sin sin sin C B C =+, 由正弦定理,得2a b c +=.〔2〕由()222222cos 22a b ab ca b c C ab ab +--+-==222333111122222c c ab a b =-≥-=-=+⎛⎫⎪⎝⎭.所以cos C 的最小值为12.【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为π,以及三角函数的诱导公式,正余弦定理,不等式222a b ab +≥的应用,不等式的性质.〔17〕【2016年山东,理17,12分】在如下图的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.〔1〕已知,G H 分别为,EC FB 的中点,求证://GH 平面ABC ;〔2〕已知123,2EF FB AC AB BC ====,求二面角F BC A --的余弦值.解:〔1〕连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC ⊂平 面ABC ,MH ⊄平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH ⊂平面GHM ,所以//GH 平面ABC .〔2〕连结OB ,AB BC =OA OB ∴⊥,以为O 原点,分别以,,OA OB OO '为,,x y z 轴,建立空间直角坐标系.123,2EF FB AC AB BC ====,22()3OO BF BO FO '=--=,于是有()23,0,0A ,()23,0,0C -,()0,23,0B ,()0,3,3F ,可得平面FBC 中的向量()0,3,3BF =-, ()23,23,0CB =,于是得平面FBC 的一个法向量为()13,3,1n =-,又平面ABC 的 一个法向量为()20,0,1n =,设二面角F BC A --为θ, 则121217cos 77n n n n θ⋅===⋅.二面角F BC A --的余弦值为77. 【点评】此题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.〔18〕【2016年山东,理18,12分】已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.〔1〕求数列{}n b 的通项公式;〔2〕令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:〔1〕因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. 〔2〕由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅,两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅,两式相减,得2341262323232(33)2n n n T n ++-=⋅+⋅+⋅++⋅-+⋅22232(12)32(33)212n n n +⋅-=⋅+-+⋅-2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.【点评】此题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.〔19〕【2016年山东,理19,12分】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”参加两轮活动,求: 〔1〕“星队”至少猜对3个成语的概率;〔2〕“星队”两轮得分之和X 的分布列和数学期望EX . 解:〔1〕“至少猜对3个成语”包括“恰好猜对3个成语”和“猜对4个成语”.设“至少猜对3个成语”为事件A ;“恰好猜对3个成语”和“猜对4个成语”分别为事件C B ,,则1122332131225()4433443312P B C C =⋅⋅⋅⋅+⋅⋅⋅⋅=;33221()44334P C =⋅⋅⋅=.所以512()()()1243P A P B P C =+=+=.〔2〕“星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6,于是11111(0)4343144P X ==⋅⋅⋅=;112212*********(1)4343434314472P X C C ==⋅⋅⋅+⋅⋅⋅==; 1211223311132125(2)443344334433144P X C ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=;123211121(3)434314412P X C ==⋅⋅⋅==; 12321231605(4)()43434314412P X C ==⋅⋅⋅+⋅==;3232361(6)43431444P X ==⋅⋅⋅==; XX 的数学期望01234614472144121241446EX =⨯+⨯+⨯+⨯+⨯+⨯==. 【点评】此题考查离散型随机变量的分布列和数学期望,属中档题.〔20〕【2016年山东,理20,13分】已知221()(ln ),x f x a x x a R x-=-+∈.〔1〕讨论()f x 的单调性; 〔2〕当1a =时,证明3()()2f x f x '>+对于任意的[1,2]x ∈成立. 解:〔1〕求导数3122()(1)x f x a x x'=---23(1)(2x ax x =--),当0a ≤时,x ∈(0,1),()0f x '>,()f x单调递增, x +∞∈(1,),()0f x '<,()f x 单调递减当0a >时,()()()233112()a x x x x ax f x x x⎛-+ --⎝⎭⎝⎭'== ①当02a <<1>,x ∈(0,1)或x ⎫+∞⎪⎪⎭∈,()0f x '>,()f x单调递增,x ⎛ ⎝∈,()0f x '<,、()f x 单调递减;②当a =21=, x ∈+∞(0,),()0f x '≥,()f x 单调递增, ③当a >2时,01<,x ⎛∈ ⎝或()x ∈+∞1,,()0f x '>,()f x 单调递增,x ⎫∈⎪⎪⎭1,()0f x '<, ()f x 单调递减.〔2〕当1a =时,221()ln x f x x x x=+--,2323(1)(212()1x x f x x x x x '==+--)2--, 于是2232112()()ln 1)x f x f x x x x x x x '=++-2---(--23312ln 1x x x x x =--++-,[1,2]x ∈令()g ln x x x =-,2332h()x x x x=-++-11,[1,2]x ∈,于是()()g(()f x f x x h x '-=+), 1g ()10x x x x-'=-=≥1,()g x 的最小值为()11g =;又22344326326()x x h x x x x x --+'=--+=,设()2326x x x θ=--+,[1,2]x ∈,因为()11θ=,()210θ=-,所以必有0[1,2]x ∈,使得()00x θ=,且01x x <<时,()0x θ>,()h x 单调递增;02x x <<时,()0x θ<,()h x 单调递减;又()11h =,()122h =,所以()h x 的最小值为()122h =.所以13()()g(()g(1(2)122f x f x x h x h '=+>+=+=))-. 即3()()2f x f x '>+对于任意的[1,2]x ∈成立. 【点评】此题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.〔21〕【2016年山东,理21,14分】平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>,抛物线2:2E x y =的焦点F 是C 的一个顶点. 〔1〕求椭圆C 的方程;〔2〕设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . 〔i 〕求证:点M 在定直线上;〔ii 〕直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求12SS 的最大值及取得最大值时点P 的坐标.解:〔1,有224a b =,又抛物线22x y =的焦点坐标为10,2F ⎛⎫⎪⎝⎭,所以12b =,于是1a =,所以椭圆C 的方程为2241x y +=.〔2〕〔i 〕设P 点坐标为()2,02m P m m ⎛⎫> ⎪⎝⎭,由22x y =得y x '=,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为22m y mx =-,设()()1122,,,A x y B x y ,()00,D x y ,将22m y mx =-代入2241x y +=,得()223214410m x m x m +-+-=.于是3122414m x x m +=+,312022214x x m x m +==+, 又()220022214m m y mx m -=-=+,于是直线OD 的方程为14y x m =-. 联立方程14y x m =-与x m =,得M 的坐标为1,4M m ⎛⎫- ⎪⎝⎭.所以点M 在定直线14y =-上.〔ii 〕在切线l 的方程为22m y mx =-中,令0x =,得22m y =-,即点G 的坐标为20,2m G ⎛⎫- ⎪⎝⎭,又2,2m P m ⎛⎫ ⎪⎝⎭,10,2F ⎛⎫ ⎪⎝⎭,所以211(1)24m m S m GF +=⨯=;再由()32222,41241m m D m m ⎛⎫- ⎪ ⎪++⎝⎭,得 ()()22232222112122441841m m m m m S m m +++=⨯⨯=++于是有 ()()()221222241121m m S S m ++=+.令221t m =+, 得()12221211122t t S S t t t ⎛⎫-+ ⎪⎝⎭==+-,当112t =时,即2t =时,12S S 取得最大值94.此时212m =,2m =,所以P点的坐标为14P ⎫⎪⎪⎝⎭.所以12S S 的最大值为94,取得最大值时点P的坐标为14P ⎫⎪⎪⎝⎭. 【点评】此题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题.。
2016年山东省东营市胜利一中高考数学考前最后一卷(理科)一、选择题:本大题共10个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z=1+bi(b∈R)且|z|=2,则复数的虚部为()A. B. C.±1 D.2.已知A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A. B.(0,1) C. D.∅3.定义=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到的函数解析式为()A.y=2sin(x﹣) B.y=2sin(x+) C.y=2cosx D.y=2sinx4.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为()A.15π B.18π C.22π D.33π5.在平面直角坐标系中,若,则的最小值是()A. B. C.3 D.56.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A. B. C. D.7.如图所示,由函数f(x)=sinx与函数g(x)=cosx在区间[0,]上的图象所围成的封闭图形的面积为()A.3﹣1 B.4﹣2 C. D.28.如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x 的函数关系的图象大致是()A. B. C. D.9.已知函数有两个极值点x1,x2且x1,x2满足﹣1<x1<1<x2<2,则直线bx﹣(a﹣1)y+3=0的斜率的取值范围是()A. B. C. D.10.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞) B.(﹣∞,0)∪(3,+∞) C.(﹣∞,0)∪(0,+∞) D.(3,+∞)二、填空题(本大题共5小题,每小题5分,共25分,将答案填在答题卡的相应位置)11.已知实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于103的概率是.12.公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的,设男子身高X服从正态分布N(单位:cm),参考以下概率P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,则车门的高度(单位:cm)至少应设计为.13.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9且(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,则实数m的值是.14.在△ABC中,E为AC上一点,且=4,P为BE上一点,且满足=m+n(m>0,n>0),则+取最小值时,向量的模为.15.已知命题:①设随机变量ξ~N(0,1),若P(ξ≥2)=P(﹣2<ξ<0)=﹣p;②命题“∃x∈R,x2+x+1<0”的否定是“∀x∈R,x2+x+1<0”;③在△ABC中,A>B的充要条件是sinA<sinB;④若不等式|x+3|+|x﹣2|≥2m+1恒成立,则m的取值范围是(﹣∞,2);⑤若对于任意的n∈N*,n2+(a﹣4)n+3+a≥0恒成立,则实数a的取值范围是[,+∞].以上命题中正确的是(填写所有正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.设函数,其中0<w<2.(Ⅰ)若x=是函数f(x)的一条对称轴,求函数周期T;(Ⅱ)若函数f(x)在区间上为增函数,求w的最大值.17.如图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求n名毕业生中男女各几人(男女人数均至少两人)?(Ⅲ)在(Ⅱ)的结论下,设随机变量ξ表示n名毕业生中分配往乙学校的三名学生中男生的人数,求ξ的分布列和数学期望.18.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PE=2BE.(I)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.19.已知数列{a n}满足:a1=1,a2=2,且a n+1=2a n+3a n﹣1(n≥2,n∈N+).(Ⅰ)设b n=a n+1+a n(n∈N+),求证{b n}是等比数列;(Ⅱ)(i)求数列{a n}的通项公式;(ii)求证:对于任意n∈N+都有成立.20.已知A、B为抛物线C:y2=4x上的两个动点,点A在第一象限,点B在第四象限,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x=4的交点,求△PCD面积的最小值.21.设函数f(x)=lnx+(a为常数)(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求实数a的值;(Ⅱ)若函数f(x)在(e,+∞)内有极值.求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,若x1∈(0,1),x2∈(1,+∞).求证:f(x2)﹣f(x1)>e+2﹣(注:e是自然对数的底数).2016年山东省东营市胜利一中高考数学考前最后一卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z=1+bi(b∈R)且|z|=2,则复数的虚部为()A. B. C.±1 D.【考点】复数的基本概念.【分析】利用复数的模的求法直接求出b的值,即可得到复数的虚部.【解答】解:复数z=1+bi(b∈R)且|z|=2,所以,解得b=.故选D.2.已知A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A. B.(0,1) C. D.∅【考点】交集及其运算.【分析】由题设条件知A={y|y>0},B={y|0<y<},由此能够得到A∩B的值.【解答】解:∵,∴=.故选A.3.定义=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到的函数解析式为()A.y=2sin(x﹣) B.y=2sin(x+) C.y=2cosx D.y=2sinx【考点】二阶矩阵.【分析】利用行列式定义将函数f(x)化成y=2sin(x+),f(x)的图象向右平移个单位得到的函数解析式为y=2sinx,即可得出结论.【解答】解:f(x)==sin(π﹣x)﹣cos(π+x)=sinx+cosx=2sin (x+),∴f(x)的图象向右平移个单位得到的函数解析式为y=2sinx,故选:D.4.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为()A.15π B.18π C.22π D.33π【考点】由三视图求面积、体积.【分析】该几何体是一个组合体,上部是半球,下部是到放的圆锥,依据所给数据求解即可.【解答】解;该几何体是一个组合体,上部是半球,半径是3,下部是到放的圆锥,半径是3,高是4.该几何体的表面积:S=S上+S下=.故选D.5.在平面直角坐标系中,若,则的最小值是()A. B. C.3 D.5【考点】简单线性规划.【分析】先画出满足条件的平面区域,根据的几何意义,从而求出其最小值.【解答】解:画出满足条件的平面区域,如图示:,显然,的最小值是(﹣1,0)到直线x+y﹣2=0的距离,∴d==,故选:B.6.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A. B. C. D.【考点】双曲线的简单性质.【分析】先根据条件求出店A的坐标,再结合点A到抛物线C1的准线的距离为p;得到=,再代入离心率计算公式即可得到答案.【解答】解:取双曲线的其中一条渐近线:y=x,联立⇒;故A(,).∵点A到抛物线C1的准线的距离为p,∴+=p;∴=.∴双曲线C2的离心率e===.故选:C.7.如图所示,由函数f(x)=sinx与函数g(x)=cosx在区间[0,]上的图象所围成的封闭图形的面积为()A.3﹣1 B.4﹣2 C. D.2【考点】定积分在求面积中的应用;正弦函数的图象;余弦函数的图象.【分析】求出图象的交点坐标,根据定积分的几何意义,所求面积为S=(cosx﹣sinx)dx+(sinx﹣cosx)dx+(cosx﹣sinx)dx,再用定积分计算公式加以运算即可得到本题答案.【解答】解:由y=sinx(x∈[0,])和y=cosx(x∈[0,]),可得交点坐标为(,),(,),∴由两曲线y=sinx(x∈[0,])和y=cosx(x∈[0,])所围成的封闭图形的面积为S=(cosx﹣sinx)dx+(sinx﹣cosx)dx+(cosx﹣sinx)dx=(sinx+cosx)﹣(sinx+cosx)+(sinx+cosx)=2.故选:D.8.如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x 的函数关系的图象大致是()A. B. C. D.【考点】函数的图象.【分析】关键是找出y与x之间的关系,注意当E在BC上运动时,右边是一上三角,当E 点在CD上运动时,其右边是一个梯形.【解答】解:∵EM⊥AB,∠B=45°,∴EM=MB=x,AM=5﹣x,当E点在BC上动时,即0≤x≤3时,y=,当E点在CD上动力时,矩形AMEN即为矩形AMED,此时3≤x<5,y=3(5﹣x),∴y=.图象如图A.故答案为:A.9.已知函数有两个极值点x1,x2且x1,x2满足﹣1<x1<1<x2<2,则直线bx﹣(a﹣1)y+3=0的斜率的取值范围是()A. B. C. D.【考点】函数在某点取得极值的条件.【分析】求导数,利用函数有两个极值点x1,x2且x1,x2满足﹣1<x1<1<x2<2,确定平面区域,根据斜率的几何意义,即可求得斜率的取值范围.【解答】解:求导数可得:f'(x)=x2+2ax+2b∵f(x)有两个极值点x1,x2,∴f'(x)有两个零点∵﹣1<x1<1<x2<2,∴﹣1<﹣a<2,∴﹣2<a<1 ①又f'(﹣1)=﹣2a+2b+1>0,即2a﹣2b﹣1<0,②f'(1)=2a+2b+1<0,③f'(2)=4a+2b+4>0,即2a+b+2>0 ④在坐标系aOb中,满足①②③④的可行域如图所示直线bx﹣(a﹣1)y+3=0的斜率k=,表示可行域中动点M(a,b)与定点D(1,0)连线的斜率由,可得,此时与定点D(1,0)连线的斜率为=﹣由,可得,此时与定点D(1,0)连线的斜率为=∴直线bx﹣(a﹣1)y+3=0的斜率的取值范围是故选A.10.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞) B.(﹣∞,0)∪(3,+∞) C.(﹣∞,0)∪(0,+∞) D.(3,+∞)【考点】利用导数研究函数的单调性;导数的运算.【分析】构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.二、填空题(本大题共5小题,每小题5分,共25分,将答案填在答题卡的相应位置)11.已知实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于103的概率是.【考点】程序框图.【分析】由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于103得到输入值的范围,利用几何概型的概率公式求出输出的x不小于103的概率.【解答】解:设实数x∈[2,30],经过第一次循环得到x=2x+1,n=2经过第二循环得到x=2(2x+1)+1,n=3经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x输出的值为8x+7令8x+7≥103得x≥12由几何概型得到输出的x不小于103的概率为P==故答案为:.12.公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的,设男子身高X服从正态分布N(单位:cm),参考以下概率P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,则车门的高度(单位:cm)至少应设计为184cm .【考点】正态分布曲线的特点及曲线所表示的意义.【分析】利用利用P(μ﹣2σ<X≤μ+2σ)=0.9544,男子身高X服从正态分布N,结合公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的,可得结论.【解答】解:∵公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的,∴利用P(μ﹣2σ<X≤μ+2σ)=0.9544,男子身高X服从正态分布N(单位:cm),可得车门的高度(单位:cm)至少应设计为170+2×7=184cm.故答案为:184cm.13.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9且(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,则实数m的值是﹣3或1 .【考点】二项式系数的性质.【分析】分别令x=﹣2,和x=0,求得(a0+a2+…+a8)﹣(a1+a3+…+a9)=m9,a0+a2+…+a8+a1+a3+…+a9=(2+m)9,再根据(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,求得m的值.【解答】解:在(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9中,令x=﹣2可得 a0﹣a1+a2﹣a3+…+a8﹣a9=m9,即[(a0+a2+…+a8)﹣(a1+a3+…+a9)]=m9,令x=0,可得 a0+a2+…+a8+a1+a3+…+a9=(2+m)9,∵(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,∴(a0+a2+…+a8+a1+a3+…+a9)[(a0+a2+…+a8)﹣(a1+a3+…+a9)]=39,∴(2+m)9•m9=(2m+m2)9=39,可得 2m+m2=3,解得m=1,或m=﹣3故答案为:﹣3或1.14.在△ABC中,E为AC上一点,且=4,P为BE上一点,且满足=m+n(m>0,n>0),则+取最小值时,向量的模为.【考点】基本不等式在最值问题中的应用;平面向量的基本定理及其意义.【分析】根据平面向量基本定理求出m,n关系,进而确定+取最小值时m,n的值,代入求的模【解答】解:∵=4,∴=m+n=m+4n又∵P为BE上一点,∴不妨设=λ(0<λ<1)∴=+=+λ=+λ(﹣)=(1﹣λ)+λ∴m+4n=(1﹣λ)+λ∵,不共线∴m+4n=1﹣λ+λ=1∴+=(+)×1=(+)×(m+4n)=5+4+≥5+2=9(m>0,n>0)当且仅当=即m=2n时等号成立又∵m+4n=1∴m=,n=∴||==故答案为15.已知命题:①设随机变量ξ~N(0,1),若P(ξ≥2)=P(﹣2<ξ<0)=﹣p;②命题“∃x∈R,x2+x+1<0”的否定是“∀x∈R,x2+x+1<0”;③在△ABC中,A>B的充要条件是sinA<sinB;④若不等式|x+3|+|x﹣2|≥2m+1恒成立,则m的取值范围是(﹣∞,2);⑤若对于任意的n∈N*,n2+(a﹣4)n+3+a≥0恒成立,则实数a的取值范围是[,+∞].以上命题中正确的是①⑤(填写所有正确命题的序号).【考点】命题的真假判断与应用.【分析】①利用概率密度曲线图可判断真假;②存在性命题的否定是结论要否;③在三角形中充分考虑角度的正弦变化情况;④含绝对值不等式恒成立问题的转化;⑤构造新函数利用单调性求解.【解答】解:①由密度曲线可知,P(ξ≥2)+P(0≤ξ≤2)=,所以P(0≤ξ≤2)=﹣p,而P(﹣2<ξ<0)=P(0≤ξ≤2)=﹣p;故①对;②命题“∃x∈R,x2+x+1<0”的否定是“∀x∈R,x2+x+1≥0”故②错;③在△ABC中,A>B,例如A=120°,B=60°,但是sinA=sinB.故③错;④不等式|x+3|+|x﹣2|≥2m+1恒成立,则2m+1≤(|x+3|+|x﹣2|)min=|x+3﹣x+2|=5,所以2m+1≤5,解得m≤2.故④错;⑤n2+(a﹣4)n+3+a≥0恒成立⇔(n+1)a≥﹣n2+4n﹣3=﹣(n+1)2+6(n+1)﹣8恒成立,∵n∈N*,∴a≥﹣(n+1)﹣+6恒成立,∴a≥[﹣(n+1)﹣]max+6恒成立;∵双钩函数g(n)=(n+1)+在[1,2﹣1]上单调递减,在[2﹣1,+∞)上单调递增,又n∈N*,g(1)=2+4=6,g(2)=3+<g(3)=6,∴g(n)min=g(2)=,[﹣(n+1)﹣]max=﹣g(n)min=﹣,∴m>﹣+6=,∴实数a的取值范围是[,+∞),故⑤对.故答案为:①⑤三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.设函数,其中0<w<2.(Ⅰ)若x=是函数f(x)的一条对称轴,求函数周期T;(Ⅱ)若函数f(x)在区间上为增函数,求w的最大值.【考点】两角和与差的正弦函数;正弦函数的单调性.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的图象的对称性,求得w的值,可得函数的周期.(Ⅱ)由正弦函数的单调性求得f(x)的增区间,再利用函数f(x)在区间上为增函数,求得w的最大值.【解答】解:函数=4(coswxcos﹣sinwxsin)sinwx﹣cos2wx+1=sin2wx.(Ⅰ)由x=是函数f(x)的一条对称轴,可得2w•=kπ+,k∈Z,∴w=2k+1,再结合0<w<2,求得w=1,f(x)=sin2x,故T==π.(Ⅱ)令2kπ﹣≤2wx≤kπ+,求得﹣≤x≤+,k∈Z,再根据函数f(x)在区间上为增函数,可得﹣≤,且≥,求得0<w≤,即w得最大值为.17.如图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求n名毕业生中男女各几人(男女人数均至少两人)?(Ⅲ)在(Ⅱ)的结论下,设随机变量ξ表示n名毕业生中分配往乙学校的三名学生中男生的人数,求ξ的分布列和数学期望.【考点】离散型随机变量及其分布列;频率分布直方图;离散型随机变量的期望与方差.【分析】(Ⅰ)先求出其不意80~90分数段的毕业生的频率,再求出毕业生的总人数,由此利用90~95分数段内的人数频率,从而能求出90~95分数段内的人数.(Ⅱ)90:95分数段内共6名毕业生,设其中男生z名,女生为6﹣x名设分配往甲校的两名毕业生中至少有一名男毕业生为事件A,由P(A)=1﹣=,能求出6名毕业生中有男生2人,女生4人.(Ⅲ)ξ表示n名毕业生中分配往甲学校的两名学生中男生的人数,ξ的取值可以为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和随机变量ξ数学期望.【解答】解:(Ⅰ)80~90分数段的毕业生的频率为:p1=(0.04+0.03)×5=0.35,此分数段的学员总数为21人,∴毕业生的总人数N为N==60,90~95分数段内的人数频率为:p2=1﹣(0.01+0.04+0.05+0.04+0.03+0.01)×5=0.1,∴90~95分数段内的人数n=60×0.1=6.(Ⅱ)90:95分数段内共6名毕业生,设其中男生z名,女生为6﹣x名设分配往甲校的两名毕业生中至少有一名男毕业生为事件A,则P(A)=1﹣=,解得x=2或x=9(舍去),即6名毕业生中有男生2人,女生4人.…(Ⅲ)ξ表示n名毕业生中分配往甲学校的两名学生中男生的人数,所以ξ的取值可以为0,1,2,当ξ=0时,P(ξ=0)==,当ξ=1时,P(ξ=1)==,当ξ=2时,P(ξ=2)==,所以ξ的分布列为ξ0 1 2P所以随机变量ξ数学期望为Eξ==1.…18.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PE=2BE.(I)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(I)由PC⊥底面ABCD,可得PC⊥AC.由AB=2,AD=CD=1,利用勾股定理的逆定理可得:AC⊥BC,因此AC⊥平面PBC,即可证明平面EAC⊥平面PBC.(II)取AB的中点F,两角CF,则CF⊥AB,以点C为原点,建立空间直角坐标系,可得设P(0,0,a)(a>0),可取=(1,﹣1,0),利用向量垂直与数量积的关系可得:为平面PAC的法向量.设=(x,y,z)为平面EAC的法向量,则,可得,由于二面角P﹣AC﹣E的余弦值为,可得==,解得a=4.设直线PA与平面EAC所成角为θ,则sinθ=||=即可得出.【解答】(I)证明:∵PC⊥底面ABCD,AC⊂平面ABCD,∴PC⊥AC.∵AB=2,AD=CD=1,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,又AC⊂平面EAC,∴平面EAC⊥平面PBC.(II)解:取AB的中点F,两角CF,则CF⊥AB,以点C为原点,建立空间直角坐标系,可得:C(0,0,0),A(1,1,0),B(1,﹣1,0),设P(0,0,a)(a>0),则E,=(1,1,0),=(0,0,a),=,取=(1,﹣1,0),则=0,∴为平面PAC的法向量.设=(x,y,z)为平面EAC的法向量,则,即,取=(a,﹣a,﹣4),∵二面角P﹣AC﹣E的余弦值为,∴===,解得a=4,∴=(4,﹣4,﹣4),=(1,1,﹣4).设直线PA与平面EAC所成角为θ,则sinθ=||===,∴直线PA与平面EAC所成角的正弦值为.19.已知数列{a n}满足:a1=1,a2=2,且a n+1=2a n+3a n﹣1(n≥2,n∈N+).(Ⅰ)设b n=a n+1+a n(n∈N+),求证{b n}是等比数列;(Ⅱ)(i)求数列{a n}的通项公式;(ii)求证:对于任意n∈N+都有成立.【考点】数列的求和;等比关系的确定;数列递推式.【分析】(Ⅰ)利用已知条件对已知的数列关系式进行恒等变形,进一步的出数列是等比数列.(Ⅱ)(i)根据(Ⅰ)的结论进一步利用恒等变换,求出数列的通项公式.(ii)首先分奇数和偶数分别写出通项公式,进一步利用放缩法进行证明.【解答】证明:(Ⅰ)已知数列{a n}满足:a1=1,a2=2,且a n+1=2a n+3a n﹣1(n≥2,n∈N+).则:a n+1+a n=3(a n+a n﹣1)即:,所以:,数列{b n}是等比数列.(Ⅱ)(i)由于数列{b n}是等比数列.则:,整理得:所以:则:是以()为首项,﹣1为公比的等比数列.所以:求得:(ii)由于:,所以:,则:(1)当n为奇数时,,当n为偶数时,,所以: =…++,所以:n∈k时,对任意的k都有恒成立.20.已知A、B为抛物线C:y2=4x上的两个动点,点A在第一象限,点B在第四象限,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x=4的交点,求△PCD面积的最小值.【考点】抛物线的简单性质.【分析】(Ⅰ)利用直线l1、l2与抛物线C相切,求出l1、l2方程,可得点P坐标,再求出AB的方程,即可得出结论;(Ⅱ)求出C,D的坐标,可得|CD|,表示出△PCD面积,利用导数法可求最小值.【解答】(Ⅰ)证明:设,(y1>0>y2).易知l1斜率存在,设为k1,则l1方程为.由得,…①由直线l1与抛物线C相切,知.于是,,l1方程为.同理,l2方程为.联立l1、l2方程可得点P坐标为,∵,AB方程为,AB过抛物线C的焦点F(1,0).∴﹣y1=(1﹣),∴y1y2=﹣4,∴动点P在一条定直线x=﹣1上;(Ⅱ)解:由(Ⅰ)知,C,D的坐标分别为(4,),D(4,),∴.∴.设(t>0),|y1﹣y2|=m,由知,m≥2t,当且仅当y1+y2=0时等号成立.∴.设,则.∴时,f'(t)<0;时,f'(t)>0.f(t)在区间上为减函数;在区间上为增函数.∴时,f(t)取最小值.∴当y1+y2=0,,即,时,△PCD面积取最小值.…21.设函数f(x)=lnx+(a为常数)(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求实数a的值;(Ⅱ)若函数f(x)在(e,+∞)内有极值.求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,若x1∈(0,1),x2∈(1,+∞).求证:f(x2)﹣f(x1)>e+2﹣(注:e是自然对数的底数).【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)确定函数的定义域,求导数,利用曲线y=f(x)在点(2,f(2))处的切线与x轴平行,即可求实数a的值;(Ⅱ)若函数f(x)在(e,+∞)内有极值,f′(x)=0在(e,+∞)内有不等的实根,令φ(x)=x2﹣(2+a)x+1=(x﹣α)(x﹣β),可得αβ=1,β>e.即可求实数a的取值范围;(Ⅲ)确定函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减,可得f(x2)﹣f(x1)≥f(β)﹣f(α),再构造函数,即可证明结论.【解答】(Ⅰ)解:函数f(x)的定义域为(0,1)∪(1,+∞),由f(x)=lnx+得f′(x)=﹣,∵曲线y=f(x)在点(2,f(2))处的切线与x轴平行,∴f′(2)=0,∴﹣a=0,∴a=;(Ⅱ)解:∵f′(x)=,函数f(x)在(e,+∞)内有极值,∴f′(x)=0在(e,+∞)内有不等的实根,令φ(x)=x2﹣(2+a)x+1=(x﹣α)(x﹣β),可得αβ=1.不妨设β>α,则α∈(0,1),β∈(1,+∞),∴β>e.∴φ(0)=1>0,∴φ(e)=e2﹣(2+a)e+1<0,∴a>e+﹣2,即实数a的取值范围是(e+﹣2,+∞);(Ⅲ)证明:由上知,f′(x)>0,可得0<x<α或x>β;f′(x)<0,可得α<x <1或1<x<β,∴函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减,由x1∈(0,1),得f(x1)≤f(α)=lnα+,x2∈(1,+∞),得f(x2)≥f(β)=lnβ+,∴f(x2)﹣f(x1)≥f(β)﹣f(α)又αβ=1,α+β=a+2,β>e∴f(β)﹣f(α)=lnβ+﹣(lnα+)=2lnβ+β﹣,令H(β)=2lnβ+β﹣(β>e),则H′(β)=(+1)2>0,∴H(β)在(e,+∞)上单调递增,∴H(β)>H(e)=e+2﹣,∴f(x2)﹣f(x1)>e+2﹣.。
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B = (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )133+π(C )136+π(D )16+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
绝密★启用前本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=- 其中i 为虚数单位,则z =(A )1+2i(B )1-2i(C )12i -+ (D )12i --【答案】B考点:注意共轭复数的概念.(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =(A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C 【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则}1|{->=x x B A ,选C. 考点:本题涉及到求函数值域、解不等式以及集合的运算.(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 (A )56(B )60(C )120(D )140【答案】D考点:频率分布直方图【答案】C【解析】试题分析:不等式组表示的可行域是以A (0,-3),B (0,2),C (3, -1)为顶点的三角形区域,22x y +表示点(x ,y )到原点距离的平方,最大值必在顶点处取到,经验证最大值210OC =,故选C.考点:线性规划求最值(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π (B )133+π (C )136+π (D )16+π 【答案】C考点:根据三视图求体积.(6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A 【解析】试题分析:直线a 与直线b 相交,则,αβ一定相交,若,αβ相交,则a ,b 可能相交,也可能平行,故选A.考点:直线与平面的位置关系;充分、必要条件的判断.(7)函数f (x )=x +cos x )(x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π 【答案】B 【解析】试题分析:()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 考点:三角函数化简求值,周期公式(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94 (D )–94【答案】B考点:平面向量的数量积(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2 【答案】D 【解析】 试题分析:当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为函数()f x 是奇函数,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:本题考查了函数的周期性、奇偶性,灵活变换求得函数性质是解题的关键.(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3 【答案】A 【解析】试题分析:当sin y x =时,cos y x '=,cos0cos 1π⋅=-,所以在函数sin y x =图象存在两点0,x x π==使条件成立,故A 正确;函数3ln ,,x y x y e y x ===的导数值均非负,不符合题意,故选A.考点:本题注意实质上是检验函数图像上存在两点的导数值乘积等于-1.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).如果事件A ,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i -- (2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B U =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56 (B)60 (C)120 (D)140(4)若变量x,y满足2,239,0,x yx yxì+?ïïïï-?íïï锍ïî则22x y+的最大值是()(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)1233+π(C)1236+π(D)216+π(6)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()(A)充分不必要条件(B)必要不充分条件学.科.网(C)充要条件(D)既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. ★注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.★参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一.选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)1.若复数z 满足2z+z=3-2i ,其中i 为虚数单位,则z=B(A )1+2i(B )1-2i(C )12i -+ (D )12i --2.设集合{}{}x 2A=y y=2,x R ,B =x x -1<0,x R ∈∈,则A B = C(A )(1,1)-(B )(0,1)(C )(1,)-+∞ (D )(0,)+∞3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是D(A )56(B )60(C )120(D )1404.若变量x ,y 满足x+y 22x-3y 9x 0≤⎧⎪≤⎨⎪≥⎩则22x +y 的最大值是C(A )4 (B )9 (C )10 (D )125.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为C(A )12+π33(B)13(C)13(D)6.已知直线a 、b 分别在两个不同的平面α、β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的A(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件7.函数f(x)=x+sinx)的最小正周期是B(A )π2(B )π (C )3π2(D )2π 8.已知非零向量m 、n 满足4m =3n ,cos<m,n>=13.若n ⊥(tm+n),则实数t 的值为B (A )4 (B )–4 (C )94(D )9-49.已知函数f(x)的定义域为R.当x<0时,3f(x)=x -1;当-1≤x ≤1时,f(x)=-f(x);当1x 2>时,11f(x+)=f(x-)22.则f(6)= D(A )−2(B )−1(C )0(D )210.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T 性质.下列函数中具有T 性质的是A(A )y=sinx (B )y=lnx (C )y=e x (D )y=x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2016年山东省东营市胜利一中高考数学考前最后一卷(理科)一、选择题:本大题共10个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z=1+bi(b∈R)且|z|=2,则复数的虚部为()A.B.C.±1 D.2.已知A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A.B.(0,1)C.D.∅3.定义=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到的函数解析式为()A.y=2sin(x﹣)B.y=2sin(x+)C.y=2cosx D.y=2sinx4.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为()A.15π B.18π C.22π D.33π5.在平面直角坐标系中,若,则的最小值是()A.B.C.3 D.56.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.7.如图所示,由函数f(x)=sinx与函数g(x)=cosx在区间[0,]上的图象所围成的封闭图形的面积为()A.3﹣1 B.4﹣2 C.D.28.如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x的函数关系的图象大致是()A.B.C.D.9.已知函数有两个极值点x1,x2且x1,x2满足﹣1<x1<1<x2<2,则直线bx﹣(a﹣1)y+3=0的斜率的取值范围是()A.B.C.D.10.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)二、填空题(本大题共5小题,每小题5分,共25分,将答案填在答题卡的相应位置)11.已知实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于103的概率是.12.公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的,设男子身高X服从正态分布N(单位:cm),参考以下概率P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,则车门的高度(单位:cm)至少应设计为.13.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9且(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,则实数m的值是.14.在△ABC中,E为AC上一点,且=4,P为BE上一点,且满足=m+n(m>0,n>0),则+取最小值时,向量的模为.15.已知命题:①设随机变量ξ~N(0,1),若P(ξ≥2)=P(﹣2<ξ<0)=﹣p;②命题“∃x∈R,x2+x+1<0”的否定是“∀x∈R,x2+x+1<0”;③在△ABC中,A>B的充要条件是sinA<sinB;④若不等式|x+3|+|x﹣2|≥2m+1恒成立,则m的取值范围是(﹣∞,2);⑤若对于任意的n∈N*,n2+(a﹣4)n+3+a≥0恒成立,则实数a的取值范围是[,+∞].以上命题中正确的是(填写所有正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.设函数,其中0<w<2.(Ⅰ)若x=是函数f(x)的一条对称轴,求函数周期T;(Ⅱ)若函数f(x)在区间上为增函数,求w的最大值.17.如图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求n名毕业生中男女各几人(男女人数均至少两人)?(Ⅲ)在(Ⅱ)的结论下,设随机变量ξ表示n名毕业生中分配往乙学校的三名学生中男生的人数,求ξ的分布列和数学期望.18.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PE=2BE.(I)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.19.已知数列{a n}满足:a1=1,a2=2,且a n+1=2a n+3a n(n≥2,n∈N+).﹣1(Ⅰ)设b n=a n+1+a n(n∈N+),求证{b n}是等比数列;(Ⅱ)(i)求数列{a n}的通项公式;(ii)求证:对于任意n∈N+都有成立.20.已知A、B为抛物线C:y2=4x上的两个动点,点A在第一象限,点B在第四象限,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x=4的交点,求△PCD面积的最小值.21.设函数f(x)=lnx+(a为常数)(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求实数a的值;(Ⅱ)若函数f(x)在(e,+∞)内有极值.求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,若x1∈(0,1),x2∈(1,+∞).求证:f(x2)﹣f(x1)>e+2﹣(注:e是自然对数的底数).2016年山东省东营市胜利一中高考数学考前最后一卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z=1+bi(b∈R)且|z|=2,则复数的虚部为()A.B.C.±1 D.【考点】复数的基本概念.【分析】利用复数的模的求法直接求出b的值,即可得到复数的虚部.【解答】解:复数z=1+bi(b∈R)且|z|=2,所以,解得b=.故选D.2.已知A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A.B.(0,1)C.D.∅【考点】交集及其运算.【分析】由题设条件知A={y|y>0},B={y|0<y<},由此能够得到A∩B的值.【解答】解:∵,∴=.故选A.3.定义=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到的函数解析式为()A.y=2sin(x﹣)B.y=2sin(x+)C.y=2cosx D.y=2sinx【考点】二阶矩阵.【分析】利用行列式定义将函数f (x )化成y=2sin (x+),f (x )的图象向右平移个单位得到的函数解析式为y=2sinx ,即可得出结论.【解答】解:f (x )==sin (π﹣x )﹣cos (π+x )=sinx+cosx=2sin(x+),∴f (x )的图象向右平移个单位得到的函数解析式为y=2sinx ,故选:D .4.如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为( )A .15πB .18πC .22πD .33π 【考点】由三视图求面积、体积.【分析】该几何体是一个组合体,上部是半球,下部是到放的圆锥,依据所给数据求解即可. 【解答】解;该几何体是一个组合体,上部是半球,半径是3, 下部是到放的圆锥,半径是3,高是4. 该几何体的表面积:S=S 上+S 下=.故选D .5.在平面直角坐标系中,若,则的最小值是( )A .B .C .3D .5【考点】简单线性规划.【分析】先画出满足条件的平面区域,根据的几何意义,从而求出其最小值.【解答】解:画出满足条件的平面区域,如图示:,显然,的最小值是(﹣1,0)到直线x+y﹣2=0的距离,∴d==,故选:B.6.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.【考点】双曲线的简单性质.【分析】先根据条件求出店A的坐标,再结合点A到抛物线C1的准线的距离为p;得到=,再代入离心率计算公式即可得到答案.【解答】解:取双曲线的其中一条渐近线:y=x,联立⇒;故A(,).∵点A 到抛物线C 1的准线的距离为p ,∴+=p ;∴=.∴双曲线C 2的离心率e===.故选:C .7.如图所示,由函数f (x )=sinx 与函数g (x )=cosx 在区间[0,]上的图象所围成的封闭图形的面积为( )A .3﹣1B .4﹣2C .D .2【考点】定积分在求面积中的应用;正弦函数的图象;余弦函数的图象. 【分析】求出图象的交点坐标,根据定积分的几何意义,所求面积为S=(cosx ﹣sinx )dx+(sinx ﹣cosx )dx+(cosx ﹣sinx )dx ,再用定积分计算公式加以运算即可得到本题答案.【解答】解:由y=sinx (x ∈[0,])和y=cosx (x ∈[0,]),可得交点坐标为(,),(,),∴由两曲线y=sinx (x ∈[0,])和y=cosx (x ∈[0,])所围成的封闭图形的面积为S=(cosx ﹣sinx )dx+(sinx ﹣cosx )dx+(cosx ﹣sinx )dx=(sinx+cosx)﹣(sinx+cosx)+(sinx+cosx)=2.故选:D.8.如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x的函数关系的图象大致是()A.B.C.D.【考点】函数的图象.【分析】关键是找出y与x之间的关系,注意当E在BC上运动时,右边是一上三角,当E 点在CD上运动时,其右边是一个梯形.【解答】解:∵EM⊥AB,∠B=45°,∴EM=MB=x,AM=5﹣x,当E点在BC上动时,即0≤x≤3时,y=,当E点在CD上动力时,矩形AMEN即为矩形AMED,此时3≤x<5,y=3(5﹣x),∴y=.图象如图A.故答案为:A.9.已知函数有两个极值点x1,x2且x1,x2满足﹣1<x1<1<x2<2,则直线bx﹣(a﹣1)y+3=0的斜率的取值范围是()A.B.C.D.【考点】函数在某点取得极值的条件.【分析】求导数,利用函数有两个极值点x1,x2且x1,x2满足﹣1<x1<1<x2<2,确定平面区域,根据斜率的几何意义,即可求得斜率的取值范围.【解答】解:求导数可得:f'(x)=x2+2ax+2b∵f(x)有两个极值点x1,x2,∴f'(x)有两个零点∵﹣1<x1<1<x2<2,∴﹣1<﹣a<2,∴﹣2<a<1 ①又f'(﹣1)=﹣2a+2b+1>0,即2a﹣2b﹣1<0,②f'(1)=2a+2b+1<0,③f'(2)=4a+2b+4>0,即2a+b+2>0 ④在坐标系aOb中,满足①②③④的可行域如图所示直线bx﹣(a﹣1)y+3=0的斜率k=,表示可行域中动点M(a,b)与定点D(1,0)连线的斜率由,可得,此时与定点D(1,0)连线的斜率为=﹣由,可得,此时与定点D(1,0)连线的斜率为=∴直线bx﹣(a﹣1)y+3=0的斜率的取值范围是故选A.10.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)【考点】利用导数研究函数的单调性;导数的运算.【分析】构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.二、填空题(本大题共5小题,每小题5分,共25分,将答案填在答题卡的相应位置)11.已知实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于103的概率是.【考点】程序框图.【分析】由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于103得到输入值的范围,利用几何概型的概率公式求出输出的x不小于103的概率.【解答】解:设实数x∈[2,30],经过第一次循环得到x=2x+1,n=2经过第二循环得到x=2(2x+1)+1,n=3经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x输出的值为8x+7令8x+7≥103得x≥12由几何概型得到输出的x不小于103的概率为P==故答案为:.12.公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的,设男子身高X服从正态分布N(单位:cm),参考以下概率P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,则车门的高度(单位:cm)至少应设计为184cm.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】利用利用P(μ﹣2σ<X≤μ+2σ)=0.9544,男子身高X服从正态分布N,结合公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的,可得结论.【解答】解:∵公共汽车车门高度是按男子与车门碰头机会不高于0.0228来设计的,∴利用P(μ﹣2σ<X≤μ+2σ)=0.9544,男子身高X服从正态分布N(单位:cm),可得车门的高度(单位:cm)至少应设计为170+2×7=184cm.故答案为:184cm.13.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9且(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,则实数m的值是﹣3或1.【考点】二项式系数的性质.【分析】分别令x=﹣2,和x=0,求得(a0+a2+…+a8)﹣(a1+a3+…+a9)=m9,a0+a2+…+a8+a1+a3+…+a9=(2+m)9,再根据(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,求得m 的值.【解答】解:在(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9中,令x=﹣2可得a0﹣a1+a2﹣a3+…+a8﹣a9=m9,即[(a0+a2+…+a8)﹣(a1+a3+…+a9)]=m9,令x=0,可得a0+a2+…+a8+a1+a3+…+a9=(2+m)9,∵(a0+a2+…+a8)2﹣(a1+a3+…+a9)2=39,∴(a0+a2+…+a8+a1+a3+…+a9)[(a0+a2+…+a8)﹣(a1+a3+…+a9)]=39,∴(2+m)9•m9=(2m+m2)9=39,可得2m+m2=3,解得m=1,或m=﹣3故答案为:﹣3或1.14.在△ABC中,E为AC上一点,且=4,P为BE上一点,且满足=m+n(m>0,n>0),则+取最小值时,向量的模为.【考点】基本不等式在最值问题中的应用;平面向量的基本定理及其意义.【分析】根据平面向量基本定理求出m,n关系,进而确定+取最小值时m,n的值,代入求的模【解答】解:∵=4,∴=m+n=m+4n又∵P为BE上一点,∴不妨设=λ(0<λ<1)∴=+=+λ=+λ(﹣)=(1﹣λ)+λ∴m+4n=(1﹣λ)+λ∵,不共线∴m+4n=1﹣λ+λ=1∴+=(+)×1=(+)×(m+4n)=5+4+≥5+2=9(m>0,n>0)当且仅当=即m=2n时等号成立又∵m+4n=1∴m=,n=∴||==故答案为15.已知命题:①设随机变量ξ~N(0,1),若P(ξ≥2)=P(﹣2<ξ<0)=﹣p;②命题“∃x∈R,x2+x+1<0”的否定是“∀x∈R,x2+x+1<0”;③在△ABC中,A>B的充要条件是sinA<sinB;④若不等式|x+3|+|x﹣2|≥2m+1恒成立,则m的取值范围是(﹣∞,2);⑤若对于任意的n∈N*,n2+(a﹣4)n+3+a≥0恒成立,则实数a的取值范围是[,+∞].以上命题中正确的是①⑤(填写所有正确命题的序号).【考点】命题的真假判断与应用.【分析】①利用概率密度曲线图可判断真假;②存在性命题的否定是结论要否;③在三角形中充分考虑角度的正弦变化情况;④含绝对值不等式恒成立问题的转化;⑤构造新函数利用单调性求解.【解答】解:①由密度曲线可知,P(ξ≥2)+P(0≤ξ≤2)=,所以P(0≤ξ≤2)=﹣p,而P(﹣2<ξ<0)=P(0≤ξ≤2)=﹣p;故①对;②命题“∃x∈R,x2+x+1<0”的否定是“∀x∈R,x2+x+1≥0”故②错;③在△ABC中,A>B,例如A=120°,B=60°,但是sinA=sinB.故③错;④不等式|x+3|+|x﹣2|≥2m+1恒成立,则2m+1≤(|x+3|+|x﹣2|)min=|x+3﹣x+2|=5,所以2m+1≤5,解得m≤2.故④错;⑤n2+(a﹣4)n+3+a≥0恒成立⇔(n+1)a≥﹣n2+4n﹣3=﹣(n+1)2+6(n+1)﹣8恒成立,∵n∈N*,∴a≥﹣(n+1)﹣+6恒成立,∴a≥[﹣(n+1)﹣]max+6恒成立;∵双钩函数g(n)=(n+1)+在[1,2﹣1]上单调递减,在[2﹣1,+∞)上单调递增,又n∈N*,g(1)=2+4=6,g(2)=3+<g(3)=6,∴g(n)min=g(2)=,[﹣(n+1)﹣]max=﹣g(n)min=﹣,∴m>﹣+6=,∴实数a的取值范围是[,+∞),故⑤对.故答案为:①⑤三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.设函数,其中0<w<2.(Ⅰ)若x=是函数f(x)的一条对称轴,求函数周期T;(Ⅱ)若函数f(x)在区间上为增函数,求w的最大值.【考点】两角和与差的正弦函数;正弦函数的单调性.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的图象的对称性,求得w的值,可得函数的周期.(Ⅱ)由正弦函数的单调性求得f(x)的增区间,再利用函数f(x)在区间上为增函数,求得w的最大值.【解答】解:函数=4(coswxcos﹣sinwxsin)sinwx﹣cos2wx+1=sin2wx.(Ⅰ)由x=是函数f(x)的一条对称轴,可得2w•=kπ+,k∈Z,∴w=2k+1,再结合0<w<2,求得w=1,f(x)=sin2x,故T==π.(Ⅱ)令2kπ﹣≤2wx≤kπ+,求得﹣≤x≤+,k∈Z,再根据函数f(x)在区间上为增函数,可得﹣≤,且≥,求得0<w≤,即w得最大值为.17.如图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求n名毕业生中男女各几人(男女人数均至少两人)?(Ⅲ)在(Ⅱ)的结论下,设随机变量ξ表示n名毕业生中分配往乙学校的三名学生中男生的人数,求ξ的分布列和数学期望.【考点】离散型随机变量及其分布列;频率分布直方图;离散型随机变量的期望与方差.【分析】(Ⅰ)先求出其不意80~90分数段的毕业生的频率,再求出毕业生的总人数,由此利用90~95分数段内的人数频率,从而能求出90~95分数段内的人数.(Ⅱ)90:95分数段内共6名毕业生,设其中男生z名,女生为6﹣x名设分配往甲校的两名毕业生中至少有一名男毕业生为事件A,由P(A)=1﹣=,能求出6名毕业生中有男生2人,女生4人.(Ⅲ)ξ表示n名毕业生中分配往甲学校的两名学生中男生的人数,ξ的取值可以为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和随机变量ξ数学期望.【解答】解:(Ⅰ)80~90分数段的毕业生的频率为:p1=(0.04+0.03)×5=0.35,此分数段的学员总数为21人,∴毕业生的总人数N为N==60,90~95分数段内的人数频率为:p2=1﹣(0.01+0.04+0.05+0.04+0.03+0.01)×5=0.1,∴90~95分数段内的人数n=60×0.1=6.(Ⅱ)90:95分数段内共6名毕业生,设其中男生z名,女生为6﹣x名设分配往甲校的两名毕业生中至少有一名男毕业生为事件A,则P(A)=1﹣=,解得x=2或x=9(舍去),即6名毕业生中有男生2人,女生4人.…(Ⅲ)ξ表示n名毕业生中分配往甲学校的两名学生中男生的人数,所以ξ的取值可以为0,1,2,当ξ=0时,P(ξ=0)==,当ξ=1时,P(ξ=1)==,当ξ=2时,P(ξ=2)==,所以ξ的分布列为所以随机变量ξ数学期望为Eξ==1.…18.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PE=2BE.(I)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(I)由PC⊥底面ABCD,可得PC⊥AC.由AB=2,AD=CD=1,利用勾股定理的逆定理可得:AC⊥BC,因此AC⊥平面PBC,即可证明平面EAC⊥平面PBC.(II)取AB的中点F,两角CF,则CF⊥AB,以点C为原点,建立空间直角坐标系,可得设P(0,0,a)(a>0),可取=(1,﹣1,0),利用向量垂直与数量积的关系可得:为平面PAC的法向量.设=(x,y,z)为平面EAC的法向量,则,可得,由于二面角P﹣AC﹣E的余弦值为,可得==,解得a=4.设直线PA与平面EAC所成角为θ,则sinθ=||=即可得出.【解答】(I)证明:∵PC⊥底面ABCD,AC⊂平面ABCD,∴PC⊥AC.∵AB=2,AD=CD=1,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,又AC⊂平面EAC,∴平面EAC⊥平面PBC.(II)解:取AB的中点F,两角CF,则CF⊥AB,以点C为原点,建立空间直角坐标系,可得:C(0,0,0),A(1,1,0),B(1,﹣1,0),设P(0,0,a)(a>0),则E,=(1,1,0),=(0,0,a),=,取=(1,﹣1,0),则=0,∴为平面PAC的法向量.设=(x,y,z)为平面EAC的法向量,则,即,取=(a,﹣a,﹣4),∵二面角P﹣AC﹣E的余弦值为,∴===,解得a=4,∴=(4,﹣4,﹣4),=(1,1,﹣4).设直线PA与平面EAC所成角为θ,则sinθ=||===,∴直线PA与平面EAC所成角的正弦值为.19.已知数列{a n}满足:a1=1,a2=2,且a n+1=2a n+3a n(n≥2,n∈N+).﹣1(Ⅰ)设b n=a n+1+a n(n∈N+),求证{b n}是等比数列;(Ⅱ)(i)求数列{a n}的通项公式;(ii)求证:对于任意n∈N+都有成立.【考点】数列的求和;等比关系的确定;数列递推式.【分析】(Ⅰ)利用已知条件对已知的数列关系式进行恒等变形,进一步的出数列是等比数列.(Ⅱ)(i)根据(Ⅰ)的结论进一步利用恒等变换,求出数列的通项公式.(ii)首先分奇数和偶数分别写出通项公式,进一步利用放缩法进行证明.【解答】证明:(Ⅰ)已知数列{a n}满足:a1=1,a2=2,且a n+1=2a n+3a n﹣1(n≥2,n∈N+).则:a n+1+a n=3(a n+a n﹣1)即:,所以:,数列{b n}是等比数列.(Ⅱ)(i)由于数列{b n}是等比数列.则:,整理得:所以:则:是以()为首项,﹣1为公比的等比数列.所以:求得:(ii)由于:,所以:,则:(1)当n为奇数时,,当n为偶数时,,所以:=…++,所以:n∈k时,对任意的k都有恒成立.20.已知A、B为抛物线C:y2=4x上的两个动点,点A在第一象限,点B在第四象限,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x=4的交点,求△PCD面积的最小值.【考点】抛物线的简单性质.【分析】(Ⅰ)利用直线l1、l2与抛物线C相切,求出l1、l2方程,可得点P坐标,再求出AB的方程,即可得出结论;(Ⅱ)求出C,D的坐标,可得|CD|,表示出△PCD面积,利用导数法可求最小值.【解答】(Ⅰ)证明:设,(y1>0>y2).易知l1斜率存在,设为k1,则l1方程为.由得,…①由直线l1与抛物线C相切,知.于是,,l1方程为.同理,l2方程为.联立l1、l2方程可得点P坐标为,∵,AB方程为,AB过抛物线C的焦点F(1,0).∴﹣y1=(1﹣),∴y1y2=﹣4,∴动点P在一条定直线x=﹣1上;(Ⅱ)解:由(Ⅰ)知,C,D的坐标分别为(4,),D(4,),∴.∴.设(t>0),|y1﹣y2|=m,由知,m≥2t,当且仅当y1+y2=0时等号成立.∴.设,则.∴时,f'(t)<0;时,f'(t)>0.f(t)在区间上为减函数;在区间上为增函数.∴时,f(t)取最小值.∴当y1+y2=0,,即,时,△PCD面积取最小值.…21.设函数f(x)=lnx+(a为常数)(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线与x轴平行,求实数a的值;(Ⅱ)若函数f(x)在(e,+∞)内有极值.求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,若x1∈(0,1),x2∈(1,+∞).求证:f(x2)﹣f(x1)>e+2﹣(注:e是自然对数的底数).【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)确定函数的定义域,求导数,利用曲线y=f(x)在点(2,f(2))处的切线与x轴平行,即可求实数a的值;(Ⅱ)若函数f(x)在(e,+∞)内有极值,f′(x)=0在(e,+∞)内有不等的实根,令φ(x)=x2﹣(2+a)x+1=(x﹣α)(x﹣β),可得αβ=1,β>e.即可求实数a的取值范围;(Ⅲ)确定函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减,可得f(x2)﹣f(x1)≥f(β)﹣f(α),再构造函数,即可证明结论.【解答】(Ⅰ)解:函数f(x)的定义域为(0,1)∪(1,+∞),由f(x)=lnx+得f′(x)=﹣,∵曲线y=f(x)在点(2,f(2))处的切线与x轴平行,∴f′(2)=0,∴﹣a=0,∴a=;(Ⅱ)解:∵f′(x)=,函数f(x)在(e,+∞)内有极值,∴f′(x)=0在(e,+∞)内有不等的实根,令φ(x)=x2﹣(2+a)x+1=(x﹣α)(x﹣β),可得αβ=1.不妨设β>α,则α∈(0,1),β∈(1,+∞),∴β>e.∴φ(0)=1>0,∴φ(e)=e2﹣(2+a)e+1<0,∴a>e+﹣2,即实数a的取值范围是(e+﹣2,+∞);(Ⅲ)证明:由上知,f′(x)>0,可得0<x<α或x>β;f′(x)<0,可得α<x<1或1<x<β,∴函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减,由x1∈(0,1),得f(x1)≤f(α)=lnα+,x2∈(1,+∞),得f(x2)≥f(β)=lnβ+,∴f(x2)﹣f(x1)≥f(β)﹣f(α)又αβ=1,α+β=a+2,β>e∴f(β)﹣f(α)=lnβ+﹣(lnα+)=2lnβ+β﹣,令H(β)=2lnβ+β﹣(β>e),则H′(β)=(+1)2>0,∴H(β)在(e,+∞)上单调递增,∴H(β)>H(e)=e+2﹣,∴f(x2)﹣f(x1)>e+2﹣.。