整式混合运算
- 格式:doc
- 大小:64.50 KB
- 文档页数:3
填空题(共42小题)1.若a2+a+1=2,则(a﹣5)(6+a)=﹣29.考点:整式的混合运算—化简求值。
专题:整体思想。
分析:先将(a﹣5)(6+a)去括号化简,然后与a2+a+1=2对照,可以发现两代数式中都有a2+a,因此可先求出a2+a的值,然后整体代入即可求出所求的结果.解答:解:∵a2+a+1=2,∴a2+a=1,∵(a﹣5)(6+a)=a2+a﹣30,将a2+a=1代入上式得:∴原式=1﹣30=﹣29.故填﹣29.点评:本题考查了多项式的乘法,已知条件和所求代数式都出现a2+a,然后利用“整体代入法”求代数式的值.2.已知m+n=3,mn=﹣2,则(m﹣2)(n﹣2)=﹣4.考点:整式的混合运算—化简求值。
专题:整体思想。
分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积转换成以m+n,mn为整体的形式,代入求值.解答:解:由题意得(m﹣2)(n﹣2),=mn﹣2(m+n)+4,=﹣2﹣2×3+4,=﹣4.点评:本题考查了多项式乘多项式法则,展开后整理成已知条件的形式然后代入计算即可.3.定义运算“*”如下:当a≥b时,a*b=b2;当a<b时,a*b=a.则当x=2时,(1*x)•x﹣(3*x)的值为x﹣x2.考点:整式的混合运算—化简求值。
专题:新定义。
分析:本题可根据x的取值,判断a*b等于a或者b2,由此可解出本题.解答:解:x=2>1,∴(1*x)•x﹣(3*x)=x﹣x2.故本题答案为:x﹣x2.点评:本题考查了整式的化简,要注意将“*”前后的数进行比较,不要看错不等式方向得出错误的答案.4.已知a=3,b=7,c=5,(a﹣b+c)2•(b﹣a﹣c)4•(a+c﹣b)•(b﹣c﹣a)3的值是﹣1.考点:整式的混合运算—化简求值。
分析:先转化为同底数的幂相乘,再根据同底数幂相乘,底数不变指数相加化简,然后代入数据计算即可.解答:解:(a﹣b+c)2•(b﹣a﹣c)4•(a+c﹣b)•(b﹣c﹣a)3,=(a﹣b+c)2•[﹣(a+c﹣b)]4•(a+c﹣b)•[﹣(a+c﹣b)]3,=﹣(a﹣b+c)2+4+1+4,=﹣(3﹣7+5)11,=﹣1.点评:本题主要考查同底数幂相乘的性质,把算式转化成同底数幂是求解的关键.5.若n为正整数,且a2n=3,则(3a3n)2÷(27a4n)的值为1.考点:整式的混合运算—化简求值;幂的乘方与积的乘方。
整式混合运算的顺序整式混合运算的顺序是数学学习中重要的知识点,学好整式混合运算的顺序,可以帮助学生解决一些复杂的数学题目,提高数学的学习能力。
一、整式混合运算的概念整式混合运算指的是在一个整式中包含加、减、乘、除四种运算,这些运算的顺序必须按照一定的规则进行。
乘法和除法优先于加法和减法。
乘号和除号优先于加号和减号,也就是说,我们在进行整式混合运算时,必须先进行乘法和除法,然后再进行加法和减法。
二、进行整式混合运算的具体过程1、计算乘法和除法:在进行整式混合运算时,首先要计算乘法和除法。
乘法运算由左到右依次计算,而除法运算也是从左到右依次计算。
2、计算加法和减法:在乘法和除法运算完成之后,接下来就是计算加法和减法,加减法运算从左到右依次计算,也就是说先要计算离最左边的加减号最近的那个数,然后再计算离最左边的加减号第二近的数等等。
三、如何掌握整式混合运算的顺序1、多练习:在学习整式混合运算的顺序时,要多加练习,多积累一些实际的练习,熟练掌握运算的有关知识,可以通过水平测试、实务操作等模式来不断练习,加强自己的能力。
2、熟悉顺序:学习整式混合运算的顺序,要掌握其中的“乘除优先原则”,对乘法和除法在整式混合运算中的位置熟悉,在进行运算时,要记住乘法和除法先于加减法运算。
3、分析题目:当遇到一些整式混合运算的题目时,要仔细分析题目,看看整式中有多少乘除运算,有多少加减运算,以及这些运算的顺序,这样就可以更加清楚的按照一定的顺序来进行计算。
以上就是关于整式混合运算的顺序的基本知识,让学生能够更加清楚地掌握整式混合运算的顺序,以便在解决复杂的数学题目时发挥出最大的作用。
正确掌握整式混合运算的顺序,不仅有助于学生解决复杂的数学题目,而且还有助于培养学生的逻辑思维能力和思维独立性,从而提高学生的数学成绩。
(完整版)整式的混合运算专项练习99题(有答案有过程)整式的混合运算专项练习99题(有答案)(1)﹣(2x2y3)2?(xy)3(2)5x2(x+1)(x﹣1)(3)x(y﹣x)+(x+y)(x﹣y);(4)(a+2b)2+4ab3÷(﹣ab).(5)3(a2)3?(a3)2﹣(﹣a)2(a5)2(6)(5mn﹣2m+3n)+(﹣7m﹣7mn)(7)(x+2)2﹣(x+1)(x﹣1)(8)(x+2)2﹣(2x)2;(9)(2a+3b)2﹣4a (a+3b+1).(10)(﹣2xy2)2?3x2y÷(﹣x3y4)(11)(x+1)2+2(1﹣x)(12)(﹣a3)2?(﹣a2)3;(13)[(﹣a)(﹣b)2?a2b3c]2;(14);(15)(x3)2÷x2÷x+x3÷(﹣x)2?(﹣x2).(16)(﹣3x2)3?(﹣4y3)2÷(6x2y)3;(17)(﹣x﹣y)2﹣(2y﹣x)(x+2y)(18)(19)(a+b)(﹣b+a)+(a+b)2﹣2a(a+b)(20);(21)x(x+1)﹣(2x+1)(2x﹣3);(22)(2a+3b)2﹣(2a﹣3b)2.(23)2a2﹣a8÷a6;(24)(2﹣x)(2+x)+(x+4)(x﹣1)(25)(﹣2ab3)2+ab4?(﹣3ab2);(26)(2a+3)(2a﹣3)+(a﹣3)2.(27)12ab2(abc)4÷(﹣3a2b3c)÷[2(abc)3].(28)(﹣2x2)3÷(﹣x)2(29)(﹣2m﹣1)(3m﹣2)(30)2x?(﹣x2+3x)﹣3x2?(x+1).(31)3a?(﹣ab2)﹣(﹣3ab)2.(32)﹣3x?(2x2﹣x+4)(33)2x3?(﹣2xy)(﹣xy)3.(34)3(x2﹣2x+3)﹣3x (x+1)=0.(35)(3x+2)(3x+1)﹣(3x+1)2.(36)2a (a+b)﹣(a+b)2.(37)x(2x﹣7)+(3﹣2x)2.(38)(﹣3x2y)2÷(﹣3x3y2)(39)(a+2)2﹣(a+1)(a﹣1)(40)(a2)4÷a2(41).(42)a(ab2﹣4b)+4a3b÷a2;(43)(x﹣8y)(x﹣y).(44)(3x2y)3?(﹣5y);(45)[(x+y)2﹣y(2x+y)﹣4x]÷2x.(46)(2x+a)2﹣(2x﹣a)2(47)[(2x2)3﹣6x3(x3+2x2)]÷(﹣2x2)(48)(x﹣2)(x+2)﹣(x+1)(x﹣3)(49)(2a)3?b4÷12a3b2(50)(3x﹣1)(2x+3)﹣6x2.(51)(﹣6x2)2+(﹣3x2)?x﹣27x5÷(﹣9x2)(52)(﹣2y2)3+y?y5(53)(x+2)2﹣(x+1)(x﹣1)(54)(a+b)(a﹣b)+(a+b)2﹣a(2a+b)(55)(﹣a)2?(a2)2÷a3(56)(15x2y﹣10xy2)÷5xy.(57)[(2x2)3﹣6x3(x3+2x2+x)]÷(﹣x)4.(58)(x+1)2+2(1﹣x)﹣x2 (59)(12a3﹣6a2+3a)÷3a(60)5x2(x+1)(x﹣1)(61)(b﹣2a)2﹣4a(a﹣b)(62)(﹣3ab2)3(﹣4ab2)(63)(3a﹣2)(a﹣6)(64)(3a3b﹣9a2b2﹣21a2b3)÷(﹣3a2b)(65)(x+3)(x﹣2)﹣(x﹣2)2(66)(3x+4y)(3x﹣4y)(67)(x+3y)(2x﹣y)﹣y(5x+3y)(68)3(a5)2?(﹣a3)2﹣(2a3)2?(a2)5;(69)4xy+(x﹣2y)2+(x+3y)(3y﹣x)(70)﹣3x2y2?(﹣2xy)2.(71)(a﹣2b)2+(a+2b)(a﹣2b)(72).(73).(74)(﹣2xy2)3+(﹣3xy4)(﹣2x2y2)(75)(2x)3×(﹣3xy2)(76)(a+3b)(a﹣2b)﹣(2a﹣b)2.(77)(﹣2x2y)3+(3x2)2?(﹣x2)?y3.(78)(m2n)3?(﹣m4n)÷(﹣mn)2(79)(2a﹣1)2(2a+1)2(80)(x4y+6x3y2﹣x2y3)÷(3x2y)(81)(2x﹣3y+1)(2x+3y﹣1)(82)(﹣2x)(4x2﹣2x+1)(83)(6a3﹣4a2+2a)÷2a(84)(2x﹣y)(2x+y)﹣(x﹣3y)2(85)(4x2﹣2x3+6x)÷(﹣2x)﹣(2x﹣1)2.(86).(87)[x(xy2+2xy)﹣y(x2y﹣6x2y2)]÷2x2y.(88)x6÷(﹣x)2﹣(x)2?27x2.(89)(2x+y)(2x﹣3y)+4y(2x+y)(90)(m+2)(m﹣2)+(m ﹣1)(m+5)(91)[(x+y)2﹣y(2x+y)﹣8x]÷2x.(92)(2xy2﹣6xy)÷2x+y(y+2)(93)(27a3﹣15a2+6a)÷(3a)(94)x(x+2y)﹣(x+1)2+2x.(95)(x2y3)2÷(x3y4)?(﹣4xy)(96)a3?a3+(﹣2a3)2﹣(﹣a2)3.(97)(2x+1)(x+3)﹣6(x2+x﹣1);(99)[(2x+y)2﹣y(y+2x)﹣4x]÷2x.(98)[x(x2y2﹣xy)﹣y(x2﹣x3y)]+3x2y.整式混合运算99题参考答案:(1)﹣(2x2y3)2?(xy)3=﹣4x4y6?x3y3=﹣4x7y9;(2)5x2(x+1)(x﹣1),=5x2(x2﹣1),=5x4﹣5x2.(3)x(y﹣x)+(x+y)(x﹣y),=xy﹣x2+x2﹣y2,=xy﹣y2;(4)(a+2b)2+4ab3÷(﹣ab),=a2+4ab+4b2﹣4b2,=a2+4ab(5)3(a2)3?(a3)2﹣(﹣a)2(a5)2,=3a6?a6﹣a2?a10,=3a12﹣a12,=2a12.(6)(5mn﹣2m+3n)+(﹣7m﹣7mn),=5mn﹣2m+3n﹣7m﹣7mn,=(5﹣7)mn+(﹣2+7)m+3n,=3n﹣9m﹣2mn;(7)(x+2)2﹣(x+1)(x﹣1),=x2+4x+4﹣x2+x﹣x+1,=4x+5.(8)(x+2)2﹣(2x)2,=x2+4x+4﹣4x2,=﹣3x2+4x+4;(9)(2a+3b)2﹣4a(a+3b+1),=4a2+12ab+9b2﹣4a2﹣12ab﹣4a,=9b2﹣4a.(10)(﹣2xy2)2?3x2y÷(﹣x3y4),=4x2y4?3x2y÷(﹣x3y4),=12x4y5÷(﹣x3y4),=﹣12xy(11)(x+1)2+2(1﹣x),=(x+1)2+2(1﹣x),=x2+2x+1+2﹣2x,=x2+3.(12)(﹣a3)2?(﹣a2)3,=a6?(﹣a6),=﹣a12;(13)[(﹣a)(﹣b)2?a2b3c]2,=(﹣a3b5c)2,=a6b10c2;(14),=(9××)3,=23,=8;(15)(x3)2÷x2÷x+x3÷(﹣x)2?(﹣x2),=x6÷x2÷x+x3÷x2?(﹣x2),=x3﹣x3,=0.(16)原式=﹣27x6?(16y6)÷(216x6y3)=﹣2y3;(17)原式=(﹣x﹣y)2﹣(2y﹣x)(x+2y),=x2+2xy+y2﹣(4y2﹣x2),=x2+2xy+y2﹣4y2+x2,=2xy﹣3y2(18)=[3x2y ÷(﹣xy)]+[﹣xy2÷(﹣xy)]+[xy ÷(﹣xy)],=﹣6x+2y﹣1;(19)(a+b)(﹣b+a)+(a+b)2﹣2a(a+b),=(a+b)(a﹣b+a+b﹣2a),=0(20)原式=[2x(3x6y6)?y2]÷9x7y8,=(6x7y6?y2)÷9x7y8,=2x7y8÷9x7y8,=;(21)原式=x2+x﹣(4x2﹣6x+2x﹣3),=x2+x﹣4x2+6x﹣2x+3,=﹣3x2+5x+3;(22)原式=(2a+3b+2a﹣3b)(2a+3b﹣2a+3b),=4a?9b,=36ab(23)2a2﹣a8÷a6,=2a2﹣a2,=a2;(24)(2﹣x)(2+x)+(x+4)(x﹣1),=4﹣x2+x2+3x﹣4,=3x.(25)(﹣2ab3)2+ab4?(﹣3ab2),=4a2b6﹣3a2b6,=a2b6;(26)(2a+3)(2a﹣3)+(a﹣3)2,=4a2﹣9+a2﹣6a+9,=5a2﹣6a(27)原式=12a5b6c4÷(﹣3a2b3c)÷2a3b3c3 =﹣4a3b3c3÷2a3b3c3=﹣2(28)原式=﹣8x6÷x2=﹣8x4;(29)原式=﹣6m2+4m﹣3m+2=﹣6m2+m+2 (30)原式=﹣2x3+6x2﹣3x3﹣3x2=﹣5x3+3x2.(31)3a?(﹣ab2)﹣(﹣3ab)2﹣12a2b2,=﹣3a2b2﹣9a2b2﹣12a2b2,=﹣24a2b2(32)原式=﹣6x3+3x2﹣12x;(33)原式=2x3?(﹣2xy)(﹣x3y3)=x7y4(34)3(x2﹣2x+3)﹣3x(x+1)=0,∴3x2﹣6x+9﹣3x2﹣3x=0,∴﹣9x=﹣9,∴x=1(35)原式=9x2+3x+6x+2﹣9x2﹣6x﹣1=3x﹣1.(36)2a(a+b)﹣(a+b)2.=(a+b)(2a﹣a﹣b)=(a+b)(a﹣b)(37).原式=2x2﹣7x+9﹣12x+4x2=6x2﹣19x+9.(38)(﹣3x2y)2÷(﹣3x3y2),=9x4y2÷(﹣3x3y2),=﹣3x;(39)(a+2)2﹣(a+1)(a﹣1),=a2+4a+4﹣(a2﹣1),=a2+4a+4﹣a2+1,=4a+5(40)原式=a8÷a2=a6;(41)原式=a2b﹣6ab2+6ab2=a2b.(42)原式=a2b2﹣4ab+4ab=a2b2;(43)原式=x2﹣xy﹣8xy+8y2=x2﹣9xy+8y2(44)原式=27x6y3?(﹣5y)=﹣135x6y4;(45)原式=(x2+y2+2xy﹣2xy ﹣y2﹣4x)÷2x =(x2﹣4x)÷2x=x﹣2(46)原式=[(2x+a)+(2x﹣a)][(2x+a)﹣(2x ﹣a)] =(2x+a+2x﹣a)(2x+a﹣2x+a)=4x?2a=8ax;(47)原式=(8x6﹣6x6﹣12x5)÷(﹣2x2)=2(x6﹣6x5)÷(﹣2x2)=﹣x4+6x3=6x3﹣x4;(48)原式=x2﹣4﹣(x2﹣2x﹣3)=x2﹣4﹣x2+2x+3=2x﹣1(49)原式=8a3?b4÷12a3b2,=b2.(50)原式=(6x2+9x﹣2x﹣3)﹣6x2=6x2+9x﹣2x﹣3﹣6x2=7x﹣3(51)(﹣6x2)2+(﹣3x2)?x﹣27x5÷(﹣9x2)=36x4﹣3x3+3x3=36x4(52)(﹣2y2)3+y?y5=﹣8y6+y6=﹣7y6;(53)(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5.(54)原式=a2﹣b2+a2+2ab+b2﹣2a2﹣ab=ab.(55)(﹣a)2?(a2)2÷a3=a2?a4÷a3=a6÷a3=a3;(56)(15x2y﹣10xy2)÷5xy=3x﹣2y(57)原式=[8x6﹣6x6﹣12x5﹣6x4]÷x4=[2x6﹣12x5﹣6x4]÷x4=2x2﹣12x﹣6(58)原式=(x+1)2+2(1﹣x)﹣x2=x2+2x+1+2﹣2x﹣x2=3.(59)(12a3﹣6a2+3a)÷3a=4a2﹣2a+1;(60)5x2(x+1)(x﹣1)=5x2(x2﹣1)=5x4﹣5x2.(61)原式=b2﹣4ab+4a2﹣4a2+4ab=b2(62)原式=(﹣27a3b6)(﹣4ab2)=108a4b8(63)原式=3a2﹣18a﹣2a+12=3a2﹣20a+12(64)化成单项式除以单项式﹣a+3b+7b2(65)原式=x2﹣2x+3x﹣6﹣(x2﹣4x+4)=x2+x﹣6﹣x2+4x ﹣4=5x﹣10;(66)原式=9x2﹣16y2;(67)原式=2x2﹣xy+6xy﹣3y2﹣5xy﹣3y2=2x2﹣6y2.(68)原式=3a10?a6﹣4a6?a10=3a16﹣4a16=﹣a16;(69)原式=4xy+x2﹣4xy+4y4+9y2﹣x2=4y4+9y2.(70)原式=﹣3x2y2?4x2y2=﹣12x4y4;(71)原式=a2﹣4ab+4b2+a2﹣4b2=2a2﹣4ab(72)原式=a2﹣4b2﹣2ab+4b2=a2﹣2ab(73)原式=10x3﹣2x3=8x3(74)原式=﹣8x3y6+6x3y6=﹣2x3y6.(75)原式=8x3×(﹣3xy2)=﹣24x4y2;(76)原式=a2﹣2ab+3ab﹣6b2﹣(4a2﹣4ab+b2)=a2﹣2ab+3ab﹣6b2﹣4a2+4ab﹣b2=﹣3a2+5ab﹣7b2(77)原式=﹣8x6y3+9x4?(﹣x2)?y3=﹣8x6y3﹣9x6y3=﹣17x6y3(78)原式=﹣m10n4÷m2n2=﹣m8n2;(79)原式=[(2a﹣1)(2a+1)]2=16a4﹣8a2+1;(80)原式=x2+2xy ﹣y2;(81)原式=[2x﹣(3y﹣1)][2x+(3y﹣1)]=4x2﹣9y2+6y ﹣1(82)(﹣2x)(4x2﹣2x+1),=﹣8x3+4x2﹣2x;(83)(6a3﹣4a2+2a)÷2a,=3a2﹣2a+1.(84)(2x﹣y)(2x+y)﹣(x﹣3y)2,=4x2﹣y2﹣x2+6xy﹣9y2,=3x2+6xy﹣10y2.(85)原式=﹣2x+x2﹣3﹣(2x﹣1)2=﹣2x+x2﹣3﹣(4x2﹣4x+1)=﹣2x+x2﹣3﹣4x2+4x﹣1=x2﹣4x2﹣2x+4x﹣3﹣1=﹣3x2+2x﹣4(86)原式=(9m2+6mn+n2﹣6mn﹣n2)÷2m=9m2÷2m=m(87)原式=(x2y2+2x2y﹣x2y2+6x2y3)÷2x2y=(2x2y+6x2y3)÷2x2y=1+3y2(88)原式=x6÷x2﹣x2?27x2=x4﹣3x4=﹣2x4.(89)原式=(2x+y)(2x﹣3y+4y)=(2x+y)(2x+y)=(2x+y)2(90)原式=m2﹣4+m2+5m﹣m﹣5=2m2+4m﹣9;(91)原式=[x2+2xy+y2﹣(2xy+y2)﹣8x]÷2x =(x2+2xy+y2﹣2xy﹣y2﹣8x)÷2x=(x2﹣8x)÷2x=x﹣4.(92).原式=2xy2÷2x﹣6xy÷2x+y2+2y=y2﹣3y+y2+2y=2y2﹣y(93)原式=9a2﹣5a+2;(94)原式=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1;(95)原式=x4y6÷(x3y4)?(﹣4xy)=x4y6××(﹣4xy)=×(﹣4xy)=﹣;(96)原式=a3+3+4a6+a6=a6+4a6+a6=6a6(97)(2x+1)(x+3)﹣6(x2+x﹣1)=2x2+6x+x+3﹣6x2﹣6x+6=﹣4x2+x+9;(98)[x(x2y2﹣xy)﹣y(x2﹣x3y)]+3x2y =[x3y2﹣x2y﹣x2y+x3y2]+3x2y=2x3y2﹣2x2y+3x2y=2x3y2+x2y(99)原式=[(2x+y)(2x+y﹣y)﹣4x]÷2x =[(2x+y)×2x ﹣4x]÷2x=2x(2x+y﹣2)÷2x=2x+y﹣2.。
第1页共6页整式的混合运算(习题)
例题示范
例1:先化简再求值:2(32)(32)5()(2)x y x
y x x y x y ,其中13x ,1y .【过程书写】
解:原式22222(94)(55)(44)x
y x xy x xy y 22222945544x
y x xy x xy y 295xy y 当1
3
x ,1y 时,原式2
19
(1)5(1)3
352例2:若2m n x ,2n x ,则m n x =_______________.
【思路分析】①观察所求式子,根据同底数幂的乘法,m n m n x
x x ,我们需要求出m x ,n x 的值;
②观察已知条件,由2m n m n x
x x ,2n x ,可求出4m x ;③代入,求得8m n x
x ,即8m n x .例3:若249x mx 是一个完全平方式,则m=________.
【思路分析】
①完全平方公式是由首平方,尾平方,二倍的乘积组成,观察式子结构,首尾
两项是平方项.
②将24x ,9写成平方的形式224(2)x
x ,293,故mx 应为二倍的乘积.③对比完全平方公式的结构,完全平方公式有两个.222
()2a b a ab b 因此223mx x ,所以12m .
巩固练习
1.计算:
①2(3)(3)(3)23a b a b a b a b ;。
整式的混合运算在数学中,整式(或称多项式)是由数字、变量和运算符号(如加号、减号和乘号)组成的代数表达式。
整式的混合运算指的是对整式进行不同类型的运算,包括加法、减法、乘法和化简等操作。
本文将介绍整式的混合运算及其相关概念。
一、加法运算整式的加法运算是指将两个或多个整式相加得到一个新的整式。
在进行加法运算时,需要注意整式中各项的次数和系数。
具体的步骤如下:1. 检查整式中各项的次数是否相同,如果不同,则需要先进行合并同类项。
合并同类项是将具有相同变量的幂次的项合并,并将系数相加。
例如,对于表达式2x^2 + 3x + 5x^2 - 2x + 4,合并同类项后得到7x^2 + x + 4。
2. 合并同类项后,可直接将系数相加得到最终的整式。
继续以上例,最终结果为7x^2 + x + 4。
二、减法运算整式的减法运算类似于加法运算,只是在合并同类项时需要注意减去被减数的系数。
具体的步骤如下:1. 将减数的符号取反,即将减数中各项的系数变为相反数。
2. 将得到的相反数减数和被减数进行加法运算,得出最终的整式。
例如,对于表达式3x^2 + 4x + 2 - (2x^2 + 3x + 1),将减数中各项的系数取反得到-2x^2 - 3x - 1,然后将两个整式进行加法运算,得出最终结果为x^2 + x + 1。
三、乘法运算整式的乘法运算是指将两个或多个整式相乘得到一个新的整式。
在进行乘法运算时,需要将每个整式中的每一项与另一个整式中的每一项进行乘法,然后将结果合并同类项并进行化简。
具体的步骤如下:1. 将第一个整式中的每一项与第二个整式中的每一项进行乘法。
例如,对于表达式(2x + 3)(x - 1),将2x与x进行乘法得到2x^2,2x与-1进行乘法得到-2x,3与x进行乘法得到3x,3与-1进行乘法得到-3。
2. 将得到的结果进行合并同类项。
例如,合并同类项后得到2x^2 - 2x + 3x - 3。
3. 化简合并同类项后得到的整式。
初中数学整式的混合运算—化简求值(含答案)1.求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.考点:整式的混合运算—化简求值。
分析:先去括号,然后合并同类项,在将x的值代入即可得出答案.解答:解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x,将x=代入得:原式=0.故答案为:0.点评:本题考查了整式的混合运算化简求值,是比较热点的一类题目,但难度不大,要注意细心运算.2.先化简,再求值:(1)a(a﹣1)﹣(a﹣1)(a+1),其中.(2)[(2a+b)2+(2a+b)(b﹣2a)﹣6ab]÷2b,且|a+1|+=0.考点:整式的混合运算—化简求值;非负数的性质:偶次方;非负数的性质:算术平方根。
专题:计算题。
分析:(1)先将代数式化简,然后将a的值代入计算;(2)先将代数式化简,然后将a、b的值代入计算.解答:解:(1)a(a﹣1)﹣(a﹣1)(a+1)=a2﹣a﹣a2+1=1﹣a将代入上式中计算得,原式=a+1=+1+1=+2(2)[(2a+b)2+(2a+b)(b﹣2a)﹣6ab]÷2b=(4a2+4ab+b2﹣4a2+2ab﹣2ab+b2﹣6ab)÷2b=(2b2﹣2ab)÷2b=2b(b﹣a)÷2b=b﹣a由|a+1|+=0可得,a+1=0,b﹣3=0,解得,a=﹣1,b=3,将他们代入(b﹣a)中计算得,b﹣a=3﹣(﹣1)=4点评:这两题主要题考查的是整式的混合运算,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.3.化简求值:(a+1)2+a(a﹣2),其中.考点:整式的混合运算—化简求值。
专题:计算题。
分析:先按照完全平方公式、单项式乘以多项式的法则展开,再合并,最后把a的值代入计算即可.解答:解:原式=a2+2a+1+a2﹣2a=2a2+1,当a=时,原式=2×()2+1=6+1=7.点评:本题考查了整式的化简求值,解题的关键是公式的使用、合并同类项.4.,其中x+y=3.考点:整式的混合运算—化简求值。
整式的混合运算专练学校:___________姓名:___________班级:___________考号:___________一、解答题1.先化简,再求值:(1)()()33232222y y y y -÷,其中1y =;(2)()()()()()222222x y x y x y x xy x ⎡⎤-+-+-+÷-⎣⎦,其中x =4y =. 【答案】(1)72y -,2-;(2)4x y -+,19. 【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算得到最简结果,把y 的值代入计算即可求出值;(2)原式利用平方差公式,完全平方公式,以及多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值. 【详解】解:(1)()()33232222y y y y -÷ 792282y y y =-÷ 7724y y =-72y =-,当1y =时,原式7212=-⨯=-;(2)()()()()()222222x y x y x y x xy x ⎡⎤-+-+-+÷-⎣⎦()()222222442x xy y x y x xy x =-++---÷-()()24x xy x =-÷- 4x y =-+,当x =4y =时,原式4419=⨯=. 【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. m n 2m n +(2)先化简,再求值:22(3)(24)(2)x y x x y x y ⎡⎤---+÷-⎣⎦,其中1x =,2y =.【答案】(1)18;(2)92x y -,-8 【分析】(1)逆用同底数幂的乘法法则和幂的乘方法则计算;(2)先把中括号里去括号合并同类项,再算除法,然后把1x =,2y =代入计算; 【详解】解:(1)因为=2m x ,=3n x , 所以=2m x ,29n x =, 所以218m n x x ⋅=, 所以218m n x +=;(2)原式()22226924(2)x xy y x xy x y =-+-++÷-()229(2)xy y y =-+÷-22(2)9(2)xy y y y =-÷-+÷- 92x y =-, 当1x =,2y =时, 原式9122=-⨯19=-8=-.【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 3.计算:()()()222x y x y x y x +++-- 【答案】2xy 【分析】先根据完全平方公式计算,再合并同类项即可 【详解】=2222222x xy y x y x +++-- =2xy . 【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a ±b )2=a 2±2ab +b 2;平方差公式是(a +b )(a -b )=a 2-b 2. 4.计算下列各题(1)()222(2)x y xy -⋅- (2)24(1)(25)(25)x x x +-+-【答案】(1)538x y -;(2)8x 29+. 【分析】(1)先进行积的乘方计算,再计算乘法即可;(2)先分别利用完全平方公式公式和平方差公式计算,在进行合并同类项即可. 【详解】解:(1)()222(2)x y xy -⋅-42=4(2)x y xy ⋅- 53=8x y -;(2)24(1)(25)(25)x x x +-+- 22=4(1)(4225)x x x +--+22=444825x x x -+++=829x +.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.先化简,再求值:(()3m m m m --,其中1m =.【答案】32m -;1. 【分析】根据题意利用平方差公式和整式乘法运算进行化简,进而代入1m =利用实数的运算法则进行计算即可. 【详解】22=--+m m m23=-32m把1m-=-=.m=代入可得:321)21【点睛】本题考查含算术平方根的整式化简,熟练掌握平方差公式和整式乘法运算法则以及算术平方根性质是解题的关键.6.计算:(1)x(x﹣2)﹣(x+2)(x﹣2),其中x=12(2)(2x+y)(2x﹣y)+4(x+y)2(3)(a﹣3)2﹣a(a+8)(4)(x﹣2)2﹣x(x+4)【答案】(1)﹣2x+4,3(2)8x2+8xy+3y2(3)﹣14a+9(4)﹣8x+4【分析】(1)先计算乘法,再合并即可求解;(2)先利用平方差公式和完全平方公式计算,再合并即可求解;(3)先计算乘法,再合并即可求解;(4)先计算乘法,再合并即可求解.(1)解:原式=x2﹣2x﹣(x2﹣4)=x2﹣2x﹣x2+4=﹣2x+4,时,原式=﹣1+4=3.当x=12解:(2x+y)(2x﹣y)+4(x+y)2=4x2﹣y2+4(x2+2xy+y2)=4x2﹣y2+4x2+8xy+4y2=8x2+8xy+3y2.(3)(a﹣3)2﹣a(a+8)=a2﹣6a+9﹣a2﹣8a=﹣14a+9.(4)(x﹣2)2﹣x(x+4).(x﹣2)2﹣x(x+4)=x2+4﹣4x﹣x2﹣4x=﹣8x+4.【点睛】本题主要考查了整式的混合运算,熟练掌握平方差公式和完全平方公式,整式的混合运算法则是解题的关键.7.先化简,再求值:(a+2)2+(1+a)(1﹣a),其中12a=-.【答案】45,3a 【分析】先利用完全平方公式与平方差公式进行整式的乘法运算,再合并同类项,最后把12 a=-代入化简后的代数式求值即可. 【详解】解:(a+2)2+(1+a)(1﹣a)原式22441a a a=+++-45a=+当12a=-时,原式14525 3.2【点睛】本题考查的是整式的乘法运算,完全平方公式与平方差公式的应用,熟练的利用两个公8.计算:()()()222x y y x y x +-+-. 【答案】252x xy + 【分析】先运用乘法公式进行计算,再合并同类项即可. 【详解】解:()()()222x y y x y x +-+-,=()222224x xy y y x ++--,=222224x xy y y x ++-+, =252x xy +. 【点睛】本题考查了整式的乘法,解题关键是熟记乘法公式,准确进行计算. 9.计算(1)(﹣3ab 2)(﹣a 2c )2÷6ab 2; (2)(x +2y )(x ﹣2y )﹣(x +y )2 【答案】(1)﹣12a 4c 2;(2)﹣5y 2﹣2xy . 【分析】(1)先计算积的乘方,然后根据正式的乘除计算法则进行求解即可;(2)利用完全平方公式和平方差公式先去括号,然后根据整式的加减计算法则求解即可. 【详解】解:(1)()()222236ab a c ab --÷242236ab a c ab =-⋅÷ 522236a b c ab =-÷4212a c =-;(2)()()()222x y x y x y +--+ ()222242x y x xy y =--++ 222242x y x xy y =----【点睛】本题主要考查了积的乘方,整式的乘除运算,乘法公式,以及整式的四则混合运算,解题的关键在于能够熟练掌握相关计算法则.10.①先化简,再求值:(a 2b -2ab 2-b 3)÷b -(a -b )(a +b ),其中a =-2,12b =. ②若x 2+ax +8和多项式x 2-3x +b 相乘的积中不含x 3、x 2项,求ab 的值. 【答案】①-2ab ,2;②3. 【分析】①先算乘法和除法,再合并同类项,最后代入求出即可.②多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.结果中不含二次项和三次项,则说明这两项的系数为0,建立关于a ,b 等式,求出后再求代数式值,即可求得ab 的值.. 【详解】解:①(a 2b -2ab 2-b 3)÷b -(a -b )(a +b ) =a 2-2ab -b 2-a 2+b 2 =-2ab , 当a =-2,12b =时, 原式=12(2)22;②∵(x 2+ax +8)(x 2-3x +b )=x 4+(-3+a )x 3+(b -3a +8)x 2+(ab-24)x +8b , 又∵不含x 2、x 3项, ∴-3+a =0,b -3a +8=0, 解得a =3,b =1, ∴ab =3×1=3. 【点睛】本题考查整式的混合运算,多项式乘多项式.①中主要考查学生的化简能力和计算能力;②中根据不含某一项就是这一项的系数等于0列式求解a 、b 的值是解题的关键.11.(1)化简:22(2)(2)(2)8a b a b a b b -+--+;(2)先化简,再求值:2(21)(2)(2)2(2)--+---x x x x x ,其中3x =-. 【答案】(1)4ab ;(2)25x +;14.(1)利用完全平方公式和平方差公式展开,合并同类项即可得到结果.(2)利用完全平方公式和平方差公式进行乘法运算展开,再合并同类项即可化简,然后将3x =-代入计算即可得到结果. 【详解】(1)解:原式222224448a b a ab b b =--+-+ 4ab =.(2)解:原式()222441424=-+---+x x x x x222441424=-+-+-+x x x x x25x =+.当3x =-时, 原式2(3)5=-+14=. 【点睛】此题考查了整式的混合运算,涉及的知识有:平方差公式,完全平方公式,去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.平方差公式:22()()a b a b a b +-=+,完全平方公式:222()2a b a ab b ±=±+. 12.计算(1)23375(3)(2)(9)x y xy z x y -÷-; (2)(21x 4y 3-35x 3y 2+7x 2y 2)÷(-7x 2y )(3)()()2282x y y x y x x ⎡⎤++÷⎣⎦-- 【答案】(1)6yz ;(2)2235x y xy y -+-;(3)42x-. 【分析】(1)直接根据整式的乘除混合运算法则计算即可; (2)根据整式的混合运算法则计算即可; (3)根据整式的混合运算法则计算即可. 【详解】解:(1)原式=6337527(2)(9)x y xy z x y -÷- =7675(54)(9)x y z x y -÷-(2)原式=43232222221(7)35(7)7(7)x y x y x y x y x y x y ÷--÷-+÷- =2235x y xy y -+-;(3)原式=2221(228)2x xy y xy y x x++---⨯ =21(8)2x x x-⨯ =211822x x x x⨯-⨯ =42x -. 【点睛】本题考查了整式混合运算,熟练掌握运算法则是解本题的关键. 13.化简:a 2•(﹣a )4﹣(3a 3)2+(﹣2a 2)3 【答案】-16a 6 【分析】先算积的乘方,然后进行同底数幂的乘法运算,最后合并同类项化简即可. 【详解】解:()()()234232·32a a a a --+-2466·98a a a a =--,66698a a a =--, 616a =-.【点睛】题目主要考查整式的混合运算,包括积的乘方,幂的乘方,同底数幂的乘法,整式的加减法等,熟练掌握各个运算法则是解题关键.14.先化简,再求值:2(21)4(1)(1)a a a --+-,其中14a =-.【答案】45,a 6 【分析】先按照完全平方公式与平方差公式计算整式的乘法运算,再合并同类项,把14a =-代入化简后的代数式即可得到答案. 【详解】解:2(21)4(1)(1)a a a --+-22当14a =-时,原式14515 6.4【点睛】本题考查的是整式的乘法运算,化简求值,掌握“利用完全平方公式与平方差公式进行简便运算”是解题的关键.15.化简:m (m +2)﹣(m ﹣1)2. 【答案】4m ﹣1 【分析】利用单项式乘以多项式法则运算,利用完全平方公式展开,去括号.合并同类项即可. 【详解】解:m (m +2)﹣(m ﹣1)2, =m 2+2m ﹣(m 2﹣2m +1), =m 2+2m ﹣m 2+2m ﹣1, =4m ﹣1. 【点睛】本题考查乘法公式化简,掌握单项式乘以多项式法则,完全平方公式是解题关键. 16.先化简,再求值:(1)22()()a a b a b +-+,其中a =b =(2)已知10224ba ==,化简211111454545b a a b a b ⎛⎫⎛⎫⎛⎫+⋅--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,并求值.【答案】(1)22a b -,−2;(2)2121025ab b --,−18或14 【分析】(1)利用单项式乘多项式及完全平方公式展开,合并同类项即可;最后代入即可求得值;(2)分别用平方差公式和完全平方公式展开,合并同类项即可;再由已知条件求出a 与b 的值,并代入化简后的算式中求得值. 【详解】(1)222222222()()2a ab a b a a b b a b a a b =+--=+--+-当a =b =22222a b -=-=-;22222111111625161025a b a ab b =---- 212=1025ab b -- ∵10224b a ==∴252(2)a =,21022b =∴32a =±,b =5当a =32,b =5时,22121232551810251025ab b --=-⨯⨯-⨯=-; 当a =−32,b =5时,221212(32)551410251025ab b --=-⨯-⨯-⨯=; 即代数式的值为−18或14【点睛】本题是整式乘法的混合运算,主要考查了多项式的乘法,乘法公式,幂和乘方的逆用,二次根式的乘法运算,掌握多项式的乘法法则及乘法公式的特点,并能正确运算是关键.17.计算(1)x (x -2y )+(x +y )2;(2)(-a 3b )2÷(-3a 5b 2)(3)(-2a )6-(-2a 3)2-[(-2a )2]3(4)(2a -3b )(3a +2b )【答案】(1)222x y +;(2)13a -;(3)64a -;(4)22656a ab b -- 【分析】(1)根据单项式乘多项式以及完全平方公式去括号,然后根据合并同类项计算法则进行求解即可;(2)先计算积的乘方,然后根据单项式除以单项式的计算法则进行求解即可; (3)先计算积的乘方,然后合并同类项即可;(4)根据多项式乘以多项式的计算法则进行求解即可.【详解】解:(1)()()22x x y x y -++22222x xy x xy y =-+++ 222x y =+;(2)()()23523a b a b -÷-()62523a b a b =÷-13a =-; (3)()()()32623222a a a ⎡⎤-----⎣⎦ ()36626444a a a =-- 66664464a a a =--64a =-;(4)()()2332a b a b -+226946a ab ab b =-+-22656a ab b =--.【点睛】本题主要考查了整式的混合计算,积的乘方,合并同类项,单项式除以单项式,多项式乘以多项式,解题的关键在于能够熟练掌握相关计算法则.18.某同学化简a (a +2b )-(a +b )(a -b )出现了错误,解答过程如下:原式=()2222a ab a b +--(第一步) =2222a ab a b +--(第二步)=2ab 2b -(第三步)(1)该同学解答过程从第_____步开始出错.(2)写出此题的正确解答过程.【答案】(1)二;(2)见解析【分析】(1)解答过程去括号没有变化,故第二步出错;(2)根据整式的乘法的与运算进行计算即可,注意去括号要变号【详解】(1)()2222a ab a b +--2222a ab a b =+-+, 所以,改同学解答过程从第二步开始出错故答案为:二(2)原式=()2222a ab a b +-- =2222a ab a b +-+=2ab 2b +【点睛】本题考查了整式的混合运算,平方差公式,正确的计算是解题的关键.19.先化简,再求值:()21242x y y x y ⎛⎫+-+ ⎪⎝⎭,其中2x =-,12y =. 【答案】222x y +,92【分析】先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.【详解】解:原式2224442x xy y xy y =++--222x y =+,将2x =-,12y =代入得:2222192(2)2()22x y +=-+⨯=. 【点睛】 本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.20.先化简,再求值(1)(3)(2)(4)x x x x +-+-,其中2x =.(2)22()()()2m n m n m n m -+++-.其中m =2,n =1【答案】(1)56x -;4;(2)2mn ;4.【分析】(1)先计算整式的乘法,然后合并同类项化简,最后代入求值即可;(2)利用平方差及完全平方公式展开,然后合并同类项,最后将已知值代入求解即可.【详解】解:(1)()()()324x x x x +-+-222364x x x x x =-+-+-,56x =-;当2x =时,原式526=⨯-4=;(2)()()()222m n m n m n m -+++-2222222m n m mn n m =-+++-,2mn =;当2m =,1n =时,原式221=⨯⨯4=.【点睛】题目主要考查整式的乘法及加减混合运算,平方差公式,完全平方公式,整式的化简求值,熟练掌握两个公式及运算法则是解题关键.21.先化简,再求值:[(x ﹣3y )2+(x +y )(x ﹣y )﹣x (2x ﹣4y )]÷(﹣2y ),其中x =2,y =1.【答案】x ﹣4y ;﹣2.【分析】先根据完全平方公式,平方差公式,单项式乘多项式进行计算,再合并同类项,再根据多项式除以单项式进行计算,最后代入求出答案即可.【详解】解:[(x ﹣3y )2+(x +y )(x ﹣y )﹣x (2x ﹣4y )]÷(﹣2y )=(x 2-6xy +9y 2+x 2-y 2-2x 2+4xy )÷(-2y )=(-2xy +8y 2)÷(-2y )=x -4y ,当x =2,y =1时,原式=2-4×1=2-4=-2. 【点睛】本题考查了整式的化简与求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.22.先化简,再求值:(2ab 3﹣4a 2b 2)÷2ab +(2a +b )(2a ﹣b ),其中a =2,b =1.【答案】4a 2-2ab ,12.【分析】原式先算乘除,然后再算加减,最后代入求值.【详解】解:(2ab 3﹣4a 2b 2)÷2ab +(2a +b )(2a ﹣b )=b 2-2ab +4a 2-b 2=4a 2-2ab ,当a =2,b =1时,原式=4×22-2×2×1=16-4=12. 【点睛】本题考查了整式的混合运算—化简求值,掌握多项式除以单项式的运算法则和平方差公式(a +b )(a -b )=a 2-b 2的结构是解题关键.23.先化简,再求值:(2x ﹣3y )2﹣(2x +y )(2x ﹣y )+5y (x ﹣2y ),其中x ,y 满足15x -+|y +3|=0.【答案】﹣7xy ,215【分析】首先利用完全平方公式及平方差公式对原式进行去括号,并合并同类项进行化简,之后利用算数平方根及绝对值的非负性进行求解x 、y ,代入化简结果即可.【详解】解:原式=4x 2﹣12xy +9y 2﹣(4x 2﹣y 2)+5xy ﹣10y 2=4x 2﹣12xy +9y 2﹣4x 2+y 2+5xy ﹣10y 2=﹣7xy ,∵15x -+|y +3|=0, ∴x ﹣15=0,y +3=0, ∴x =15,y =﹣3, ∴原式=﹣7×15×(﹣3)=215. 【点睛】本题考查的是利用整式乘法进行化简,同时利用非负性进行求解,熟练掌握公式法是解本题的关键.24.一个工件的体积V = a (a + 1)(5a + 1) + (3a + 2)(3a - 2) - a + 4. 其形状和部分尺寸如图所示.(1)化简体积V ;(2)求工件的长x (用含a 的式子表示).【答案】(1)5a 3 + 15a 2;(2)a + 3【分析】(1)根据整式的乘法和平方差公式,化简求解即可;(2)根据图形可以写出该工件的体积,然后根据所求出的体积与题目中的体积相等,即可求解;【详解】解:(1)()()(15134)()232V a a a a a a =++++--+22()(51)(94)4a a a a a =+++--+322255944a a a a a a =++++--+32515a a =+故答案为32515a a +(2)由图形可得,该工件的体积为2235V a a x a a x a x =⨯⨯-⨯⨯=由题意可得:2325515a x a a =+ 解得32251535a a x a a+==+ 故答案为3a +【点睛】此题考查了整式的四则运算,涉及了平方差公式,解题的额关键是掌握整式四则运算法则,正确去式子进行化简.25.先化简,再求值:2(2)(2)(2)x y x y x y +-+-,其中12x =-,2y =.【答案】224y xy +,4【分析】 先提取公因式,再整理即可化简.将12x =-,2y =代入化简后的式子求值即可.【详解】2(2)(2)(2)x y x y x y +-+- [](2)(2)(2)x y x y x y =++--2(2)y x y =+224y xy =+, 将12x =-,2y =代入,得:22124224()242y xy +=⨯+⨯-⨯=.本题考查整式的化简求值.掌握整式的混合运算法则是解答本题的关键.26.计算:(1)2b (2a +3b )+(a ﹣2b )2(2)22441x x x -+÷-(x 221x x ---). 【答案】(1)a 2+10b 2;(2)21x x -+. 【分析】(1)根据单项式乘多项式以及完全平方公式展开,再合并即可;(2)原式括号中通分并利用同分母分式的减法法则计算,约分即可得到结果.【详解】解:(1)2b (2a +3b )+(a ﹣2b )2=4a b +6b 2+a 2-4ab+4b 2=a 2+10b 2;(2)22441x x x -+÷-(x 221x x ---) 222(2)2()11(1)(1)x x x x x x x x ---=÷---+- 2((2)2()1)(1)1x x x x x --+-=÷-- 2(1)(2)2(11)x x x x x --=⋅+--- 21x x -=+. 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.还考查了整式的混合运算.27.计算:(1)3a 3b •(﹣2b )2﹣(ab )3(2)(x +2y ﹣1)(x +2y +1)【答案】(1)11a 3b 3;(2)x 2+4y 2+4xy -1【分析】(1)先算积的乘方,再合并同类项,即可;(2)先利用平方差公式,再完全平方公式,即可求解.【详解】解:(1)原式=3a 3b •4b 2﹣a 3b 3=12a 3b 3﹣a 3b 3(2)原式=(x +2y )2﹣12= x 2+4y 2+4xy -1.【点睛】本题主要考查整式的混合运算,熟练掌握乘法公式,整式的运算法则,是解题的关键.28.计算下列各题(1)20201-(2)2422311()(2)24a b ab a ab ⋅-+⋅-(3)21[()())2(]x y x y x y x --+÷+(4)()(1221)()1a a a a -++-【答案】(1)3;(2)4674a b -;(3)44x y -;(4)2a - 【分析】(1)根据实数与二次根式的混合运算法则即可求解;(2)根据幂的运算法则即可化简求解;(3)根据整式的混合运算法则求解;(4)根据整式的乘法运算法则求解.【详解】(1)原式=3331255+⨯-=+(2)原式()2422364646461117824444a b a b a a b a b a b a b =⋅+⋅-=-=-; (3)()()()212x y x y x y x ⎡⎤-+-+÷⎣⎦ 2222122x xy y x y x ⎡⎤=-++-÷⎣⎦()21222x xy x =-÷44x y =- (4)()()()12211a a a a ++-- 22222a a a =-+-2a =-.【点睛】此题主要考查实数、二次根式、整式乘除混合运算,解题的关键是熟知各自的运算法则.29.计算:(1)(x +2y )(3x ﹣2y ).(2)(x +1)2﹣(2x +5)(2x ﹣5).【答案】(1)22344x xy y +-;(2)23226x x -++.【分析】(1)根据多项式乘以多项式的法则即可得;(2)先计算完全平方公式和平方差公式,再计算整式的加减即可得.【详解】解:(1)原式223264x xy xy y =-+-,22344x xy y =+-;(2)原式2221(425)x x x =++--,2221425x x x =++-+,23226x x =-++.【点睛】本题考查了乘法公式、整式的乘法与加减法,熟练掌握公式和运算法则是解题关键. 30.计算:(1)()()22x y y y x ---; (2)22431211a a a a -⎛⎫÷- ⎪+++⎝⎭. 【答案】(1)2x ;(2)21a a ++. 【分析】(1)利用完全平方公式、单项式乘以多项式法则解题;(2)利用平方差公式、完全平方公式原式化为2(2)(2)1(1)2a a a a a +-+⨯+-,再结合整式的乘除法解题即可.【详解】解:(1)()()22x y y y x ---222=22x xy y y xy -+-+ 2x =(2)22431211a a a a -⎛⎫÷- ⎪+++⎝⎭ 2(2)(2)13=(1)1a a a a a +-+-⎛⎫÷ ⎪++⎝⎭ 2(2)(2)1(1)2a a a a a +-+=⨯+- 21a a +=+. 【点睛】本题考查整式的乘除,涉及平方差公式、完全平方公式等知识,是重要考点,难度一般,掌握相关知识是解题关键.。
(1)3m﹣m﹣5m.(2)3m﹣2﹣4m+5;(3)3m﹣3n﹣2m+n;(4);(5)﹣5mn﹣3m2+7mn+m2;(6)﹣6ab+ab+8ab;(7)2a﹣6b﹣3a+9b;(8)2a﹣6b﹣3a+9b;(9)2a﹣3b+a﹣5b;(10)3b+5a+2a﹣4b;(11)2a2﹣3a3+5a+2a3﹣a2;(12)3a2﹣2a+4a2﹣7a;(13)2a2﹣3a﹣5+4a+a2;(14)3a2+5﹣2a2﹣2a+3a﹣8.(15)2a2﹣3ab+4b2﹣5ab﹣6b2;(16)a2+5﹣a2﹣7;(17)6a2+2a+3﹣5a2﹣2a﹣2;(18)6a+7b2﹣9+4a﹣b2+6;(19)3a2﹣2a﹣a2+5a;(20)a2﹣2a﹣3a2+4a;(21)4a3+2b﹣2a3+b;(22)3x+y﹣2x﹣5y;(23)3x﹣5y+2x+2y;(24)3x﹣2y﹣x﹣6y+2;(25)2x﹣5x﹣3y+5y+3x+1;(26)﹣x﹣2y2+3x+4y2;(27)x2+5y﹣4x2﹣3y.(28)x2﹣5y﹣4x2+y﹣1;(29)5x2+x+3+4x﹣8x2﹣2;(30)﹣3xy﹣3x2+4xy+2x2;(31)5xy﹣2y2﹣3xy﹣4y2;(32)﹣2x2﹣5x+3﹣3x2+6x﹣1.(33)2x2y﹣5xy﹣4xy2+xy+4x2y﹣7xy2;(34)4xy+y2﹣2﹣3y2+2xy+6;(35)2x2﹣3x+3x2;(36)4x2+3x﹣2x2﹣6x+4;(37)﹣4x2y﹣8xy2+2x2y﹣3xy2;(38)3x2﹣1﹣2x﹣5+3x﹣x2;(39)化简:﹣4x2+5x+6x2+7﹣13x.(40)8a﹣7b﹣(4a﹣5b);(41)4(a+b)+2(a+b)﹣(a+b);(42)2(2x﹣y)﹣(x+y);(43)2(3m2﹣mn)﹣mn+m2.(44)7a+3(a﹣3b)﹣2(b﹣a).(45)(7x﹣3y)﹣2(8x﹣5y).(46)(3x2﹣4xy)﹣2(﹣2xy+y2).(47)2m3﹣(+2m2)﹣(﹣3m2)+3m3+m;(48)3(ab﹣a2)+2(a2﹣2ab).(49).(50)﹣5a+0.3a+(﹣2.7a);(51)(2a﹣1)﹣4(3﹣8a).(52)5a﹣3(2a﹣b);(53)(4x﹣7)﹣(2x+5);(54)m2﹣5mn﹣2(3mn﹣2m2).(55)2(a2﹣4b)﹣(2a2﹣b).(56)﹣m﹣(2m﹣2)+(3m+5)(57).(58).(59)7a+3(a﹣3b)﹣2(b﹣3a).(60)(5a2+2a﹣1)﹣4(3﹣8a+2a2).(61)(a2﹣6a)﹣3(a2﹣2a+1)+3;(62)(6x2﹣4y﹣3)﹣(2x2﹣4y+1)(63)4(x2y﹣2xy2)﹣3(﹣xy2+2x2y).(64).(65)3(a2﹣2ab)﹣5(a2+4ab).(66)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b);(67)(4x2﹣5xy)﹣(y2+2x2)+2(3xy﹣y2﹣y2).(68)5x﹣3(2x﹣3y)+x;(69)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b).(70)(3x2﹣2x+1)﹣(﹣x2+x+3);(71)(2a2b﹣2ab2)﹣3(a2b﹣2ab2).(72)4a2+2(3ab﹣2a2)﹣(7ab﹣1);(73).(74)3x﹣2y﹣(5x﹣7y);(75).(76)﹣2y3﹣(﹣x2y+3xy2)+2(xy2﹣y3).(77)(3x+1)﹣2(2x2﹣5x+1)﹣3x2.(78)4a﹣(a﹣3b);(79)﹣3(2x2﹣xy)+4(x2+xy).(80)2(3a2﹣ab)﹣3(﹣2a2+ab).(81)5(x+y)﹣4(3x﹣2y).(82)(5a2+2a﹣1)﹣4(2a2﹣3a).(83)(x2﹣2x)﹣2(x2﹣3x+1)+2;(84)3(m2n﹣2mn2)﹣4(﹣mn2+2m2n).(85)2a+(4a2﹣1)﹣(2a﹣3).(86)(2a2﹣b)+(﹣b+a2).(87)3(a2﹣2ab)﹣2(﹣3ab+b2).(88)﹣(3xy﹣2x2)﹣2(3x2﹣xy)(89)(8x﹣7y)﹣(4y﹣5x).(90)2(x2+2x)﹣3(2x﹣x2).(91)3x﹣[5x﹣2(x﹣4)].(92)(4a﹣2b)﹣(5a﹣3b);(93)2(2x2+3x﹣1)﹣(4x2+2x﹣2).(94)2x2+6x﹣6﹣(﹣2x2+4x+1);(95)3(3a2﹣2ab)﹣2(4a2﹣ab);(96)x2+(3x﹣5)﹣(4x﹣1);(97)7a+3(a﹣3b)﹣2(b﹣a).(98)5x﹣2(4x+5y)+3(3x﹣4y).(99)3(3a2﹣2ab)﹣2(4a2﹣ab).(100)2x﹣(3x2﹣2)+2(x+2x2)+1;(101)3mn2+m2n﹣2(2n2m﹣nm2).(102)(2x2+3y)+3(x2﹣2y).(103)4(2a2﹣1+2a)﹣3(a﹣1+a2).(104);(105)(2a2+1)﹣(2﹣3a2);(106)3(x2﹣2xy)﹣2(﹣3xy+y2);(107)(a﹣2b)﹣(2b﹣5a);(108)﹣m2n+(4mn2﹣3mn)﹣2(mn2﹣3m2n).(109)(3a3b+8b3)﹣4(b3﹣a3b).(110)﹣2ab+6ab﹣(﹣8ab);(111)8x﹣5y﹣3(﹣x+2y).(112)2x2﹣4+5x﹣3(x﹣1+x2).(113)3(4x2﹣3x+2)﹣2(1﹣4x2﹣x).(114)4ab2﹣(a2b+3ab2)﹣2(3ab2﹣a2b).(115)(3a2﹣ab+7)﹣(﹣4a2+2ab+7).(116)(6m2﹣4m﹣3)﹣(2m2﹣4m+1).(117)2(3ab﹣a2b+2ab2)﹣3(﹣2a2b+2ab+ab2).(118)﹣2(a3﹣3b2)+4(﹣b2+a3).(119)2(m2﹣2mn+n2)﹣(m2﹣4mm﹣n2).(120)4(x2﹣2)﹣2(2x2+3x+3)+7x.(121)x2y+[﹣3(2xy﹣x2y)﹣xy].(122)3m2n﹣[2m2n﹣(2mn﹣m2n)﹣4m2].(123)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].(124).(1)3m﹣m﹣5m.【解答】解:原式=(3﹣1﹣5)m=﹣3m;(2)3m﹣2﹣4m+5;【解答】解:3m﹣2﹣4m+5=(3m﹣4m)+(﹣2+5)=﹣m+3;(3)3m﹣3n﹣2m+n;【解答】解:原式=(3﹣2)m+(﹣3+1)n=m﹣2n;(4);【解答】解:原式=(﹣)mn+7=﹣mn+7;(5)﹣5mn﹣3m2+7mn+m2;【解答】解:原式=2mn﹣2m2;(6)﹣6ab+ab+8ab;【解答】解:﹣6ab+ab+8ab=(﹣6+1+8)ab=3ab;(7)2a﹣6b﹣3a+9b;【解答】解:2a﹣6b﹣3a+9b=2a﹣3a+9b﹣6b=﹣a+3b.(8)2a﹣6b﹣3a+9b;【解答】解:原式=2a﹣3a+9b﹣6b=﹣a+3b;(9)2a﹣3b+a﹣5b;【解答】解:原式=3a﹣8b;(10)3b+5a+2a﹣4b;【解答】解:原式=3b﹣4b+5a+2a=﹣b+7a;(11)2a2﹣3a3+5a+2a3﹣a2;【解答】解:2a2﹣3a3+5a+2a3﹣a2=(2﹣1)a2+(﹣3+2)a3+5a=a2﹣a3+5a;(12)3a2﹣2a+4a2﹣7a;【解答】解:3a2﹣2a+4a2﹣7a=(3+4)a2+(﹣2﹣7)a=7a2﹣9a;(13)2a2﹣3a﹣5+4a+a2;【解答】解:2a2﹣3a﹣5+4a+a2=(2+1)a2+(﹣3+4)a﹣5=3a2+a﹣5;(14)3a2+5﹣2a2﹣2a+3a﹣8.【解答】原式=(3a2﹣2a2)+(﹣2a+3a)+(5﹣8)=a2+a﹣3.(15)2a2﹣3ab+4b2﹣5ab﹣6b2;【解答】解:原式=2a2﹣8ab﹣2b2;(16)a2+5﹣a2﹣7;【解答】解:原式=a2﹣a2+5﹣7=5﹣7=﹣2;(17)6a2+2a+3﹣5a2﹣2a﹣2;【解答】解:6a2+2a+3﹣5a2﹣2a﹣2=6a2﹣5a2+2a﹣2a+3﹣2=a2+1;(18)6a+7b2﹣9+4a﹣b2+6;【解答】解:6a+7b2﹣9+4a﹣b2+6=(7b2﹣b2)+(6a+4a)+(﹣9+6)=6b2+10a﹣3;(19)3a2﹣2a﹣a2+5a;【解答】解:原式=(3﹣1)a2+(5﹣2)a=2a2+3a;(20)a2﹣2a﹣3a2+4a;【解答】解:原式=﹣2a2+2a;(21)4a3+2b﹣2a3+b;【解答】解:4a3+2b﹣2a3+b=2a3+3b;(22)3x+y﹣2x﹣5y;【解答】解:3x+y﹣2x﹣5y=(3﹣2)x+(1﹣5)y=x﹣4y;(23)3x﹣5y+2x+2y;【解答】解:原式=5x﹣3y;(24)3x﹣2y﹣x﹣6y+2;【解答】解:3x﹣2y﹣x﹣6y+2=(3x﹣x)+(﹣2y﹣6y)+2=2x﹣8y+2;(25)2x﹣5x﹣3y+5y+3x+1;【解答】解:原式=(2x﹣5x+3x)+(5y﹣3y)+1=2y+1;(26)﹣x﹣2y2+3x+4y2;【解答】解:﹣x﹣2y2+3x+4y2=(﹣1+3)x+(﹣2+4)y2=2x+2y2;(27)x2+5y﹣4x2﹣3y.【解答】解:x2+5y﹣4x2﹣3y=(1﹣4)x2+(5﹣3)y=﹣3x2+2y.(28)x2﹣5y﹣4x2+y﹣1;【解答】解:原式=x2﹣4x2+y﹣5y﹣1=﹣3x2﹣4y﹣1;(29)5x2+x+3+4x﹣8x2﹣2;【解答】解:原式=(5﹣8)x2+(1+4)x+3﹣2=﹣3x2+5x+1;(30)﹣3xy﹣3x2+4xy+2x2;【解答】解:﹣3xy﹣3x2+4xy+2x2=(﹣3xy+4xy)+(2x2﹣3x2)=xy﹣x2;(31)5xy﹣2y2﹣3xy﹣4y2;【解答】解:原式=2xy﹣6y2;(32)﹣2x2﹣5x+3﹣3x2+6x﹣1.【解答】解:原式=﹣2x2﹣3x2+6x﹣5x+3﹣1=﹣5x2+x+2;(33)2x2y﹣5xy﹣4xy2+xy+4x2y﹣7xy2;【解答】解:2x2y﹣5xy﹣4xy2+xy+4x2y﹣7xy2=(2x2y+4x2y)+(﹣5xy+xy)+(﹣4xy2﹣7xy2)=6x2y﹣4xy﹣11xy2;(34)4xy+y2﹣2﹣3y2+2xy+6;【解答】解:4xy+y2﹣2﹣3y2+2xy+6=(4xy+2xy)+(y2﹣3y2)+(6﹣2)=6xy﹣2y2+4;(35)2x2﹣3x+3x2;【解答】解:原式=5x2﹣3x;(36)4x2+3x﹣2x2﹣6x+4;【解答】解:4x2+3x﹣2x2﹣6x+4=4x2﹣2x2+3x﹣6x+4=2x2﹣3x+4;(37)﹣4x2y﹣8xy2+2x2y﹣3xy2;【解答】解:原式=(﹣4x2y+2x2y)+(﹣8xy2﹣3xy2)=﹣2x2y﹣11xy2;(38)3x2﹣1﹣2x﹣5+3x﹣x2;【解答】解:原式=3x2﹣x2﹣2x+3x﹣1﹣5=2x2+x﹣6;(39)化简:﹣4x2+5x+6x2+7﹣13x.【解答】解:﹣4x2+5x+6x2+7﹣13x=(﹣4+6)x2+(5﹣13)x+7=2x2﹣8x+7;(40)8a﹣7b﹣(4a﹣5b);【解答】解:(1)原式=8a﹣7b﹣4a+5b=4a﹣2b;(41)4(a+b)+2(a+b)﹣(a+b);【解答】解:(1)原式=4a+4b+2a+2b﹣a﹣b=4a+2a﹣a+4b+2b﹣b=5a+5b;(42)2(2x﹣y)﹣(x+y);【解答】解:(1)原式=4x﹣2y﹣x﹣y=3x﹣3y;(43)2(3m2﹣mn)﹣mn+m2.【解答】2(3m2﹣mn)﹣mn+m2=6m2﹣2mn﹣mn+m2=7m2﹣3mn.(44)7a+3(a﹣3b)﹣2(b﹣a).【解答】7a+3(a﹣3b)﹣2(b﹣a)=7a+3a﹣9b﹣2b+2a=12a﹣11b.(45)(7x﹣3y)﹣2(8x﹣5y).【解答】原式=7x﹣3y﹣16x+10y=﹣9x+7y.(46)(3x2﹣4xy)﹣2(﹣2xy+y2).【解答】原式=3x2﹣4xy+4xy﹣2y2=3x2﹣2y2.(47)2m3﹣(+2m2)﹣(﹣3m2)+3m3+m;【解答】原式=2m3﹣2m2+3m2+3m3+m=5m3+m2+m;(48)3(ab﹣a2)+2(a2﹣2ab).【解答】3(ab﹣a2)+2(a2﹣2ab)=3ab﹣3a2+2a2﹣4ab=﹣a2﹣ab.(49).【解答】=(2a﹣b)﹣2(2a﹣b)﹣3(2a﹣b)+(2a﹣b)=(2a﹣b)×()=(2a﹣b)×(﹣3)=﹣6a+3b.(50)﹣5a+0.3a+(﹣2.7a);【解答】解:﹣5a+0.3a+(﹣2.7a)=(﹣5+0.3﹣2.7)a=﹣7.4a;(51)(2a﹣1)﹣4(3﹣8a).【解答】(2a﹣1)﹣4(3﹣8a)=2a﹣1﹣12+32a=34a﹣13.(52)5a﹣3(2a﹣b);【解答】原式=5a﹣6a+3b=﹣a+3b;(53)(4x﹣7)﹣(2x+5);【解答】原式=4x﹣7﹣2x﹣5=2x﹣12;(54)m2﹣5mn﹣2(3mn﹣2m2).【解答】原式=m2﹣5mn﹣6mn+4m2=5m2﹣11mn.(55)2(a2﹣4b)﹣(2a2﹣b).【解答】2(a2﹣4b)﹣(2a2﹣b)=2a2﹣8b﹣2a2+b=﹣7b.(56)﹣m﹣(2m﹣2)+(3m+5)【解答】解:﹣m﹣(2m﹣2)+(3m+5)=﹣m﹣2m+2+3m+5=7;(57).【解答】原式===﹣4m+13.(58).【解答】原式===.(59)7a+3(a﹣3b)﹣2(b﹣3a).【解答】原式=7a+3a﹣9b﹣2b+6a=16a﹣11b;(60)(5a2+2a﹣1)﹣4(3﹣8a+2a2).【解答】原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13.(61)(a2﹣6a)﹣3(a2﹣2a+1)+3;【解答】原式=a2﹣6a﹣3a2+6a﹣3+3=﹣2a2;(62)(6x2﹣4y﹣3)﹣(2x2﹣4y+1)【解答】(6x2﹣4y﹣3)﹣(2x2﹣4y+1)=6x2﹣4y﹣3﹣2x2+4y﹣1=4x2﹣4.(63)4(x2y﹣2xy2)﹣3(﹣xy2+2x2y).【解答】原式=4x2y﹣8xy2+3xy2﹣6x2y=﹣2x2y﹣5xy2.(64).【解答】.=2m2+﹣m2+2n2=+.(65)3(a2﹣2ab)﹣5(a2+4ab).【解答】3(a2﹣2ab)﹣5(a2+4ab)=3a2﹣6ab﹣5a2﹣20ab=﹣2a2﹣26ab.(66)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b);【解答】解:(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b)=2a﹣b﹣2b+3a﹣2a+4b=3a+b;(67)(4x2﹣5xy)﹣(y2+2x2)+2(3xy﹣y2﹣y2).【解答】(4x2﹣5xy)﹣(y2+2x2)+2(3xy﹣y2﹣y2)=4x2﹣5xy﹣y2﹣2x2+6xy﹣y2﹣y2=2x2+xy﹣y2.(68)5x﹣3(2x﹣3y)+x;【解答】解:原式=5x﹣6x+9y+x=(5x﹣6x+x)+9y=9y;(69)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b).【解答】5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)=15a2b﹣5ab2+4ab2﹣12a2b=(15﹣12)a2b+(﹣5+4)ab2=3a2b﹣ab2.(70)(3x2﹣2x+1)﹣(﹣x2+x+3);【解答】解:原式=3x2﹣2x+1+x2﹣x﹣3=3x2+x2﹣2x﹣x+1﹣3=4x2﹣3x﹣2;(71)(2a2b﹣2ab2)﹣3(a2b﹣2ab2).【解答】原式=2a2b﹣2ab2﹣3a2b+6ab2=2a2b﹣3a2b+6ab2﹣2ab2=﹣a2b+4ab2.(72)4a2+2(3ab﹣2a2)﹣(7ab﹣1);【解答】解:原式=4a2+6ab﹣4a2﹣7ab+1=4a2﹣4a2+6ab﹣7ab+1=﹣ab+1;(73).【解答】原式===x2y.(74)3x﹣2y﹣(5x﹣7y);【解答】解:原式=3x﹣2y﹣5x+7y=3x﹣5x+7y﹣2y=﹣2x+5y;(75).【解答】原式=15x2y﹣5xy2+9xy2﹣24x2y=15x2y﹣24x2y+9xy2﹣5xy2=﹣9x2y+4xy2.(76)﹣2y3﹣(﹣x2y+3xy2)+2(xy2﹣y3).【解答】原式=﹣2y3+x2y﹣3xy2+2xy2﹣2y3=﹣4y3+x2y﹣xy2.(77)(3x+1)﹣2(2x2﹣5x+1)﹣3x2.【解答】原式=3x+1﹣4x2+10x﹣2﹣3x2=﹣7x2+13x﹣1.(78)4a﹣(a﹣3b);【解答】解:原式=4a﹣a+3b=3a+3b;(79)﹣3(2x2﹣xy)+4(x2+xy).【解答】原式=﹣6x2+3xy+4x2+4xy=﹣6x2+4x2+3xy+4xy=﹣2x2+7xy.(80)2(3a2﹣ab)﹣3(﹣2a2+ab).【解答】原式=6a2﹣2ab+6a2﹣3ab=6a2+6a2﹣2ab﹣3ab=12a2﹣5ab.(81)5(x+y)﹣4(3x﹣2y).【解答】原式=5x+5y﹣12x+8y=5x﹣12x+5y+8y=﹣7x+13y.(82)(5a2+2a﹣1)﹣4(2a2﹣3a).【解答】(5a2+2a﹣1)﹣4(2a2﹣3a)=5a2+2a﹣1﹣8a2+12a=﹣3a2+14a﹣1.(83)(x2﹣2x)﹣2(x2﹣3x+1)+2;【解答】解:原式=x2﹣2x﹣2x2+6x﹣2+2=﹣x2+4x;(84)3(m2n﹣2mn2)﹣4(﹣mn2+2m2n).【解答】原式=3m2n﹣6mn2+4mn2﹣8m2n=﹣5m2n﹣2mn2.(85)2a+(4a2﹣1)﹣(2a﹣3).【解答】2a+(4a2﹣1)﹣(2a﹣3)=2a+4a2﹣1﹣2a+3=4a2+2.(86)(2a2﹣b)+(﹣b+a2).【解答】原式=2a2﹣b﹣b+a2=3a2﹣2b.(87)3(a2﹣2ab)﹣2(﹣3ab+b2).【解答】原式=3a2﹣6ab+6ab﹣2b2=6ab﹣6ab+3a2﹣2b2=3a2﹣2b2.(88)﹣(3xy﹣2x2)﹣2(3x2﹣xy)【解答】解:原式=﹣3xy+2x2﹣6x2+2xy=﹣4x2﹣xy.(89)(8x﹣7y)﹣(4y﹣5x).【解答】原式=8x﹣7y﹣4y+5x=13x﹣11y.(90)2(x2+2x)﹣3(2x﹣x2).【解答】2(x2+2x)﹣3(2x﹣x2).=2x2+4x﹣6x+3x2=2x2+3x2+4x﹣6x=5x2﹣2x.(91)3x﹣[5x﹣2(x﹣4)].【解答】3x﹣[5x﹣2(x﹣4)]=3x﹣(5x﹣2x+8)=3x﹣5x+2x﹣8=﹣8.(92)(4a﹣2b)﹣(5a﹣3b);【解答】解:原式=4a﹣2b﹣5a+3b=﹣a+b;(93)2(2x2+3x﹣1)﹣(4x2+2x﹣2).【解答】原式=4x2+6x﹣2﹣4x2﹣2x+2=4x.(94)2x2+6x﹣6﹣(﹣2x2+4x+1);【解答】2x2+6x﹣6﹣(﹣2x2+4x+1)=2x2+6x﹣6+2x2﹣4x﹣1=4x2+2x﹣7;(95)3(3a2﹣2ab)﹣2(4a2﹣ab);【解答】3(3a2﹣2ab)﹣2(4a2﹣ab)=9a2﹣6ab﹣8a2+2ab=a2﹣4ab;(96)x2+(3x﹣5)﹣(4x﹣1);【解答】解:x2+(3x﹣5)﹣(4x﹣1)=x2+3x﹣5﹣4x+1=x2﹣x﹣4;(97)7a+3(a﹣3b)﹣2(b﹣a).【解答】7a+3(a﹣3b)﹣2(b﹣a)=7a+3a﹣9b﹣2b+2a=12a﹣11b.(98)5x﹣2(4x+5y)+3(3x﹣4y).【解答】5x﹣2(4x+5y)+3(3x﹣4y)=5x﹣8x﹣10y+9x﹣12y=(5x﹣8x+9x)﹣(10y+12y)=6x﹣22y.(99)3(3a2﹣2ab)﹣2(4a2﹣ab).【解答】原式=9a2﹣6ab﹣8a2+2ab=(9a2﹣8a2)+(﹣6ab+2ab)=a2﹣4ab.(100)2x﹣(3x2﹣2)+2(x+2x2)+1;【解答】解:2x﹣(3x2﹣2)+2(x+2x2)+1=2x﹣3x2+2+2x+4x2+1=x2+4x+3;(101)3mn2+m2n﹣2(2n2m﹣nm2).【解答】3mn2+m2n﹣2(2n2m﹣nm2)=3mn2+m2n﹣4mn2+2m2n=3m2n﹣mn2.(102)(2x2+3y)+3(x2﹣2y).【解答】(2x2+3y)+3(x2﹣2y)=2x2+3y+3x2﹣6y=(2x2+3x2)+(3y﹣6y)=5x2﹣3y.(103)4(2a2﹣1+2a)﹣3(a﹣1+a2).【解答】原式=8a2﹣4+8a﹣3a+3﹣3a2=5a2+5a﹣1.(104);【解答】解:=2a2+6b3﹣3a2+4b3=﹣a2+10b3;(105)(2a2+1)﹣(2﹣3a2);【解答】(2a2+1)﹣(2﹣3a2)=2a2+1﹣2+3a2=5a2﹣1;(106)3(x2﹣2xy)﹣2(﹣3xy+y2);【解答】3(x2﹣2xy)﹣2(﹣3xy+y2)=3x2﹣6xy+6xy﹣2y2=3x2﹣2y2;(107)(a﹣2b)﹣(2b﹣5a);【解答】解:(a﹣2b)﹣(2b﹣5a)=a﹣2b﹣2b+5a=6a﹣4b;(108)﹣m2n+(4mn2﹣3mn)﹣2(mn2﹣3m2n).【解答】﹣m2n+(4mn2﹣3mn)﹣2(mn2﹣3m2n)=﹣m2n+4mn2﹣3mn﹣2mn2+6m2n=5m2n+2mn2﹣3mn.(109)(3a3b+8b3)﹣4(b3﹣a3b).【解答】(3a3b+8b3)﹣4(b3﹣a3b)=3a3b+8b3﹣4b3+4a3b.=7a3b+4b3.(110)﹣2ab+6ab﹣(﹣8ab);【解答】解:原式=﹣2ab+6ab+8ab=12ab;(111)8x﹣5y﹣3(﹣x+2y).【解答】原式=8x﹣5y+3x﹣6y=11x﹣11y.(112)2x2﹣4+5x﹣3(x﹣1+x2).【解答】原式=2x2﹣4+5x﹣3x+3﹣3x2=﹣x2+2x﹣1.(113)3(4x2﹣3x+2)﹣2(1﹣4x2﹣x).【解答】原式=12x2﹣9x+6﹣2+8x2+2x=20x2﹣7x+4.(114)化简:4ab2﹣(a2b+3ab2)﹣2(3ab2﹣a2b).【解答】4ab2﹣(a2b+3ab2)﹣2(3ab2﹣a2b)=4ab2﹣a2b﹣3ab2﹣6ab2+2a2b=﹣5ab2+a2b.(115)(3a2﹣ab+7)﹣(﹣4a2+2ab+7).【解答】原式=3a2﹣ab+7+4a2﹣2ab﹣7=7a2﹣3ab.(116)(6m2﹣4m﹣3)﹣(2m2﹣4m+1).【解答】原式=6m2﹣4m﹣3﹣2m2+4m﹣1=4m2﹣4.(117)2(3ab﹣a2b+2ab2)﹣3(﹣2a2b+2ab+ab2).【解答】解:2(3ab﹣a2b+2ab2)﹣3(﹣2a2b+2ab+ab2)=6ab﹣2a2b+4ab2+6a2b﹣6ab﹣3ab2=(6ab﹣6ab)+(6a2b﹣2a2b)+(4ab2﹣3ab2)=4a2b+ab2.(118)﹣2(a3﹣3b2)+4(﹣b2+a3).【解答】解:原式=﹣2a3+6b2﹣4b2+4a3=2a3+2b2.(119)2(m2﹣2mn+n2)﹣(m2﹣4mm﹣n2).【解答】原式=2m2﹣4mn+2n2﹣m2+4mm+n2=m2+3n2.(120)4(x2﹣2)﹣2(2x2+3x+3)+7x.【解答】原式=4x2﹣8﹣4x2﹣6x﹣6+7x=x﹣14.(121)x2y+[﹣3(2xy﹣x2y)﹣xy].【解答】原式=x2y+(﹣6xy+3x2y﹣xy)=x2y﹣6xy+3x2y﹣xy=4x2y﹣7xy.(122)3m2n﹣[2m2n﹣(2mn﹣m2n)﹣4m2].【解答】3m2n﹣[2m2n﹣(2mn﹣m2n)﹣4m2]=3m2n﹣(2m2n﹣2mn+m2n﹣4m2)=3m2n﹣2m2n+2mn﹣m2n+4m2=2mn+4m2.(123)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].【解答】5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)]=5x2﹣7x﹣(3x2+2x2﹣8x+2)=5x2﹣7x﹣3x2﹣2x2+8x﹣2=x﹣2.(124).【解答】=6xy2﹣(2x﹣x+2xy2﹣xy2)=6xy2﹣2x+x﹣2xy2+xy2=5xy2﹣x.。
整式混合运算的顺序整式混合运算是指在一道数学题中,同时包含有加法、减法、乘法和除法等多种运算符号的运算过程。
在进行整式混合运算时,需要遵循一定的运算顺序,以保证最终的结果是正确的。
整式混合运算的顺序是根据运算法则和运算符优先级来确定的。
下面将详细介绍整式混合运算的顺序,以及每个运算符的优先级。
首先,整式混合运算的顺序是按照以下顺序进行的:括号内部的运算,乘法和除法,最后是加法和减法。
这个顺序也被称为运算符的优先级。
在进行整式混合运算时,如果有小括号,我们首先要计算括号内的运算。
括号内的运算可以是任何运算,包括整数运算、分数运算和代数式运算等。
计算括号内的运算要根据运算法则进行,例如在整数运算中,要按照加法和减法的顺序计算,先计算加法再计算减法。
接下来,我们要计算乘法和除法。
乘法和除法的运算符优先级高于加法和减法。
在乘法和除法中,我们要注意乘法和除法可以按照从左到右的顺序计算,先计算左边的乘法或除法,再计算右边的乘法或除法。
如果一个式子中有多个乘法或除法,我们需要按照从左到右的顺序计算。
最后,我们要计算加法和减法。
加法和减法的运算符优先级最低,是在其他运算符计算完毕之后才计算的。
在加法和减法中,我们也要按照从左到右的顺序计算,先计算左边的加法或减法,再计算右边的加法或减法。
如果一个式子中有多个加法或减法,我们需要按照从左到右的顺序计算。
在整式混合运算中,我们还要注意运算符的结合律。
结合律是指运算符在一个式子中的计算顺序。
在结合律中,我们要注意乘法和除法属于左结合律,即从左向右计算,而加法和减法属于右结合律,即从右向左计算。
整式混合运算的顺序实际上是根据数学运算的法则和规定来确定的,目的是为了保证计算的准确性和结果的正确性。
只有按照正确的运算顺序进行整式混合运算,才能得到正确的结果。
总结起来,整式混合运算的顺序是:括号内的运算,乘法和除法,最后是加法和减法。
在进行整式混合运算时,要按照运算符的优先级和结合律来确定运算的顺序,以保证计算的准确性和结果的正确性。
整式的运算综合测试题
姓名:___________
一、选择题
1、已知a n 是边长为a 的正方形的面积,那么2a n b n+1是( )次单项式。
A 、2
B 、3
C 、4
D 、5
2、下列运算正确的是( )
A 、22×23=26
B 、(-2)-1×2=1
C 、(-2)0-︱-2︱=-1
D 、26÷26=22
3、下列叙述①两个单项式是同类项其和是单项式;②两个单项式是同类项其积是单项式;③两个单项式是
同次项其和是单项式;④两个单项式是同次项其积是单项式。
正确有( )个。
A 、1
B 、2
C 、3
D 、4
4、某种手机卡的市话费收费上次已按原收费标准降低了a 元/分钟,现在再次下调20%,使收费标准为b 元/分钟,那么原收费标准为( )
A 、(
45b-a )元/分钟 B 、(4
5b+a )元/分钟 C 、(41b-a )元/分钟 D 、(41b+a )元/分钟 5、下列多项式乘法,可以用平方差公式计算的是( )
A 、(3-2a )(2a-3)
B 、(4a+
21)(-4a-2
1) C 、(-3-2a )(2a-3) D 、(-a+21)(-4a-21) 6、下列运算①(-ab 3)2=a 2b 6;②-(ab 3)2=a 2b 6③(-a+b )2=a 2+b 2;④(-a+b )2=a 2-2ab+b 2
正确的个数有( )
个
A 、1
B 、2
C 、2
D 、3
7、要使4a 2-ka+1是完全平方式,那么k 的值是( )
A 、4
B 、-4
C 、2
D 、±4
8、下列运算正确的是( )
A 、(2xy 2-3x 2y )·2xy=4x 2y 2 -6x 3y
B 、-x(2x+3 x 2-2)=-3 x 3-2 x 2-2x
C 、-2ab(ab-2a b 2-1)=-2a 2b 2+6a 2b 3-2ab
D 、(43a n+1-2b )ab=43a n+2b-2
1a b 2 9、一个长方体的高为xcm,,长为高的3倍少4cm,,宽为高的2倍,那么这个长方体的体积是( )
A 、(3 x 3-4 x 2)cm 3
B 、(6 x 3+8 x 2)cm 3
C 、(6 x 3-8 x 2)cm 3
D 、(6x 2-8x) cm 3
10、若k 的值使得x 2+4x+k=(x+2)2-1成立,那么k 的值( )
A 、5
B 、4
C 、3
D 、2
二、填空题
11、单项式- 4
3∏x 2y 的系数是 ,次数是 。
12、多项式-5(ab )2+ab+1是 次 项式。
13、如果正方体的棱长是2
1a b 2,那么这个正方体的体积是 。
14、计算(-x 3)2= ;(-x 2)3= 。
15、x+y=10,xy=24那么2x 2+2y 2= .
16、一个多项式A 减去多项式2x 2+5x-3,小明同学将减号抄成了加号,运算结果得-x 2+3x-7,多项式A 是 。
17、若多项式2x 2+3y+7的值是8,那么多项式4x 2+6y-9的值是 。
18、观察下列各式
12+1=1×2;22+2=2×3;32+3=3×4;……
请把你猜想的结果用正整数n 表示出来 。
三、解答题
19、计算:(每小题4分,共16分)
⑴、(-0.25)2009×4
2008+21
⑵、-2(-2a-41)(4a-2
1)
⑶、x 18÷[(-x 3)2]2+(-x 3)÷x 2·x 5
④、化简求值:(x-y)(x-2y)+(x-2y)(x-3y)-2(x-3y)(x-4y)(其中x=4,y=2
3)
20、(5分)已知a-a -1=5,求a 2 + a -2的值
21、(6分)如图阴影部分,是边长为4cm 的正方形纸片,在它的中心剪去一个边长为2.5cm 的正方形小纸片得到的,请尝试用最简便方法作一个长方形使其面积等于图中阴影部分的面积。
整式的运算综合测试题
参考答案
1、D ;
2、C ;
3、C ;
4、B ;
5、C ;
6、C ;
7、D ;
8、D ;
9、C ;10、C ;11、-
43∏,12;12、4,3;13、8
1a 3b 6;14、x 6,-x 6;15、104;16、-3x 2-2x-4;17、-7;18、n 2+n=n(n+1);19、(1)、41;(2)、16a 2-161(3)、0;(4)、6xy-20y 2,-9;20、27;21、作长为6.5cm,宽为1.5cm 的长方形;。